
Maria Hybinette, UGA

CSCI [4|6]730
 Operating Systems

Main Memory

Maria Hybinette, UGA
2

Memory Questions?

!  What is main memory?
!  How does multiple processes share memory

space?
» Key is how do they refer to memory addresses?

!  What is static and dynamic allocation?
!  What is segmentation?

Maria Hybinette, UGA
3

Review: Motivation for
Multiprogramming

!  Disadvantages:
»  Only one process runs at a time
»  Process can destroy OS

User
Process

OS
Physical
Memory

0

2n-1

Stack

Code

Heap
Address
Space

Uniprocessing: One process runs at a time

Low Address
(0x00000000)

High Address
(0x7fffffff)

Maria Hybinette, UGA
4

Multiprogramming Goals

!  Sharing
»  Several processes coexist in main memory
»  Cooperating processes can share portions of address space

!  Transparency
»  Processes are not aware that memory is shared
»  Works regardless of number and/or location of processes

!  Protection
»  Cannot corrupt OS or other processes
»  Privacy: Cannot read data of other processes

!  Efficiency
»  Do not waste CPU or memory resources
»  Keep fragmentation low (later)

Maria Hybinette, UGA
5

Memory Addresses

!  Address space
» What we go so far:

–  Physical addresses

Maria Hybinette, UGA
6

Static Relocation (after loading)

!  Goal: Allow transparent sharing -
Each address space may be
placed anywhere in memory

» OS finds free space for new process
» Modify addresses statically (similar

to linker) when loading the process
»  Fixed addresses.

!  Advantages:
» Allows multiple processes to run
» Requires no hardware support

Initial P0

Process P3

Process P2

Process P1

System Memory

Maria Hybinette, UGA
7

Static Reallocation

!  Disadvantages:
» No protection

–  Process can destroy OS or other
processes

–  No privacy
» Address space must be allocated

contiguously
–  Allocate space for worst-case stack and

heap
–  Processes may not grow

» Cannot move process after they are
placed or loaded (static addresses)

»  Fragmentation (later)

Initial P0

Process P3

Process P2

Process P1

System Memory

Process P4

Maria Hybinette, UGA
8

Dynamic Relocation

!  Goal: Protect processes from one another
!  Requires hardware support

»  Memory Management Unit (MMU)
!  MMU dynamically changes process address at every

memory reference (compute address on-the-fly)
»  Process generates logical or virtual addresses
»  Memory hardware uses physical or real addresses

CPU MMU Memory

Process runs here
OS can control MMU

Logical address Physical address

Maria Hybinette, UGA
9

Hardware Support for
Dynamic Relocation

!  Two operating modes
»  Privileged (protected, kernel) mode: OS runs

–  When enter OS (trap, system calls, interrupts, exceptions)
–  Allows certain instructions to be executed

!  Can manipulate contents of MMU
–  Allows OS to access all of physical memory

»  User mode: User processes run
–  Perform translation of logical address to physical address

!  MMU contains base and bounds registers
»  base: start location for address space (physical address)
»  bounds: size limit of address space (memory span)

Maria Hybinette, UGA
10

Implementation of
 Dynamic Relocation

!  Translation on every memory access of user process
»  MMU compares logical address to bounds register

–  if logical address is greater, then generate error
»  MMU adds base register to logical address to form physical address

mode !
= !

user?"

<"
bounds?"

logical
address

base!

bounds!

mode!

+!
base!

Registers:"

no"

yes"

no"
error

physical
address

32
bits"

1 bit"

Maria Hybinette, UGA
11

Example of Dynamic Relocation

!  What are the physical addresses for the following 16-
bit logical addresses (HEX: highest F:1111)?

!  Process 1: base: 0x4320, bounds: 0x2220 (in HEX)!
»  0x0000:!
»  0x1110:!
»  0x3000:!

!  Process 2: base: 0x8540, bounds: 0x3330!
»  0x0000: !
»  0x1110:!
»  0x3000:!

!  Operating System
»  0x0000:!
»  0x5FFF:!

