
Maria Hybinette, UGA

Simulation & Modeling

Time Parallel Simulations
Problem-Specific Approach to Create Massively Parallel

Simulations

Maria Hybinette, UGA 2

Outline

●  Introduction
»  Space-Time Simulation

●  Time Parallel Simulation
●  Fix-up Computations
●  Example: Parallel Cache Simulation

Maria Hybinette, UGA 3

Space-Time Framework
A simulation computation can be viewed as computing the state of the
physical processes in the system being modeled over simulated time.

LP1

LP6
LP5
LP4
LP3
LP2

Simulated Time

Ph
ys

ica
l P

ro
ce

ss
es

LP1 LP6 LP5 LP4 LP3 LP2

Simulated Time

Ph
ys

ica
l P

ro
ce

ss
es

Algorithm:
1.  Partition space-time region into non-overlapping regions
2.  Assign each region to a logical process
3.  Each LP computes state of physical system for its region, using inputs from

other regions and producing new outputs to those regions
4.  Repeat step 3 until a fixed point is reached

Space Parallel Simulation
 (e.g., Time Warp)

Temporal Decomposition

Maria Hybinette, UGA 4

LP1 LP6 LP5 LP4 LP3 LP2

Space-Time Framework
A simulation computation can be viewed as computing the state of the
physical processes in the system being modeled over simulated time.

Simulated Time

Ph
ys

ica
l P

ro
ce

ss
es

inputs to region

LP1

LP6
LP5
LP4
LP3
LP2

Simulated Time

Ph
ys

ica
l P

ro
ce

ss
es

Maria Hybinette, UGA 5

Time Parallel Simulation

Basic idea:
●  Divide simulated time axis into non-overlapping intervals
●  Each processor computes sample path of interval assigned to i

Simulated Time

Po
ss

ib
le

 s
ys

te
m

 s
ta

te
s

Observation: The simulation computation is a sample path through
the set of possible states across simulated time.

processor
1

processor
4

processor
3

processor
5

processor
2

Key question: What is the initial state of each interval (processor)?
Maria Hybinette, UGA 6

Time Parallel Simulation: Relaxation Approach

1.  Guess initial state of each interval (processor)
2.  Each processor computes sample path of its interval
3.  Using final state of previous interval as initial state, �fix up sample path
4.  Repeat step 3 until a fixed point is reached

processor
1

processor
2

processor
3

processor
4

processor
5

Po
ss

ib
le

 s
ys

te
m

 s
ta

te
s

Simulated Time
Benefit: Massively parallel execution (LPs are independent -- no synchronization

required between them)
Liabilities: cost of �fix up� computation, convergence may be slow (worst case, N

iterations for N processors), state may be complex

Maria Hybinette, UGA 7

Example: Cache Memory

●  Cache holds subset of entire memory
»  Memory organized as blocks
»  Hit: referenced block in cache
»  Miss: referenced block not in cache
»  Cache has multiple sets, where each set holds some

number of blocks (e.g., 4); here, focus on cache
references to a single set

●  Replacement policy: Determines which block (of set) to
delete to make room for a replacement / new block on a
cache (miss)

»  LRU: delete least recently used block (of set) from cache
●  Implementation: Least Recently Used (LRU) stack

»  Stack contains address of memory (block number)
»  For each memory reference in input (memory ref trace)

–  if referenced address in stack (hit), move to top of stack
–  if not in stack (miss), place address on top of stack, deleting

address at bottom
Maria Hybinette, UGA 8

Example: Trace Drive Cache Simulation

Given a sequence of references to blocks in memory, determine
number of hits and misses using LRU replacement

processor 1 processor 2 processor 3

address:

LRU
Stack:

second iteration: processor i uses final state of processor i-1 as initial state
1 2 1 3 4 3 6 7 2 1 2 6 9 3 3 6 4 2 3 1 7 2 7 4

address:

first iteration: assume stack is initially empty:
1 2 1 3 4 3 6 7 2 1 2 6 9 3 3 6 4 2 3 1 7 2 7 4

1
-
-
-

2
-
-
-

4
-
-
-

2
1
-
-

1
2
-
-

2
4
-
-

1
2
-
-

2
1
-
-

3
2
4
-

3
1
2
-

6
2
1
-

1
3
2
4

4
3
1
2

9
6
2
1

7
1
3
2

3
4
1
2

3
9
6
2

2
7
1
3

6
3
4
1

3
9
6
2

7
2
1
3

7
6
3
4

6
3
9
2

4
7
2
1

processor 1 processor 2 processor 3

LRU
Stack:

1
2
7
6

2
4
6
3

2
1
7
6

3
2
4
6

2
7
6
3

4
6
3
9

(idle)

Done!

9
6
2
1

match!

9
6
2
1

6
2
1
7

1
3
2
4

match!

