
Maria Hybinette, UGA

CSCI 8220 Simulation & Modeling

Process Oriented Simulation

Maria Hybinette, UGA 2

Review from Last Time

!! Motivations to do simulations

!! Modeling characteristics

!! Time and event driven simulations

Maria Hybinette, UGA 3

Today

!! Event-Oriented Simulation (review)

!! Process-oriented simulation

»! Fundamental concepts: Processes, resources

»! Simulation primitives

»! Example

»! Implementation

Maria Hybinette, UGA 4

state variables!

Integer: InTheAir;!

Integer: OnTheGround;!

Boolean: RunwayFree;!

Event handler procedures

Simulation application"

Arrival !

 Event!

{!

 …!

}!

Landed !

 Event!

{!

 …!

}!

Departure !

 Event!

{!

 …!

}!

Pending Event List (PEL)!

9:00!

9:16!

10:10!

Now = 8:45!

Simulation executive" Event processing loop

while(simulation not finished)!

!E = smallest time stamp event in PEL!

!Remove E from PEL!

!Now := time stamp of E!

!call event handler procedure!

Event-Oriented World View

Maria Hybinette, UGA 5

Example: Event-Oriented Air traffic
Simulation

Arrival Event:!

InTheAir := InTheAir+1;!

if(RunwayFree)!

!RunwayFree:=FALSE;!

!Schedule Landed event @ Now + R;!

Now: current simulation time!

InTheAir: number of aircraft landing or waiting to land

OnTheGround: number of landed aircraft

RunwayFree: Boolean, true if runway available

Landed Event:!

InTheAir := InTheAir-1;!

OnTheGround := OnTheGround + 1;!

Schedule Departure event @ Now + G;!

if(InTheAir > 0) Schedule Landed event @ Now + R;!

else RunwayFree := True;!

Departure Event:!

OnTheGround := OnTheGround - 1;!

Execution Example

OnTheGround!

Simulation Time!

State!

Variables!

RunwayFree!

InTheAir!

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11"

true!

0!

0!

R=3!

G=4!

Time! Event!

1 Arrival F1!

3 Arrival F2!

Now=0!

Processing:!

false!

1!

Time! Event!

4 Land F1!
3 Arrival F2!

Arrival F1!

Now=1!

2!

Time! Event!

4 Land F1!

Arrival F2!

Now=3!

1!

1!

Land F1!

Now=4!

Time! Event!

8 Depart F1!
7 Land F2!

0!

2!

true!

Time! Event!

8 Depart F1!

11 Depart F2!

Land F2!

Now=7!

1!

Time! Event!

11 Depart F2!

Depart F1!

Now=8!

0!

Time! Event!

Depart F2!

Now=11!

Maria Hybinette, UGA 7

state variables!

Integer: InTheAir;!

Integer: OnTheGround;!

Boolean: RunwayFree;!

Event handler procedures

Simulation application"

Arrival !

 Event!

{!

 …!

}!

Landed !

 Event!

{!

 …!

}!

Departure !

 Event!

{!

 …!

}!

Event-Oriented World View

!! Event-oriented simulation programs may be difficult to
understand and modify:

»! Program organized around state transitions

»!Behavior of an aircraft distributed across multiple event handlers

»! Flow of control among event handlers not obvious

»! Suppose you want to model: Different aircrafts, airlines, pilots – imagine

events for each segment (volume) of airspace
Maria Hybinette, UGA 8

Process Oriented

!! A simulation process models a specific entity

with a well defined behavior.

»! It describes the action performed of the process

through out its lifetime.

–! Models a specific entity with well defined behavior

and it is encapsulated within the process.

–! Example: an aircraft

!! Event oriented view: lifetime of an event is a

SINGLE instant in time.

!! Process oriented view: lifetime is a time

period of the ‘process’ or ‘thread’

Maria Hybinette, UGA 9

Event versus Process Oriented Views

state variables!

Integer: InTheAir;!

Integer: OnTheGround;!

Boolean: RunwayFree;!

Process Oriented View

Entities modeled by processes.

Aircraft1!

{!

Arrive!

Land!

Depart!

}!

Aircraft2!

{!

Arrive!

Land!

Depart!

}!

AircraftN!

{!

Arrive!

Land!

Depart!

}!

state variables!

Integer: InTheAir;!

Integer: OnTheGround;!

Boolean: RunwayFree;!

Focus of model is on EVENTS and how they affect the state of the simulation.

Arrival !

 Event!

{!

 …!

}!

Landed !

 Event!

{!

 …!

}!

Departure !

 Event!

{!

 …!

}!

Event Oriented View

Maria Hybinette, UGA 10

Process Oriented Execution Model

!! Focus simulation program around behavior of entities

»! Aircraft: arrives, waits for runway, lands, departs

!! Process-oriented simulation

»! Process: Thread of execution describing entity behavior over time

»! Resources: Shared resource used by entities (e.g., the runway)

!! Execution: alternate between

»! simulation computations at a single instant of simulation time, and

»! advances in simulation time (no computation)

Computation Time advance Computation Time advance

Wall clock time

Simulation time advances

(no computation) Computation at a single

Instant of simulation time

Maria Hybinette, UGA 11

Simulation Primitives

!! AdvanceTime(T) : advance T units of simulation time

»! Also called “hold”

»! Example: AdvanceTime(R) to model using runway R units
of simulation time

!! WaitUntil(p) : simulation time advances until predicate

p becomes true

»! Predicate based on simulation variables that can be modified
by other simulation processes