Maria Hybinette, UGA
12

Managing Processes
 with Base and Bounds

!  Context-switch
»  Add base and bounds registers to PCB
»  Steps:

1. Change to privileged mode
2. Save base and bounds registers of old process
3. Load base and bounds registers of new process
4. Change to user mode and jump to new process

!  What if don’t change base and bounds registers when
switch?

!  Protection requirement
»  User process cannot change base and bounds registers
»  User process cannot change to privileged mode

Maria Hybinette, UGA
13

Base and Bounds Discussion

!  Advantages
»  Provides protection (both read and

write) across address spaces
»  Supports dynamic relocation

–  Can move address spaces
–  Why might you want to do this?

»  Simple, inexpensive: Few registers,
little logic in MMU

»  Fast: Add and compare can be done in
parallel

!  Disadvantages
»  Each process must be allocated

contiguously in physical memory
–  Must allocate memory that may not be

used by process
»  No partial sharing: Cannot share limited

parts of address space

Operating
System

Process

Process

Process

0"

30004"

42094"

30004"

12090"

base"

bound"

Maria Hybinette, UGA
14

Segmentation

!  Divide address space into
logical segments

»  Each segment
corresponds to logical
entity in address space

–  code, stack, heap

!  Each segment can
independently:

»  be placed separately in
physical memory

»  grow and shrink
»  be protected (separate

read/write/execute
protection bits)

subroutine"

stack"

symbol"
table "
table"

main "
program"

heap"

heap"

main "
program"

subroutine"

symbol "
table"

Physical Address
Space

Logical Address
Space

stacj"

Maria Hybinette, UGA
15

Segmented Addressing

!  How does process designate a particular
segment?

» Use part of logical address
–  Top bits of logical address select segment
–  Low bits of logical address select offset within

segment

Maria Hybinette, UGA
16

Segmentation Implementation

!  MMU contains Segment Table (per process)
»  Each segment has own base and bounds, protection bits
»  Example: 14 bit logical address, 4 segments

Segment Base Bounds R W

0 0x2000 0x06ff 1 0

1 0x0000 0x04ff 1 0

2 0x3000 0x0fff 1 1

3 0x1000 0x0fff 0 0

!  Translate logical addresses ! physical addresses:
»  0x0240: 0th segment 240 internal address within segment ! what address?!
»  0x1108:!
»  0x265c: !
»  0x3002:!

Maria Hybinette, UGA
17

Discussion of Segmentation

!  Advantages
»  Enables sparse allocation of address space

–  Stack and heap can grow independently
–  Heap: If no data on free list, dynamic memory allocator

requests more from OS (e.g., UNIX: malloc calls sbrk())
–  Stack: OS recognizes reference outside legal segment,

extends stack implicitly
»  Different protection for different segments

–  Read-only status for code
»  Enables sharing of selected segments
»  Supports dynamic relocation of each segment

!  Disadvantages
»  Each segment must be allocated contiguously

–  May not have sufficient physical memory for large segments

Maria Hybinette, UGA
18

When to Bind
Physical & Logical Addresses

!  Compile time: If memory location
known a priori, absolute code can be
generated; must recompile code if
starting location changes

!  Load time: Must generate
relocatable code if memory location
is not known at compile time

!  Execution time: Binding delayed
until run time if the process can be
moved during its execution from
one memory segment to another.
Need hardware support for address
maps (e.g., base and limit registers)

Compiler or
Assembler

System "
Library" Load"

module"

Object "
Module"

Other"
Object"

Modules"

Linkage
editor

loader

In-memory
Binary

Memory image

System "
Library"

Source"
Program"

Maria Hybinette, UGA
19

Motivation for Dynamic Memory

!  Why do processes need dynamic allocation of memory?
»  Do not know amount of memory needed at compile time
»  Must be pessimistic when allocate memory statically

–  Allocate enough for worst possible case
–  Storage is used inefficiently

!  Recursive procedures
»  Do not know how many times procedure will be nested

!  Complex data structures: lists and trees
»  struct my_t
 *p = (struct my_t *)malloc(sizeof(struct
my_t));

!  Two types of dynamic allocation
»  Stack
»  Heap

Maria Hybinette, UGA
20

Stack Organization

!  Definition: Memory is freed in opposite order from allocation
alloc(A);!
alloc(B);!
alloc(C);!
free(C);!
alloc(D);!
free(D);!
free(B);!
free(A);!

