Outline

Modeling and Simulation

PDES Introduction The Null Message Synchronization Algorithm

Maria Hybinette, UGA

• Parallel / Distributed Computers

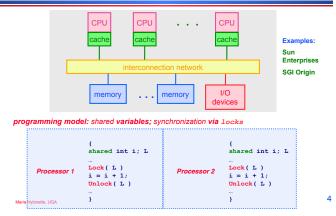
- Air Traffic Network Example
- Parallel Discrete Event Simulation
 - » Logical processes & time stamped messages
 » Local causality constraint and the synchronization problem
- Chandy/Misra/Bryant Null Message Algorithm » Ground rules

2

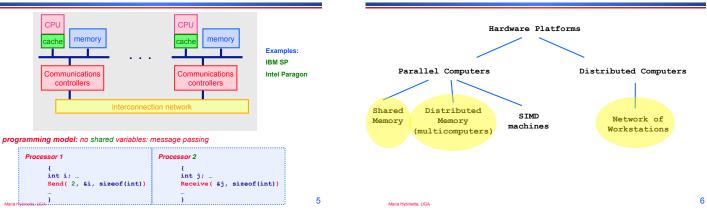
» Ground rules

Maria Hybinette, UGA

- » An algorithm that doesn't work
- » Deadlock avoidance using null messages


Parallel & Distributed Computers

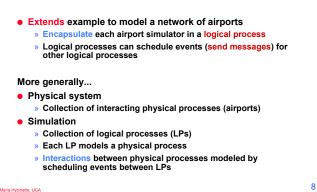
- Parallel computers (tightly coupled processors)
 - » Shared memory multiprocessors
 - » Distributed memory multicomputers
- Distributed computers (loosely coupled processors)
 - » Networked workstations


	Parallel Computers Distributed Computer	
Physical extent	Machine room	Building, city, global
Processors	Homogeneous	Often heterogeneous
Comm. Network	Custom switch	Commercial LAN / WAN
Comm. Latency (small messages)	A few to tens of microseconds	hundreds of microseconds to seconds

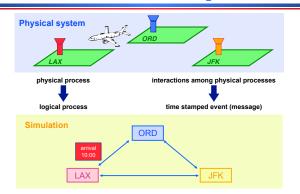
Maria Hybinette, UGA

Shared Memory Multiprocessors

Distributed Memory Multiprocessors


3

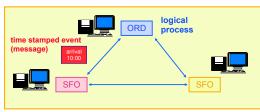
Event-Oriented World View


	Event h	nandler procedures	6	
state variables Integer: InTheAir; Integer: OnTheGround; Boolean: RunwayFree;	Arrival Event	Landed Event	Departure Event	
	· { 	{ 	۲ 	
Simulation application	}	}	}	
Simulation executive Event processing loop				
Now = 8:45 while (simulation not finished)				
Pending Event List (PEL) E = smallest time stamp event in PEL				
9:00	Remove E from Now := time :			
5.10		andler procedur	e	
			-	

Maria Hybinette, UGA

Parallel Discrete Event Simulation

Parallel Discrete Event Simulation: Example

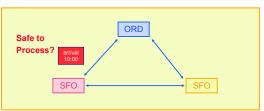

all interactions between LPs must be via messages (no shared state) 9

LP Simulation Example

Now: current simulation time	
InTheAir: number of aircraft landing or waiting to land	
OnTheGround: number of landed aircraft	
RunwayFree: Boolean, true if runway available	
Arrival Event:	
<pre>InTheAir := InTheAir+1;</pre>	
if(RunwayFree)	
RunwayFree:=FALSE;	
Schedule Landed event(local) @ Now + R;	
Landed Event:	
<pre>InTheAir := InTheAir-1;</pre>	
OnTheGround := OnTheGround + 1;	
Schedule Departure event(local) @ Now + G;	
<pre>if(InTheAir > 0) Schedule Landed event(local) @ Now + R;</pre>	
else RunwayFree := True;	
Departure Event: (D = Delay to reach another airport)	
OnTheGround := OnTheGround - 1;	
Schedule Arrival Event (remote) @ (Now+D) @ another airport	