»! Example: WaitUntil(RunwayFree) to wait until runway
becomes available for landing

!! Other combinations

»! WaitUntil(p,T) : Wait up to T units of simulation time for
predicate p to become true

»! Not used in the air traffic example

Primitives needed to advance simulation time

Maria Hybinette, UGA 12

Process Model Example: Aircraft

/* simulate aircraft arrival, circling, and landing */

Integer: InTheAir;

Integer: OnTheGround;

Boolean: RunwayFree;

1 InTheAir := InTheAir + 1;

2 WaitUntil(RunwayFree); /* circle */

3 RunwayFree := FALSE; /* land */

4 AdvanceTime(R);

5 RunwayFree := TRUE;

 /* simulate aircraft on the ground */

6 InTheAir := InTheAir - 1;

7 OnTheGround := OnTheGround + 1;

8 AdvanceTime(G);

 /* simulate aircraft departure */

9 OnTheGround := OnTheGround - 1;

A new aircraft process is created with each Arrival event

Execution Example

OnTheGround!

Simulation Time!

State!

Variables!

RunwayFree!

InTheAir!

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11"

true!

0!

0!

R=3!

G=4!

false!

1! 2! 1!

1!

0!

2!

true!

1! 0!

Flight 1!

1 InTheAir := InTheAir+1;!

2 WaitUntil(RunwayFree);!

3 RunwayFree := FALSE;!

4 AdvanceTime(R);!

5 RunwayFree := TRUE;!

6 InTheAir := InTheAir-1;!

7 OnTheGround := OnTheGround +1;!

8 AdvanceTime(G);!

9 OnTheGround:=OnTheGround-1;!

Flight 2!

1 InTheAir := InTheAir+1;!

2 WaitUntil(RunwayFree);!

3 RunwayFree := FALSE;!

4 AdvanceTime(R);!

5 RunwayFree := TRUE;!

6 InTheAir := InTheAir-1;!

7 OnTheGround:=OnTheGround+1;!

8 AdvanceTime(G);!

9 OnTheGround:=OnTheGround-1;!
Maria Hybinette, UGA 14

Implementation

!! Lifetime of a simulation process consists of a
sequence of event computations.

!! Event computation: computation occurring at an
instant in simulation time

»! Execution of code section ending with calling a primitive
to advance simulation time

!! Computation threads

»! Typically implemented with co-routine (threading)
mechanism

!! Simulation primitives to advance time

»! Schedule events

»! Event handlers resume execution of processes

Process-oriented simulations are built over event oriented
simulation mechanisms (event list, event processing loop)

Maria Hybinette, UGA 15

Aircraft

Arrival

Aircraft

Landing

Aircraft On

The Ground

Aircraft

Departs

Aircraft Process

/* simulate aircraft arrival, circling, and landing */

Integer: InTheAir;

Integer: OnTheGround;

Boolean: RunwayFree;

1 InTheAir := InTheAir + 1;

2 WaitUntil(RunwayFree); /* circle */

3 RunwayFree := FALSE; /* land */

4 AdvanceTime(R);

5 RunwayFree := TRUE;

 /* simulate aircraft on the ground */

6 InTheAir := InTheAir - 1;

7 OnTheGround := OnTheGround + 1;

8 AdvanceTime(G);

 /* simulate aircraft departure */

9 OnTheGround := OnTheGround - 1;

Identify computation associated with each simulation event

Maria Hybinette, UGA 16

Implementation: AdvanceTime(T)

Execute AdvanceTime(T):

»! Schedule Resume event at time Now+T

»! Suspend execution of thread

»! Return execution to event scheduler program

Process Resume event:

»! Return control to thread

Simulation process"

…"

RunwayFree := FALSE;!

AdvanceTime(R);!

RunwayFree := TRUE;!

..."

AdvanceTime(T)!

{!

Schedule a Resume!

 event at Now+T;!

Xfer to Schedule!

}"

Scheduler!

{!

while(sim not done)!

 Remove event from PEL!

 Call event handler!

}"

Resume Event Handler!

{!

Xfer to sim process!

}"

later"

Causes simulation time in the process to advance by T units

Maria Hybinette, UGA 17

Implementation: WaitUntil(p)

Execute WaitUntil(p):

»! Suspend execution of thread, record waiting for p to become true

»! Return execution to event scheduler program

Main scheduler loop

»! For each suspended process, check if execution can resume

»! Prioritization rule if more than one can resume

Simulation process"

…"

InTheAir:=InTheAir+1;!

WaitUntil(RunwayFree);!

RunwayFree:=FALSE;!

...!

WaitUntil(p)!

{!

Add to suspended list!

Xfer to Scheduler!

}"

Scheduler!

{!

while(sim not done)!

 Remove event from PEL!

 Call event handler!

 while(a process’s!

 predicate is true)!

 Xfer sim process!

}"
later

Suspend until predicate p evaluates to true

Maria Hybinette, UGA 18

Additional Notes

!! Theoretically, both views are equivalent:

»! Process-oriented simulations can be transformed to event-
oriented simulations and vice versa

!! Practically, runtime performance differs:

»! Event-oriented views typically execute faster than process-

oriented views

Maria Hybinette, UGA 19

Summary

!! Process-oriented simulation typically simplifies

model development and modification

!! Requires threading (e.g., co-routine) mechanism

!! Additional complexity and computation

overhead to suspend and resume simulation

processes

