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ABSTRACT
Traffic congestion is a growing concern in most cities across
the world. It is primarily caused by a sudden increase in
the number of vehicles in a relatively small number of roads
and intersections, while other roads have the capacity to
accommodate more traffic. In such situations, distributing
traffic to roads in a balanced way could alleviate conges-
tion. With the help of modern technology such as Internet
of Things (IoT) and simulation, road users can be encour-
aged to choose their route on-the-fly, by providing necessary
information such as projected travel time on the next leg.
In extreme situations, traffic on some critical roads could
be adaptively reduced by even introducing levy. A simple
solution like providing road traffic information, benefits and
penalties, etc., ahead in each intersection would allow trav-
ellers to make cognizant choices and therefore could lead to
a better, more efficient traffic distribution.

To implement the proposed system, simulation and IoT
must be brought together by a suitable communication mid-
dleware system so that they can work in synchrony. Imple-
menting an actual IoT infrastructure and then testing the
cause and effects of traffic congestion with the system in-
place is a daunting task. Simulation would help us to test
and validate the IoT system for functionality, performance,
and scalability. In this paper, we propose a novel framework
for integrating IoT and simulation using a message-oriented
middleware in the context of an adaptive traffic regulation
system and then demonstrate the framework with the help
of a prototype implementation.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of
Systems; D.2.8 [Software Engineering]: Metrics—perfor-
mance measures
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1. INTRODUCTION
Urbanization is an increasing phenomenon worldwide. One

of the direct impacts of this phenomenon is the increased
traffic in cities. Increased traffic often leads to traffic jams
(congestion) when not managed properly, and therefore is
a major problem. Traffic congestion has several negative
effects such as travel delay, larger number of accidents, in-
creased carbon emission, increased pollution, etc. So, a
smart traffic management system is an urgent need across
the globe to avoid traffic congestion. In a broader sense,
distributing traffic in urban areas contributes significantly
to the society’s safety and welfare. Fewer congested routes
means fewer frustrated drivers and hence a proportionally
safer road environment. However, with the increase in the
number of vehicles on the road, the problems and challenges
on city traffic continue to rise.

1.1 Internet of Things and Road Traffic
Recent times have witnessed IoT explosion ubiquitously.

The ability to connect millions of devices to the internet
and source data in realtime is a great asset and has been
put to thorough use in building traffic solutions that effec-
tively manage congestion. Traditional approaches to IoT
solutions follow client-server model, where there is a com-
mon point of data aggregation, such as a gateway or a base
station. Designing IoT solutions based on a middleware ar-
chitecture, would allow us to view each sensing device as
a service point. All the services can be monitored and ac-
cessed from the cloud. We also have access to information
from different sensors that may not be part of our system
(data sourcing). Interaction of thousands of wireless devices
leads to continuous flow of events and massive amounts of
data are being generated. The challenge now is “how to deal
with this massive flow of online data? ”[30]

In the past two decades, many intelligent solutions have
been proposed to manage traffic in smart ways. Some of
them include placing cameras strategically at intersections
for monitoring traffic, sensors and more novel technologies
such as Intelligent Transportation Systems (ITS) and Vehic-
ular Ad-hoc Networks (VANETs). Currently, most of the
proposed intelligent transport systems are either expensive
and therefore cannot be offered to all roads, or not sophisti-
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cated enough to be deployed widely. The rise of Internet of
Things (IoT) in this decade could allow us to sense, collect,
and aggregate information from the most mundane sources
possible. Every day, there are new improvements in creat-
ing and maintaining compatible communication standards,
extending device interfaces to cover as many devices and
sensors as possible and much more. Vehicles, roads, inter-
sections provide the capability to house sensors. The de-
velopment of various communication protocols, multi-hop
message transmission protocols allow us to have Vehicle-
to-Vehicle and Vehicle-to-Infrastructure communication sys-
tems. With the availability of very tiny powerful computers
such as Raspberry PI, Intel Edison, the persistent challenge
of a“resource-constrained”environment too is lifting off. We
are at a crossroad, with the free availability of such different
and powerful technologies at our disposal. In this paper, we
focus on the amalgamation of IoT, dynamic data processing
and analysis, simulation, messaging middleware, and min-
ing repository to build a better, adaptive traffic regulation
system.