1
3
2
4

Maria Hybinette, UGA 9

Parallel Cache Simulation

●  Time parallel simulation works well because
final state of cache for a time segment usually
does not depend on the initial state of the
cache at the start of the time segment

●  LRU: state of LRU stack is independent of the
initial state after memory references are made
to (four) different blocks (if set size is four);
memory references to other blocks no longer
retained in the LRU stack

●  If one assumes an empty cache at the start of
each time segment, the first round simulation
yields an upper bound on the number of
misses during the entire simulation

Maria Hybinette, UGA 10

State Matching Problem Approaches

●  Fix-up computations
»  Guess initial state and compute based on guess then re-

do computations as needed
»  Example: LRU cache simulations

●  Precomputation of state at specific time division points
»  Selects time division points at places where the state of

the system can be easily determined
»  Example: ATM multiplexor

●  Parallel prefix computation
»  Example: G/G/1 queue (see text book)

Maria Hybinette, UGA 11

ATM Networks

●  Telecommunication technology to support
integration of wide variety of communication
services

»  voice, data, video and faxes

●  Provides high bandwidth and reliable
communication services

●  ATM atomic units: ATM messages are divided
into fixed-size cells

Maria Hybinette, UGA 12

Example: ATM Multiplexer

●  Cell: fixed size data packet (53 bytes)
●  N sources of traffic: Bursty, on/off sources (e.g., voice - telephone)

»  stream of cells arrive if on
»  0 or 1 cell arrives on each input each time unit (cell time)

●  Output link: Capacity C cells per time unit
●  Fixed capacity FIFO queue: K cells

»  Queue overflow results in dropped cells
»  Estimate loss probability as function of queue size (design goal drop 1 in 109)
»  Low loss probability (10-9) leads to long simulation runs!

...

I1
I2

IN

Out

A multiplexor combines streams into a single output stream

Maria Hybinette, UGA 13

Burst Level Simulation

Series of time segments: <Ai, δi>
●  Fixed number of �on� sources during time segment
●  Ai = # on sources, δi = duration in cell times

simulation time
(cell times)

on
off

input 1

input 2

input 3

input 4

<1,4> <4,2> <3,4> <4,3> <3,2> <1,3>

Maria Hybinette, UGA 14

Problem Statement

●  Multiplexor with N input links of unit capacity
●  Output link with capacity C (output burst)
●  FIFO queue with K buffers
●  Determine average utilization and number of

dropped cells

Maria Hybinette, UGA 15

Example

●  Qi = Number of cells in queue at start of ith tuple
●  Li = Number of lost cells at start of ith tuple
●  Objective: Compute Qi and Li for i=1, 2, 3, …
●  Q1 = L1 = 0

C=2

Qi

Simulation time

K=6 <3,4> <0,5>
<4,7> <1,3>

<2,4>

Maria Hybinette, UGA 16

Simulation Algorithm

●  Generate tuples
●  Compute Qi+1 and Li+1 for each tuple

Ai cells arrive each time unit
Qi Qi+1

δi

Observation:
 if Ai > C, queue is filling (overload)
 if Ai < C, queue is emptying (underload)

●  Qi+1 = if Ai > C, then min [K, Qi + (Ai - C) δi]
 else max [0, Qi - (C - Ai) δi]
●  Li+1 = if Ai > C, then Li + max [0, (Ai - C) δi - (K - Qi)]
 else Li

Free space in queue
at start of tuple

cells added to queue
during tuple

Full

Maria Hybinette, UGA 17

Parallel Simulation Algorithm

●  Generate tuples: can be performed in parallel
●  Qi+1 depends on Qi; appears sequential
●  Observation:

»  Some tuples guaranteed to produce overflow or empty queue,
independent of all other tuples or Qi at start of the tuple

»  Qi+1 known for such tuples, independent of Qi

C=2

Qi

Simulation time

K=6 <3,4> <0,5>
<4,7> <1,3>

<2,4>

Guaranteed to cause
underflow (deliver an empty queue)

Guaranteed to cause
overflow (fill up the queue)

Maria Hybinette, UGA 18

Guaranteed Underflow / Overflow

●  A tuple <Ai, δi> is guaranteed to cause overflow
»  if (Ai - C) δi ≥ K
»  Qi+1 = K for guaranteed overflow tuples

●  A tuple <Ai, δi> is guaranteed to cause underflow

»  if (C - Ai) δi ≥ K
»  Qi+1 = 0 for guaranteed underflow tuples

The simulation time line can be partitioned at guaranteed overflow/
underflow tuples to create a time parallel execution

No fix-up computation required

Maria Hybinette, UGA 19

Time Parallel Algorithm

Algorithm
●  Generate tuples <Ai, δi> in parallel
●  Identify guaranteed overflow and underflow

tuples to determine time division points
●  Map tuples between time division points to

different processors, simulate in parallel

Maria Hybinette, UGA 20

Summary of Time Parallel Algorithms

●  The space-time abstraction provides another view of
parallel simulation

●  Time Parallel Simulation
»  Potential for massively parallel computations
»  Central issue is determining the initial state of each time

segment
●  Applications: Simulation of LRU caches well suited for time

parallel simulation techniques
●  Advantages:

»  allows for massive parallelism
»  often, little or no synchronization is required after

spawning the parallel computations
»  substantial speedups obtained for certain problems:

queueing networks, caches, ATM multiplexers
●  Liabilities:

»  Only applicable to a very limited set of problems

