
Maria Hybinette, UGA

CSCI 8220
 Simulation & Modeling

PDES: Time Warp Mechanism

State Saving and Simultaneous Events

Maria Hybinette, UGA
2

Outline

! State Saving Techniques

» Copy State Saving

» Infrequent State Saving

» Incremental State Saving

» Reverse Computation

! Simultaneous Events

Copy State Save

! Checkpoint all modifiable state variables of the LP prior to

processing each event

! Rollback: copy check pointed state to LP state variables

State Queue

processed event

unprocessed event

snapshot of LP state

LP State

Variables

X: 0

Y: 0

Z: 0

X: 1

Y: 2

Z: 3

X: 4

Y: 2

Z: 3

X: 5

Y: 2

Z: 9

X: 1

Y: 2

Z: 3

X: 0

Y: 0

Z: 0

X: 1

Y: 2

Z: 3

X: 4

Y: 2

Z: 3

12
X: 0

Y: 2

Z: 3

21
X: 0

Y: 2

Z: 3

35
X: 0

Y: 2

Z: 3

4112
X: 1

Y: 2

Z: 3

21
X: 4

Y: 2

Z: 3

35
X: 5

Y: 2

Z: 9

18
Straggler Message

restore state

Input Queue

Resume forward execution starting with

time stamp 18 event

Maria Hybinette, UGA
4

Copy State Saving

Drawbacks

! Forward execution slowed by checkpointing

» Must state save even if no rollbacks occur

» Inefficient if most of the state variables are not modified

by each event

! Consumes large amount of memory

Copy state saving is only practical for LPs that do not

have a large state vector

Largely transparent to the simulation application (only

need locations of LP state variables)

Infrequent State Saving

! Coast forward phase

» Only needed to recreate state of LP at simulation time T

» Coast forward execution identical to the original execution

» Must “turn off” message sends during coast forward, or else

– rollback to T could cause new messages with time stamp < T, and roll
backs to times earlier than T

– Could lead to rollbacks earlier than GVT

! Checkpoint LP periodically, e.g., every Nth event

! Rollback to time T: May not have saved state at time T

» Roll back to most recent checkpointed state prior to simulation time T

» Execute forward (“coast forward”) to time T

rollback

Coast forward

Roll back to

last saved state

Checkpoint every

third event

Infrequent State Saving Example

processed event

unprocessed event

saved state

anti-message

41

Input Queue

(event list)

Output Queue

(anti-messages)
24

12 21 35

State Queue

2. send anti-message

38

3. Roll back to simulation time 12

 Restore state of LP to that prior to processing time stamp 12 event

 Do not send anti-message with time stamp 24

1. straggler message causes rollback

26

4. Coast forward: Reprocess event with time stamp 12

5. Coast forward: Reprocess event with time stamp 21,

 don’t resend time stamp 24 message

6. Process straggler, continue normal event processing

LP State

35211212 21

26

Maria Hybinette, UGA
7

Infrequent State Saving: Pros and Cons

! Reduces time required for state saving

! Reduces memory requirements

! Increases time required to roll back LP

» more time to recreate state

! Increases complexity of Time Warp executive

! Largely transparent to the simulation

application (only need locations of LP state

variables and frequency parameter)

Maria Hybinette, UGA
8

Incremental State Saving

! Only state save variables modified by an

event

» Generate “change log” with each event indicating

previous value of state variable before it was

modified

! Rollback

» Scan change log in reverse order, restoring old

values of state variables

12
X: 1

Y: 2

Z: 3

12
X: 1

Y: 2

Z: 3

21
X: 4

Y: 2

Z: 3

21
X: 4

Y: 2

Z: 3

35
X: 5

Y: 2

Z: 9

35
X: 5

Y: 2

Z: 9

Incremental State Save

! Before modifying a state variable, save current version in state queue

! Rollback: Scan state queue from back, restoring old values

State Queue

processed event

unprocessed event

snapshot of LP state

LP State

Variables

X: 0

Y: 0

Z: 0

X: 1

Y: 2

Z: 3

X: 4

Y: 2

Z: 3

X: 5

Y: 2

Z: 9

X: 0

Y: 0

Z: 0

X: 1

Y: 2

Z: 3

X: 4

Y: 2

Z: 3

41

18
Straggler Message

restore state

Input Queue

X: 4

Y: 2

Z: 3

X: 1 X: 4

Z: 3

X: 1

Y: 2

Z: 3

Resume forward execution starting with

time stamp 18 event

Maria Hybinette, UGA
10

Incremental State Saving

! Must log addresses of modified variables in addition to

state

! More efficient than copy state save if most state

variables are not modified by each event

! Can be used in addition to copy state save

! Implementation

» Manual insertion of state save primitives

» Compiler Support: compiler inserts checkpoint primitives

» Executable editing: modify executable to insert

checkpoint primitives

» Overload assignment operator

Maria Hybinette, UGA
11

Specifying what to Checkpoint

Copy State Saving:

! Transparent to the application program for any
frequency (no explicit action need to be taken, once
the Time Warp executive now the location of the state
save).