!  Implementation: Pointer separates allocated and freed
space

»  Allocate: Increment pointer
»  Free: Decrement pointer

Maria Hybinette, UGA
21

Stack Discussion

OS uses stack for procedure call frames (local variables)

!  Advantages
»  Keeps all free space contiguous (and keep order of calls)
»  Simple to implement
»  Efficient at run time

!  Disadvantages
»  Not appropriate for all data structures

main() !
{!
!int A = 0;!
!maria(A);!
!printf(“A: %d\n”, A);!

}!

void maria(int Z) !
{!
!int A = 2;!
!Z = 5;!
!printf(“A: %d Z: %d\n”, A, Z);!

}!

Maria Hybinette, UGA
22

Heap Organization

!  Definition: Allocate from any random
location
»  Memory consists of allocated areas and

free areas (holes)
»  Order of allocation and free is

unpredictable
!  Advantage

»  Works for all data structures
!  Disadvantages

»  Allocation can be slow
»  End up with small chunks of free space

–  fragmentation

Alloc

Alloc

Alloc

Alloc

Alloc

Alloc

16 bytes

24 bytes

20 bytes

16 bytes
8 bytes

12 bytes

Alloc

16 bytes !

Alloc

32 bytes

Maria Hybinette, UGA
23

Fragmentation

!  Definition: Free memory that is too
small to be usefully allocated

»  External: Visible to allocator
»  Internal: Visible to requester (e.g., if

must allocate at some granularity)
!  Goal: Minimize fragmentation

»  Few holes, each hole is large
»  Free space is contiguous

!  Stack
»  All free space is contiguous
»  No fragmentation

!  Heap
»  How to allocate to minimize

fragmentation?

Alloc

Alloc

Alloc

Alloc

Alloc
Internal

within block

Maria Hybinette, UGA
24

Heap Implementation: Free List

!  Data structure: free list
»  A circular linked list of free blocks, tracks

memory not in use
»  Header in each block

–  size of block
–  ptr to next block in list

!  void *Allocate(x bytes)
»  Choose block large enough for request (>= x

bytes)
»  Keep remainder of free block on free list
»  Update list pointers and size variable
»  Return pointer to allocated memory

!  Free(ptr)
»  Add block back to free list
»  Merge (coalesce) adjacent blocks in free list,

update ptrs and size variables

user data size

p (addressed returned)

Maria Hybinette, UGA
25

Heap Allocation Policies

!  Best fit
»  Search entire list for each allocation
»  Choose free block that most closely matches size of

request
»  Optimization: Stop searching if see exact (close) match

!  First fit
»  Version 1:

–  Allocate first block that is large enough
»  Version 2:

–  Rotating first fit (or “Next fit”):
!  Variant of first fit, remember place in list
!  Start with next free block each time

!  Worst fit
»  Allocate largest block to request (most leftover space)

Maria Hybinette, UGA
26

Heap Allocation Examples

Scenario: Two free blocks of size 20 and 15 bytes
!  Allocation stream: 10, 20

»  Best
»  First
»  Worst

!  Allocation stream: 8, 12, 12
»  Best
»  First
»  Worst

Maria Hybinette, UGA
27

Comparison of Allocation
Strategies

!  No optimal algorithm
»  Fragmentation highly dependent on workload

!  Best fit
»  Tends to leave some (very large holes) and some very small

holes
–  Can’t use very small holes easily

!  First fit
»  Tends to leave “average” sized holes
»  Advantage: Faster than best fit
»  Next fit used often in practice

!  Uses a ‘Modified’ Buddy allocation Scheme (Linux)
»  Minimizes external fragmentation
»  Disadvantage: Internal fragmentation when not 2^n request

Maria Hybinette, UGA
28

Simple Buddy Allocation

!  Fast, simple allocation for blocks of 2n bytes [Knuth68]
!  void *Allocate (k bytes)!

