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Simulation & Modeling 

Time Parallel Simulations  
Problem-Specific Approach to Create Massively Parallel 

Simulations 
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Outline 

●  Introduction 
»  Space-Time Simulation 

●  Time Parallel Simulation 
●  Fix-up Computations 
●  Example: Parallel Cache Simulation 
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Space-Time Framework 
A simulation computation can be viewed as computing the state of the 
physical processes in the system being modeled over simulated time. 
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Algorithm: 
1.  Partition space-time region into non-overlapping regions 
2.  Assign each region to a logical process 
3.  Each LP computes state of physical system for its region, using inputs from 

other regions and producing new outputs to those regions 
4.  Repeat step 3 until a fixed point is reached 

Space Parallel Simulation  
 (e.g., Time Warp) 

Temporal Decomposition 
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Space-Time Framework 
A simulation computation can be viewed as computing the state of the 
physical processes in the system being modeled over simulated time. 
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Time Parallel Simulation 

Basic idea: 
●  Divide simulated time axis into non-overlapping intervals 
●  Each processor computes sample path of interval assigned to i 
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Observation: The simulation computation is a sample path through 
the set of possible states across simulated time. 
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Key question: What is the initial state of each interval (processor)? 
Maria Hybinette, UGA 6 

Time Parallel Simulation: Relaxation Approach 

1.  Guess initial state of each interval (processor) 
2.  Each processor computes sample path of its interval 
3.  Using final state of previous interval as initial state, �fix up sample path 
4.  Repeat step 3 until a fixed point is reached 
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Simulated Time
Benefit: Massively parallel execution (LPs are independent -- no synchronization 

required between them) 
Liabilities: cost of �fix up� computation, convergence may be slow (worst case, N 

iterations for N processors), state may be complex 
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Example: Cache Memory 

●  Cache holds subset of entire memory 
»  Memory organized as blocks 
»  Hit: referenced block in cache 
»  Miss: referenced block not in cache 
»  Cache has multiple sets, where each set holds some 

number of blocks (e.g., 4); here, focus on cache 
references to a single set 

●  Replacement policy: Determines which block (of set) to 
delete to make room for a replacement / new block on a 
cache (miss) 

»  LRU: delete least recently used block (of set) from cache 
●  Implementation: Least Recently Used (LRU) stack 

»  Stack contains address of memory (block number) 
»  For each memory reference in input (memory ref trace) 

–  if referenced address in stack (hit), move to top of stack 
–  if not in stack (miss), place address on top of stack, deleting 

address at bottom 
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Example: Trace Drive Cache Simulation 

Given a sequence of references to blocks in memory, determine 
number of hits and misses using LRU replacement 

processor 1 processor 2 processor 3 

address: 

LRU 
Stack: 

second iteration: processor i uses final state of processor i-1 as initial state 
1  2  1  3  4  3  6  7    2  1  2  6  9  3  3  6   4  2  3  1  7  2  7  4 

address: 

first iteration: assume stack is initially empty: 
1  2  1  3  4  3  6  7    2  1  2  6  9  3  3  6   4  2  3  1  7  2  7  4  
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Parallel Cache Simulation 

●  Time parallel simulation works well because 
final state of cache for a time segment usually 
does not depend on the initial state of the 
cache at the start of the time segment 

●  LRU: state of LRU stack is independent of the 
initial state after memory references are made 
to (four) different blocks (if set size is four); 
memory references to other blocks no longer 
retained in the LRU stack 

●  If one assumes an empty cache at the start of 
each time segment, the first round simulation 
yields an upper bound on the number of 
misses during the entire simulation 
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State Matching Problem Approaches 

●  Fix-up computations 
»  Guess initial state and compute based on guess then re-

do computations as needed 
»  Example: LRU cache simulations 

●  Precomputation of state at specific time division points 
»  Selects time division points at places where the state of 

the system can be easily determined 
»  Example: ATM multiplexor 

●  Parallel prefix computation 
»  Example: G/G/1 queue (see text book) 
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ATM Networks 

●  Telecommunication technology to support 
integration of wide variety of communication 
services 

»  voice, data, video and faxes 

●  Provides high bandwidth and reliable 
communication services 

●  ATM atomic units: ATM messages are divided 
into fixed-size cells 
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Example: ATM Multiplexer 

●  Cell: fixed size data packet (53 bytes) 
●  N sources of traffic: Bursty, on/off sources (e.g., voice - telephone) 

»  stream of cells arrive if on 
»  0 or 1 cell arrives on each input each time unit (cell time) 

●  Output link: Capacity C cells per time unit 
●  Fixed capacity FIFO queue: K cells 

»  Queue overflow results in dropped cells  
»  Estimate loss probability as function of queue size (design goal drop  1 in 109) 
»  Low loss probability (10-9) leads to long simulation runs!  