Since the early 1990’s, computer simulation has been used
as a vital tool in modeling complex dynamic systems [8, 12].
Traffic systems are quite dynamic and simulation is exten-
sively used to model and study its various aspects and im-
plementation choices. It is easier and more flexible to change
parameters and view cause/effect analysis, bottlenecks and
various other factors in a simulation system than in the ac-
tual system. With the advancement of IoT, simulation can
be not only used for modeling and simulation of a system
before its implementation but also can be heavily used for
prediction of specific aspects of the system during its oper-
ation, as illustrated in Figure 1 for a traffic application.

Figure 1: Integration of IoT and Simulation

Here, IoT feeds information of current traffic to the sim-
ulator. Then, the simulator can simulate and predict future
traffic based on the current state and trend, and that infor-
mation can then be feed back to influence the traffic. This
idea is incorporated into our proposed framework.

In the past, the above mentioned components have been
used and well understood mostly in isolation. Bringing them
together to solve traffic congestion is what we emphasize in
this paper. In such integrated systems, software occupies the
major portion of the system including simulation system.
Particularly, messaging middleware and mining repository
are backbone of the system on which the rest hang. There-
fore, messaging middleware and mining repository must be

chosen with care based on the mainstream software devel-
opment standards and trends. To set the context for our
selection of middleware components, let us briefly review
the software development trend.

1.2 Software Development Trend
Software engineering is a process dominated by intellec-

tual activities focused on developing software systems with
immense complexity and numerous unknowns in computing
perspective [25]. For the reusability of code and to reduce
complexity, software companies along with research organi-
zations, develop and maintain standards and adopt them as
best software engineering practices.

Software engineering has evolved and undergone several
stages since 1960. In the beginning, organizations used vir-
tually all custom tools, custom processes, and custom com-
ponents built in primitive languages. This approach was
expensive, not scalable, and hence most projects were never
completed [18]. From the experience gained in the previous
decade, in 80’s and 90’s, organizations used more repeatable
processes, off-the-shelf tools, and about 70% of their compo-
nents were built in higher level languages [25]. Even then,
they were heavily dominated by custom made tools (70%)
and only about 30% of the components were commercial
products such as operating systems, database management
system, networking, and graphical user interface. With this
approach, some of the organizations could achieve success
only for small and medium size applications. For the ap-
plications of higher complexity, the existing tools would not
suffice.

Since the early 2000, almost all organizations including in-
dustries started using managed and measured processes and
integrated automation environments, and more importantly
the trend in usage of various software components took a
different turn. That is, about 70% are based on off-the-shelf
commercial components and only about 30% of the compo-
nents need to be custom built [25]. So, the trend in software
design and development in industries for quite some time has
been towards using mostly off-the-shelf commercial compo-
nents. Simulation integrated software development practices
cannot be an exception. That is, if we expect the design and
implementation of our simulation and IoT integrated system
framework to be adopted widely, it has to be based mostly
on off-the-shelf commercial or open source components.

1.3 Messaging Middleware
Messaging middleware is a software layer or a set of sub-

layers that connects various heterogeneous domains. The
messaging middleware is the glue that holds it all together
[20]. Research on middleware systems has been gaining mo-
mentum over the years. One of the important advantages
of a middleware system is its ability to provide seamless in-
teroperability between various components. This allows the
programmer to focus on building standard, adaptable, and
effective solutions rather than worrying about the finer de-
tails of the underlying layers [30]. A complete list of the
advantages and disadvantages of using a message oriented
middleware is discussed elsewhere [5].

There are various standards and protocols for building
message oriented middleware systems. One of the most
popular middleware is the Java Messaging Service. JMS
provides a standard API for the Java platform as well as
many services for interoperablility within and outside the
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Java platform. Integration with other languages such as
Ruby, Scala etc is possible but very tricky. Therefore, there
was this necessity for a messaging standard that will assure
interoperability among different platforms and integration
services. AMQP emerged out of this need [13, 15, 2]. At
the time of writing this paper, AMQP and its various open
source implementations are in practice in some of the most
critical systems running in the world, specially in the finan-
cial industry.

Advanced Message Queuing Protocol (AMQP) is an im-
portant protocol heavily used in recent years. It was devel-
oped by John O’Hara of JP Morgan Chase Inc., and is a
binary wire transmission protocol. AMQP originated in the
financial industry as a solution to the problem of seamlessly
connecting different processing platforms together. In order
to attain this effortless interoperability, AMQP boasts of a
well-defined, structured set of rules or behavior for send-
ing and receiving messages. These rules use a combina-
tion of techniques including store and forward, publish and
subscribe, peer to peer, request/response, clustering, trans-
action management and security among many because of
which the protocol has become valuable for communication
across various operating systems, programming platforms,
integration services and hardware devices without compro-
mising on performance [2].