»  Raise allocation request to nearest (next highest) s = 2n

–  63K allocates a 64K block
–  65K allocates a 128K block
–  31K allocates a 32K block

»  Search free list for appropriate size (near s)
–  Recursively divide larger free blocks until find block of size s
–  “Buddy” block remains free

!  Free(ptr)!
»  Mark blocks as as free
»  Recursively coalesce block with buddy, if buddy is free

–  May coalesce lazily (later, in background) to avoid overhead

Maria Hybinette, UGA
29

Buddy Algorithm

!  Toy Example: Assume there is initially 64K bytes of memory and the first
request is for 5K bytes
1.  Round up request to nearest s=2n K ! so we need a s= 8K bytes and search for a

block of that size
–  Divide 64K block chunk into half (again, again and again) until desired block size and

return to caller (shaded area)

2.  Suppose second request is for 8 then return remaining free chunk to be used
3.  Third request is for 4 -- split block again and again and return to caller
4.  Fourth and last allocated 8 chunk is released and returned
5.  Finally the other is released and coalesced

32 32

64

32 32 32 32 32 32

32

16

16

16

8
8

1 2 2 2 3

16

8

4 4 5 6

Allocated

Maria Hybinette, UGA
30

Buddy Implementation

!  IF holes in free list is of power of 2 in size
then very easy to implement

» A buddy’s hole is the exclusive OR of the hole size
and starting address of hole.

!  Example:
»  Blocks of size 4 could start at addresses:

–  0, 4, 8, 12, 16, 20,

Starting & Old New

0 0 ! 4 0000000 0000100 4

4 4 ! 4 0000100 0000000 0

8 8 ! 4 0001000 0001100 12

12 12 ! 4 0001100 0001000 8

16 16 ! 4 0010000

20 20 ! 4 0010100

Maria Hybinette, UGA
31

Memory Allocation (K&R)

!  How are malloc(), free()
implemented?

!  Data structure: Circular list of
free chunks
»  Header for each element of free

list
–  pointer to next free block
–  size of block

!  Malloc: first-fit (next-fit) with splitting (large chunks)
!  Free: coalescing with adjacent chunks if they are free
!  Disadvantage:

»  Fragmentation of memory due to first-fit (next-fit) strategy
»  Linear time to scan list during malloc and free

in use in use

Maria Hybinette, UGA
32

Improvements

!  Placement: reducing fragmentation
»  Deciding which free chuck to use
»  Use best fit or good fit

–  Example: malloc(8) returns 8 byte
block instead of 20 byte block

!  Splitting: only split when saving is
big enough: malloc(14) allocate the
entire block.

!  Coalescing: defer coalescing
!  Performance:

»  Doubly - linked list

in use in use 20 8 50

Maria Hybinette, UGA
33

Memory Allocation in Practice
(improved)

!  How are malloc(), free() implemented?
!  Data structure: Free lists

»  Header for each element of free list
–  pointer to next free block
–  size of block
–  magic number

!  consistency checking

!  Two free lists
»  One organized by size (binning)

–  Separate list for each popular, small size (e.g., 1
KB) -- range of sizes -- fewer bins

–  Allocation is fast, no external fragmentation
»  Second is sorted by address

–  Use next fit to search appropriately
–  Free blocks shuffled between two lists

512 32 24 16

Maria Hybinette, UGA
34

Modified Buddy Algorithm

!  Linux uses buddy system with the additional of having a
cache of pointers to free memory (a slab index array):

»  the first element is the head of a list of blocks of size ‘unit
1’,

»  the second element is a list of blocks of size ‘unit 2’
»  the third element is a list of blocks of size ‘unit 3’, !

!  Each index contains only slabs of a specific size
» And they are linked together as linked list (which in

turn links to the next free element (so the slabs
themselves may not be contiguous)

Cache Sz1 Cache Dsc Sz2 Cache Dsc Sz3

Slab

Slab

Maria Hybinette, UGA
35

Paging

!  Goal: Eliminate external fragmentation
!  Idea: Divide memory into fixed-sized pages

»  Page Size: 2n, Example: A page size of 4KB
»  Physical page: page frame
»  Logical page: page

P
hy

si
ca

l V
ie

w
 (f

ra
m

es
)

Process 1

Process 2

Process 3

Logical View (pages) Maria Hybinette, UGA
36

Translation of Page Addresses

!  How to translate logical address to physical
address:

