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Global Virtual Time

    Wallclock time T (GVTtt) during the execution of a) during the execution of a

Time Warp simulation is defined as the Time Warp simulation is defined as the minimumminimum

time stamptime stamp among all  among all unprocessedunprocessed and  and partiallypartially

processedprocessed messages and anti-messages in the messages and anti-messages in the

system at wall-clock T.system at wall-clock T.
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Outline

! Consistent Cuts

» Cut points

» Cut messages

» Cut values

! Mattern’s GVT Algorithm

» Colors

» Vector counters

» Pipelined algorithm

! Fossil Collection
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Review: Samadi’s Algorithm

! Transient message problem:

» Solution: Message acknowledgements

! Simultaneous message problem:

» Solution: Mark acknowledgements sent after

reporting local minimum

! Overhead:

» Message acknowledgments:

– Message acknowledgment for each message and

anti-message.
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Mattern’s Algorithm

! Asynchronous

» Executes in background concurrent with time warp

execution (does not require the simulation to

“freeze” (i.e., block the LPs).

! Avoids message acknowledgements

! Approach:  Based on techniques for creating

distributed snapshots (consistent cut)

» Can some asynchronous algorithms compute exact GVT(t)?

» What about synchronous algorithms?
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Consistent Cuts
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Consistent Cuts

a cut where all messages crossing the cut are cut messages

a message that was sent in the past, and received in the future

set of cut points, one per processor

an instant dividing computation into past and future
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Consistent Cuts

a cut where all messages crossing the cut are cut messages
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set of cut points, one per processor

an instant dividing computation into past and future
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! Consistent Cuts: Includes local state at its cut-point & all its

transient messages.

! Observation: Time stamp of a message sent after a cut point at

wallclock time T must be at least as large as the minimum of:

» the smallest time stamp of any unprocessed event in the processor at

time T

» the smallest time stamp of any message received by the processor

after time T.

! GVT must be smaller than or equal to both of these quantities

Cuts: Divides Past and Future
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Any message crossing cut from future to past must have a

time stamp > the cut value, so they can be ignored when

computing the cut value

Message generated by an LP after its cut point must have time

stamp greater than the minimum of

» The LP’s local minimum at its cut point

» The time stamp of messages received after the cut point

Observation 1
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! Cut value equal to GVT(T) using synchronous GVT algorithm
(freeze LPs: no new computations nor message sends/receives).

! Events generated after cut have time stamp > cut value

! Cut value can be used as a GVT value
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Asynchronous execution
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Approach:

! Construct two cuts C1, C2, approximate cut value along C2

» Organize processes in ring, pass token around ring

! Ensure no message that crosses C1 also cross C2

» Color LPs, change LP color at each cut point

» Color (green/red) each message to that of LP sending message
(message tag)

» Maintain send/receive message counters

! GVT = min( local min along C2, time stamp of red messages )

Mattern’s GVT Algorithm
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Challenge: accounting for cut messages

! The first cut:

» Changes color of each process (green to red)

» Determine number of green messages sent to each process

! The second cut:

» Each process makes sure all green messages sent to it

have been received before laying down a cut point

» Compute global minimum (GVT value)

Algorithm Overview
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! LPi maintains vector Vi[1:N] , where N = #LPs

» Vi[i] = number of green messages received by LPi

» Vi[r] = number of green messages sent by LPi to LPr

! C2: LPi cannot pass token until

» Vi[i] = " Vs [i] (summed over all s # i)

! C1: Token includes vector to accumulate send

counters

How does an LP know it has received all its green messages?
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Vector counters for green messages (at C2) i = j received:

Example: Vector Counters
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Vector counters for green messages (at C2) i = j received:

Example: Vector Counters

cut point

LP1

LP2

LP3

LP4

C1 C2 Wallclock time

V1[3] = 0

V1[4] = 0

V4V3V2V1

Vector counters for green messages (at C2) i = j received:

Example: Vector Counters
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Vector counters for green messages (at C2) i = j received:

Example: Vector Counters
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Vector counters for green messages (at C2) i = j received:

Example: Vector Counters
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Vector counters for green messages (at C2) i = j received:
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Vector counters for green messages (at C2) i = j received:

Example: Vector Counters
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! Local Variables (in each logical process LPi):

» Tred = min time stamp among red messages sent by LP (even
non-cut red messages!)

» Vi[1:N] = message send / receive counters

! Token: CMsg

» CMsg_Tmin = accumulator, smallest local minimum so far

» CMsg_Tred = accumulator, smallest red message time stamp
so far

» CMsg_Count[1:N] = # messages sent to each LP

Mattern’s GVT Algorithm

cut point

LP1

LP2

LP3

LP4

C1 C2

Wallclock time

! Message send by green logical process from LPi to LPj
Vi[j] = Vi[j] + 1

! LPi receives a green message

Vi[i] = Vi[i] - 1

! Control message, first cut:

Change color of process to red

CMsg_Count = CMsg_Count + Vi
Forward control message to next process in ring

! Message send with time stamp ts by a red LP

Tred = min( Tred, ts )

! Control message, second cut:

wait until Vi[i] = CMsg_Count[i] i.e., #received = #sent

CMsg_Tmin = min( CMsg_Tmin, Tmin )

CMsg_Tred = min( CMsg_Tred, Tred )

forward token to next process in ring

Mattern’s GVT Algorithm
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Fossil Collection

! Batch fossil collection

» After GVT computation, scan through list of LPs

mapped to processor to reclaim memory and

commit I/O operations

» May be time consuming if many LPs

! On-the-fly Fossil Collection

» After processing event, place memory into “free

memory” list

» Before allocating memory, check that time stamp is

less than GVT before reusing memory
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Summary

! Consistent cuts

! Cut value can be used as an estimate of GVT

» Local minimum at each LP

» Cut messages

! Construct second consistent cut

» Coloring LPs, messages

» Vector counter to determine when an LP has received all
relevant cut messages

! Pipeline GVT computation, continuously circulating token

! Numerous variations

» Could implement cuts with other communication topologies,
e.g., butterfly

» Other ways to deal with transient messages, e.g., global count
and abort/retry mechanism for second cut, etc.

Distributing GVT Values & Pipelining

Pipelined execution

! Overlap successive GVT computations: first GVT uses
C1, C2, C3, second uses C2, C3, C4, etc.

! Each cut computes a new GVT value

! Continuously circulate GVT token

GVT #2
GVT #3

LP1

LP2

LP3

LP4

C1 C2 C3 C4 C5

GVT #1