...

I1
I2

IN

Out

A multiplexor combines streams into a single output stream 
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Burst Level Simulation 

Series of time segments:  <Ai, δi> 
●  Fixed number of �on� sources during time segment 
●  Ai = # on sources, δi = duration in cell times 
 

simulation time 
(cell times) 

on
off

input 1 

input 2 

input 3 

input 4 

<1,4> <4,2> <3,4> <4,3> <3,2> <1,3>
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Problem Statement 

●  Multiplexor with N input links of unit capacity 
●  Output link with capacity C (output burst) 
●  FIFO queue with K buffers 
●  Determine average utilization and number of 

dropped cells 
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Example 

●  Qi = Number of cells in queue at start of ith tuple 
●  Li = Number of lost cells at start of ith tuple 
●  Objective: Compute Qi and Li for i=1, 2, 3, … 
●  Q1 = L1 = 0 

C=2 

Qi

Simulation time

K=6 <3,4> <0,5>
<4,7> <1,3>

<2,4>
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Simulation Algorithm 

●  Generate tuples 
●  Compute Qi+1 and Li+1 for each tuple 

Ai cells arrive each time unit 
Qi Qi+1

δi

Observation: 
 if Ai > C, queue is filling (overload) 
 if Ai < C, queue is emptying (underload) 

●  Qi+1  =   if Ai > C,  then min [K, Qi + (Ai - C) δi ] 
     else max [0, Qi - (C - Ai) δi ] 
●  Li+1  =   if Ai > C,  then Li + max [0, (Ai - C) δi - (K - Qi) ] 
     else Li 

Free space in queue
at start of tuple

# cells added to queue
during tuple

Full
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Parallel Simulation Algorithm 

●  Generate tuples: can be performed in parallel 
●  Qi+1 depends on Qi; appears sequential 
●  Observation: 

»  Some tuples guaranteed to produce overflow or empty queue, 
independent of all other tuples or Qi at start of the tuple 

»  Qi+1 known for such tuples, independent of Qi  

 

C=2 

Qi

Simulation time

K=6 <3,4> <0,5>
<4,7> <1,3>

<2,4>

Guaranteed to cause
underflow (deliver an empty queue)

Guaranteed to cause
overflow (fill up the queue)
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Guaranteed Underflow / Overflow 

●  A tuple <Ai, δi> is guaranteed to cause overflow  
»  if (Ai - C) δi ≥ K 
»  Qi+1 = K for guaranteed overflow tuples 

 
●  A tuple <Ai, δi> is guaranteed to cause underflow  

»  if (C - Ai) δi ≥ K 
»  Qi+1 = 0 for guaranteed underflow tuples 

The simulation time line can be partitioned at guaranteed overflow/
underflow tuples to create a time parallel execution 

No fix-up computation required 
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Time Parallel Algorithm 

Algorithm 
●  Generate tuples <Ai, δi> in parallel 
●  Identify guaranteed overflow and underflow 

tuples to determine time division points 
●  Map tuples between time division points to 

different processors, simulate in parallel 
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Summary of Time Parallel Algorithms 

●  The space-time abstraction provides another view of 
parallel simulation 

●  Time Parallel Simulation 
»  Potential for massively parallel computations 
»  Central issue is determining the initial state of each time 

segment 
●  Applications: Simulation of LRU caches well suited for time 

parallel simulation techniques 
●  Advantages: 

»  allows for massive parallelism 
»  often, little or no synchronization is required after 

spawning the parallel computations 
»  substantial speedups obtained for certain problems: 

queueing networks, caches, ATM multiplexers 
●  Liabilities: 

»  Only applicable to a very limited set of problems 