» High-order bits of address designate page number
»  Low-order bits of address designate offset within

page

page number

frame number in physical memory

page offset

page offset

Logical address

Physical address

32 bits

page table

20 bits 12 bits

Maria Hybinette, UGA
37

Paging Hardware

Maria Hybinette, UGA
38

Page Table Implementation

!  Page table per process
»  Page table entry (PTE) for each virtual page number (vpn)

–  frame number or physical page number (ppn)
–  R/W protection bits

!  Simple vpn ! ppn mapping:
»  No bounds checking, no addition
»  Simply table lookup and bit substitution

!  How many entries in table?
!  Track page table base in PCB, change on context-switch

Maria Hybinette, UGA
39

Page Table Example

!  What are contents of page table for
process 3?

P
hy

si
ca

l V
ie

w
 (f

ra
m

es
)

Process 3

frame! R W!
2! 1 1!
6! 1 1!
0! 1 1!
3! 0 0!
12! 1 1!
15! 1 1!

15

14

13

12

11

10

09

08

07

06

05

04

03

02

00

01

page table base

Maria Hybinette, UGA
40

Page Table: Example 2

32-byte (8 pages) addressable memory and 4-byte pages"

Maria Hybinette, UGA
41

Advantages of Paging

!  No external fragmentation
»  Any page can be placed in any frame in physical memory
»  Fast to allocate and free

–  Alloc: No searching for suitable free space
–  Free: Doesn’t have to coalesce with adjacent free space
–  Just use bitmap to show free/allocated page frames

!  Simple to swap-out portions of memory to disk
»  Page size matches disk block size
»  Can run process when some pages are on disk
»  Add “present” bit to page table entry (PTE)

!  Enables sharing of portions of address space
»  To share a page, have PTE point to same frame

Maria Hybinette, UGA
42

Disadvantages of Paging

!  Internal fragmentation: Page size may not match size
needed by process

»  Wasted memory grows with larger pages
»  large vs small page size

!  Additional memory reference to look up in page table --
> Very inefficient

»  Page table must be stored in memory
»  MMU stores only base address of page table

!  Storage for page tables may be substantial
»  Simple page table: Requires PTE for all pages in address

space
–  Entry needed even if page not allocated

»  Problematic with dynamic stack and heap within address
space

Maria Hybinette, UGA
43

Combine Paging and
Segmentation

!  Goal: More efficient support for sparse address spaces
!  Idea:

»  Divide address space into segments (code, heap, stack)
–  Segments can be variable length

»  Divide each segment into fixed-sized pages
!  Logical address divided into three portions: System 370

page offset (12 bits) page number (18 bits) seg #
(4 bits)

!  Implementation
»  Each segment has a page table
»  Each segment track base (physical address) and bounds of

page table (number of PTEs)

Maria Hybinette, UGA
44

Example of Paging and
Segmentation

Example of Paging and Segmentation

seg ! base! bounds! R W!

0! 1400! 5! 1 0!

1! 6300! 400! 0 0!

2! 4300! 1100! 1 1!

3! 1100! 5! 1 1!

...!

0x01f!

0x011!

0x003!

0x02a!

0x013!

...!

0x00c!

0x007!

0x004!

0x00b!

0x006!

...!

1100!

1400!

Maria Hybinette, UGA
45

Advantages of Paging and
Segmentation

!  Advantages of Segments
»  Supports sparse address spaces

–  Decreases size of page tables
–  If segment not used, not need for page table

!  Advantages of Pages
»  No external fragmentation
»  Segments can grow without any reshuffling
»  Can run process when some pages are swapped to disk

!  Advantages of Both
»  Increases flexibility of sharing

–  Share either single page or entire segment

Maria Hybinette, UGA
46

Disadvantages of Paging and
Segmentation

!  Overhead of accessing memory
»  Page tables reside in main memory
» Overhead reference for every real memory

reference

!  Large page tables
» Must allocate page tables contiguously
» More problematic with more address bits
»  Page table size

–  Assume 2 bits for segment, 18 bits for page number,
12 bits for offset

Maria Hybinette, UGA
47

 A = 1234

Disadvantages of Paging and
Segmentation

!  Overhead of accessing memory
»  Page tables reside in main memory
» Overhead reference for every real

memory reference

!  Large page tables
» Must allocate page tables contiguously
» More problematic with more address

bits
»  Page table size (32 bit address):

–  Logical address space: 232

–  Assume page size is 4 KB, 4,096 -> 212

–  Page table has 232/212 entries = 2 20

!  1,048,576 Entries ! Each entry is 4 bytes
» 4MB for EACH page table

&777 Variable A

777

Maria Hybinette, UGA
48

!  4 MB page tables
» Contagious in memory?