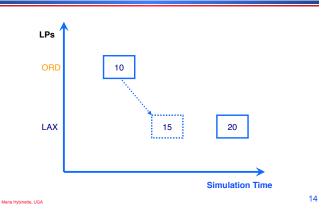
Parallel Discrete Event Simulation: Example

- LP paradigm appears well suited to concurrent execution
- Map LPs to different processors
- » Multiple LPs per processor OK
- Communication via message passing
 - » All interactions via messages
 - » No shared state variables



The "Rub"

- Golden rule for each process:
- "Thou shalt process incoming messages in time stamp order"


local causality constraint

The Synchronization Problem

- Synchronization Problem: An algorithm is needed to ensure each LP processes events in time stamp order
- Observation: Ignoring events with the same time stamp (for now), adherence to the local causality constraint is sufficient to ensure that the parallel simulation will produce exactly the same results as a sequential execution where all events across all LPs are processed in time stamp order.

The Synchronization Problem

Synchronization Algorithms

- Conservative synchronization: Avoid violating the local causality constraint (wait until it's safe to process an event)
 - » deadlock avoidance using null messages (Chandy/ Misra/Bryant)
 - » deadlock detection and recovery
 - » synchronous algorithms (e.g., execute in "rounds")
- Optimistic synchronization: Allow violations of local causality to occur, but detect them at runtime and recover using a rollback mechanism
 - » Time Warp (Jefferson)
- » numerous other approaches
- Maria Hybinette, UGA

Maria Hybinette, UGA

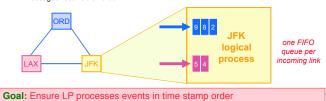
Outline

- Parallel / Distributed Computers
- Air Traffic Network Example
- Parallel Discrete Event Simulation
 - » Logical processes
 - » Local causality constraint
- Chandy/Misra/Bryant Null Message Algorithm
 - » Ground rules
 - » An algorithm that doesn't work
 - » Deadlock avoidance using null messages

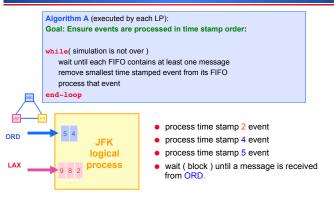
Maria Hybinette, UGA

13

15

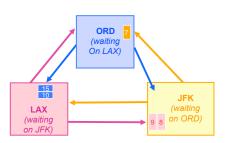

16

Conservative Algorithms



- logical processes (LPs) exchanging time stamped events (messages)
- static network topology, no dynamic creation of (and connection of LPs)
- messages sent on each link are sent in time stamp order
- network provides reliable delivery, preserves order (received in same order that they are sent)

Observation: The above assumptions imply the time stamp of the last message received on a link is a lower bound on the time stamp (LBTS) of subsequent messages received on that link



A Simple Conservative Algorithm

Deadlock Avoidance Using Null Messages

Deadlock Example

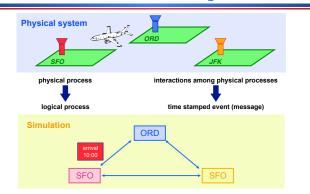
A cycle of LPs forms where each is waiting on the next LP in the cycle. No LP can advance; the simulation is deadlocked.

Observation: Algorithm A is prone to deadlock! (cycle of empty queues...)

Break deadlock: each LP send "null" messages indicating a lower bound on the time stamp of future messages.

- Assume minimum delay (flight time) between airports is 3 units of time
- Recall that JFK is initially at time 5.
- JFK sends null message to LAX (who is waiting for JFK) with time stamp 8 = (5 +3)

Summary


22

- LAX sends null message to ORD with time stamp 11 = (8+3)
- ORD may now process message with time stamp 7

Deadlock Avoidance Using Null Messages

Parallel Discrete Event Simulation: Example

all interactions between LPs must be via messages (no shared state) 23