Global Virtual Time

Problems:
- Need to Fossil Collect:
 - The Time Warp algorithm consumes more and more memory throughout the execution via the creation of new events.
 - Need to reclaim memory used for processed events, anti-messages, and the state history that is no longer needed.
- Need a mechanism for operations that cannot be rolled back, e.g., I/O cannot be undone.

Observation:
- TWLPs only roll back as a result of receiving a message.
- Positive messages can only be created by an unprocessed or partially processed message.

GVT = unprocessed anti-message

Outline

- GVT Computations: Introduction
 - Synchronous vs. Asynchronous
 - GVT vs. LBTS
- Computing Global Virtual Time
 - Transient Message Problem
 - Simultaneous Reporting Problem
- Samadi Algorithm
 - Message Acknowledgements
 - Marked Acknowledgment Messages

GVT(t): minimum time stamp among all unprocessed or partially processed messages at wallclock time t.

- Computing GVT trivial if an instantaneous snapshot of the computation could be obtained: compute minimum time stamp among:
 - Unprocessed events & anti-messages within each LP
 - Transient messages (messages sent before time t that are received after time t)

- Memory associated with events with a TS equal to GVT cannot be reclaimed because GVT could be equal to the TS of an anti-message that has not been processed.
 - Such an anti-message could require one to roll back events with time stamp exactly equal to GVT.

Events with time stamps equal to GVT is needed:
- GVT is 42, and
- There are two processed events with TS 42.
- In the first the TWLP processed is canceled by an anti-message with time stamp equal to GVT.
GVT vs. LBTS

GVT algorithms can be used to compute LBTS and vice versa (assuming a fully connected topology and zero lookahead).

- GVT algorithms can be used to compute LBTS and vice versa (assuming a fully connected topology and zero lookahead).
- Both determine the minimum timestamp of messages (or anti-messages) that may later arrive
 - Historically, developed separately
 - Often developed using different assumptions (lookahead, topology, etc.)
- Time Warp
 - Latency to compute GVT typically less critical than the latency to compute LBTS (need to compute LBTS often).
 - Asynchronous execution of GVT computation preferred to allow optimistic event processing to continue

Simultaneous Reporting Problem

Erroneous values of GVT may be computed when processes receive GVT request at different points in time.

- Process 1 doesn’t account for time stamp 90 message
- Process 2 assumes process 1 will account for the message
- Do message acknowledgements solve this problem?
 - No, at least not by themselves
 - Solution: Mark acks that are sent after local min has been reported

Asynchronous GVT

- An incorrect GVT algorithm:
 - Controller process: broadcast “compute GVT request”
 - Upon receiving the GVT request, each process computes its local minimum and reports it back to the controller
 - Controller computes global minimum, broadcast to others
- Difficulties:
 - Transient message problem: messages sent, but not yet received must be considered in computing GVT
 - Simultaneous reporting problem: different processors report their local minima at different points in wallclock times, leading to an incorrect GVT value

The Transient Message Problem

- Transient message: A message that has been sent, but has not yet been received at its destination
- Error-prone values of GVT may be computed if the algorithm does not take into account transient messages

Transient Messages: A Solution

Approach: Ensure every message is accounted for by at least one processor when GVT is being computed:

- Send an acknowledgement message for each message.
- Sender reports minimum of any unacknowledged messages.
- Receiver takes responsibility as it receives message.

Samadis’s Algorithm

Approach: Send an ack for each event & anti-message received, mark acks after the processor has reported its local minimum

- Controller broadcast “start GVT” message
- Each processor reports minimum time stamp among among (1) local messages, (2) unacknowledged sent messages, (3) marked acks that were received
- Subsequent acks sent by process are marked until new GVT is received
- Controller computes global minimum as GVT value, broadcasts new GVT.
Summary

Global Virtual Time
- Similar to lower bound on time stamp (LBTS)
 - Time Warp: GVT usually not as time critical as LBTS
 - Asynchronous GVT computation highly desirable to avoid unnecessary blocking

Samadi Algorithm
- Transient message problem: Message acknowledgements
- Simultaneous reporting problem: Mark acknowledgements sent after reporting local minimum
- Requires acknowledgements on event messages