Incremental State Saving:

! Manual insertion of state save primitives

! Compiler Support: compiler/pre-processor inserts
checkpoint primitives (cost)

! Executable editing: modify executable to insert
checkpoint primitives (not portable)

! Overload assignment operator

Maria Hybinette, UGA
12

Approaches to Checkpointing

Restricted to

languages allowing

overloading

assignment

Easy to implement
Operator

Overloading

Not easily ported to

new architectures

Language

independent, source

code not needed

Executable editing

Cost to develop and

maintain
Portable

Compiler/pre-

processor

Tedious an error prone
Easy to implement

(executive)
Manual

DisadvantageAdvantageTechnique

Maria Hybinette, UGA
13

Reverse Computation

! Rather than state save, recompute prior state

» For each event computation, need inverse

computation

» Instrument forward execution to enable reverse

execution

! Advantages

» Reduce overhead in forward computation path

» Reduce memory requirements

! Disadvantages

» Tedious to do by hand, requires automation

RC - Example: ATM Multiplexer

if(qlen < B)

qlen++

delays[qlen]++

else

lost++

N
Original

if(b == 1)

--delays[qlen]

--qlen

else

--lost

Reverse

if(qlen < B)

b = 1

qlen++

delays[qlen]++

else

b = 0

lost++

Forward

State Size

B+2 words

State Size

1 bit

B

on cell arrival...

Maria Hybinette, UGA
15

Outline

! State Saving Techniques

» Copy State Saving

» Infrequent State Saving

» Incremental State Saving

» Reverse Computation

! Simultaneous Events

Maria Hybinette, UGA
16

Issues

! Zero lookahead:

» An LP has zero lookahead if it can schedule an event with

time stamp equal to the current simulation time of the LP

! Simultaneous events:

» Events containing the same time stamp; in what order

should they be processed?

! Repeatability:

» An execution mechanism (e.g., Time Warp) is repeatable

if repeated executions produce exactly the same results

» Often a requirement

» Simplifies debugging

Maria Hybinette, UGA
17

1212

Zero Lookahead and Simultaneous Events

Time Warp: Do simultaneous event cause rollback?

! A possible rule:

» If an LP processes an event at simulation time T and then
receives a new event with time stamp T, roll back the
event that has already been processed.

LP1

LP2

processed event

unprocessed event

12

1212

121212

12

Rollback!

Cancel!

Reprocess Event!
Cancel!

If an event can roll back

another event on which it

depends, unending rollback

cycles may occur.

Maria Hybinette, UGA
18

Approach 1

! Prevent Un-Ending Rollback Cycles: Straggler

does not roll back already processed events

with the same time stamp.

» What are problem(s) with this approach?

Maria Hybinette, UGA
19

Approach 2

! Prevent Un-Ending Rollback Cycles: Disallow

stragglers rolling back its scheduling

dependent events (or indirect scheduling

depended events).

Maria Hybinette, UGA
20

Wide Virtual Time (WVT)

Approach

! Application uses time value field to indicate “time

when the event occurs”

! Tie breaking field used to order simultaneous events

(events with same time value)

! Tie breaking field can be viewed as low precision bits

of time stamp

! Question: How or what should the bits represent?

tie breaking fieldstime value

Time stamp

Maria Hybinette, UGA
21

An Approach Using WVT

! Avoid rollback cycles

» Age field to order scheduling dependent lookahead
events

» Non-zero lookahead events: Age = 1

» Zero lookahead events: Age = Current Age + 1

time valueTime stamp: age

Maria Hybinette, UGA
22

WVT Example

processed event

unprocessed event

LP1

12.1

LP2

12.2

12.312.1

12.2

No Rollback!

Avoid rollback cycles despite zero lookahead events (using age)

Maria Hybinette, UGA
23

! Question: Can there be two or more events

containing the same time stamp and age

scheduled by the same LP? Why or why not?

Maria Hybinette, UGA
24

An Approach Using WVT

! Application specific ordering of events

» Application specific priority field

» Constraint on zero lookahead events

! Avoid rollback cycles

» Age field to order dependent lookahead events

» Non-zero lookahead events: Age = 1

» Zero lookahead events: Age = Current Age + 1

! Repeatable execution

» ID field identifying LP that scheduled the event

» Sequence number indicating # of events scheduled

time valueTime stamp: priority age LP ID Seq #

Maria Hybinette, UGA
25

Summary

! Copy State Saving

» Efficient if LP state small

» Can be made transparent to application

! Infrequent state saving

» Must turn off message sending during coast forward

» Reduced memory requirements

» less time for state saving

» Increased rollback cost

! Incremental State Saving

» Preferred approach if large state vectors

» Means to simplify usage required

Maria Hybinette, UGA
26

Summary (cont)

! Reverse computation

» Efficient, requires automation

! Zero lookahead and simultaneous events

» Can lead to unending rollbacks

» Wide Virtual Time provides one solution