–  Divide the page tables into smaller pieced
–  Idea is to page the page table hierarchically

!  Assume 2 levels for a start.

Maria Hybinette, UGA
49

Hierarchical Paging:
Page the Page Tables

!  Problem: Large logical address space 232 - 264

!  Goal: Allow page tables to be allocated non-contiguously
!  Approach: Page the page tables (4K page size 4,096 is 212)

»  Creates multiple levels of page tables
»  Only allocate page tables for pages in use (allows)

outer page
(10 bits)

inner page
(10 bits) page offset (12 bits)

32-bit address:

base of pt

Maria Hybinette, UGA
50

Example: Two Level Page Table

!  A logical address (on 32-bit
machine with 4K page size) is
divided into:
»  a page number consisting of 20 bits
»  a page offset consisting of 12 bits

!  Since the page table is paged, the
page number is further divided into:
»  a 10-bit page number
»  a 10-bit page offset

!  Thus, a logical address is as
follows:
»  where p1 is an index into the outer

page table, and p2 is the
displacement within the page of the
outer page table

page number" page offset"

p2" d"

10" 10" 12"

p1" p2"

Maria Hybinette, UGA
51

Address-Translation Scheme

Maria Hybinette, UGA
52

Page the Page Tables
(Homework)

!  How should logical address be structured?
» How many bits for each paging level?

!  Calculate such that page table fits within a
page (A Page Table Entry = PTE)

» Goal: PTE size * number PTE = page size
» Assume PTE size = 4 bytes; page size = 4KB

2^2 * number PTE = 2^12
--> number PTE = 2^10
! # bits for selecting inner page = 10 (see earlier slides)

! Apply recursively throughout logical address
! Will assign homework through different layers of

addressing all the way to disk

Maria Hybinette, UGA
53

Other Observation

!  Accessing a memory location requires two
accesses in main memory.

–  One to access the page table (which is in main
memory)

!  A contiguous lookup table.
–  Another one that access the memory location)

!  Anywhere in memory

!  Problem: Expensive! Can we do better?

Maria Hybinette, UGA
54

Translation Look-Aside Buffer
(TLB)

!  Goal: Avoid page table lookups in main memory (i.e.,
a total of two memory accesses)

!  Idea: Hardware cache of recent page translations
»  Typical size: 64 - 2K entries
»  Index by segment + vpn --> ppn

!  Why does this work?
»  process references few unique pages in time interval
»  spatial, temporal locality

!  On each memory reference, check TLB for translation
»  If present (hit): use ppn and append page offset
»  Else (miss): Use segment and page tables to get ppn

–  Update TLB for next access (replace some entry)

!  How does page size impact TLB performance? (food
for thought).

Maria Hybinette, UGA
55

Paging Hardware With TLB

Maria Hybinette, UGA
56

Effective Access Time

!  Associative Lookup (TLB) = " time unit (small
fraction of the time to go to main memory)

» Assume memory cycle time is 1 microsecond
» Hit ratio – percentage of times that a page number

is found in the associative registers; ratio related to
number of associative registers

» Hit ratio = # (alpha)
»  Effective Access Time (EAT)

 EAT = (1 + ") # + (2 + ")(1 – #)
 = 2 + " – #

Maria Hybinette, UGA
57

What Page Size?
Page Size Trade-offs

!  Internal Fragmentation
»  Smaller the page size the less the internal

fragmentation

!  Number of pages
»  The smaller the pages the greater the of

pages
»  Larger Page tables

!  Page size and page faults
»  Larger page size implies (less or more) page faults.