RabbitMQ is an open source implementation of the stan-
dard AMQP 0-9-1 and is programmed in Erlang. It provides
support for all major operating systems and is also available
in languages such as Python, Java, Ruby and .Net. Rab-
bitMQ is very extensible and provides a number of plugins
to allow communication with other web protocols such as
HTTP, XMPP, SMTP and STOMP [2].

1.4 Mining Repository
Completely automated systems for practical use, though

possible theoretically, is a long way to go. For most systems
including road traffice, human interaction to offer intelligent
decisions based on current and predicted future traffic should
be an option for several reasons. Such interaction requires a
good analytic support based on the data about past, present,
and future. In terms of technology, it needs a scalable mining
repository where such data can be deposited and necessary
analytics could be derived. An IoT application would greatly
benefit by the presence of a mining repository that provides
on-going, live support for growing, near-real time data. Such
repositories are in practice now.

In a nutshell, we envision that IoT, simulation, mining
repository connected by an efficient messaging middleware
can play a fundamental role in the advancement of automa-
tion integrated future systems.

1.5 Contributions
We first propose a novel framework that integrates simula-

tion and IoT with a message oriented middleware system and
mining repository. We then demonstrate the feasibility of
the proposed framework by the design and implementation
of an adaptive traffic regulation system. Limited simulation
experiments were conducted and the results are reported.

The internet of things platform uses sensors to collect data
and actuators to influence the system to change its behavior.
Discrete event traffic simulation system is used to predict the
future traffic behavior based on sensor inputs. Mining repos-
itory is used to store sensor data and simulation traces, and

provide analysis support to the users and managers of the
system. The messaging middleware is responsible for con-
necting these components and facilitating message transfer
in near real-time. It acts like a “postman” system, distribut-
ing the right data at the right time to the right storage
system and the right subscriber. The proposed framework
is completely reproducible and is built from scratch using
open source off-the-shelf components.

The rest of the paper is organized as follows. In Section
2, we explain the proposed framework in detail. Section
3 describes the adaptive road traffic simulator. Simulation
experiments and the results obtained are outlined in Section
4 and the paper is concluded in Section 5.

2. PROPOSED FRAMEWORK
In this section, we describe in detail the framework to

integrate IoT platform and simulation with a suitable mid-
dleware. The proposed framework is shown in Figure 2.
It has four main components: (i) The application domain
where IoT is deployed; (ii) Simulation system; (iii) Mining
repository; and (iv) Messaging middleware.

Figure 2: Framework for Smart Regulation System

This framework integrates discrete event simulation and
Iot in a simplified way. The application domain where IoT
is deployed, may not necessarily be limited to transporta-
tion system, rather, this framework can be applied to any
practical systems that involve IoT. Next, we will explain the
various components of the proposed framework.

2.1 Simulation Component
The simulation component in the framework mainly used

to predict the future based on the past and present. It gets it
inputs from both IoT (current state) and mining repository
(past states). Based on these information, it can simulate
and predict the future scenarios, and send that information
back to the mining repository. The information stored in the
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mining repository is then used to derive insights on current
state and future states of the system and feed that informa-
tion back to IoT to influence the current system. Any part
of the proposed framework can be modeled and simulated
before its actual deployment.

2.2 Internet Of Things
In the proposed system, IoT is primarily used to collect

data and influence the system behavior. For our prototype
design and implementation, we simulate the presence of an
active IoT infrastructure as a part of the traffic simulator.

The IoT infrastructure provided in our simulator, primar-
ily has two components: (i) sensors to collect data; and (ii)
actuators to act or influence the system to change. Sensors
basically send information such as number of vehicles on the
selected road segment. The simulation software, based on
the current traffic, in turn predicts future traffic by simulat-
ing future scenarios, and sends the relevant information to
the actuator component of IoT. The actuator component of
IoT then influences the system, and the cycle repeats. The
actuator component would be a display board, that will in-
form the travellers about the present road conditions, time
to reach next destination (next intersection, in this case)
and the speed limit to be followed.

Simulating an entire IoT system is an effective way to test
the design of your system even before developing it. The fu-
ture is expected to be revolutionized by the integration of
IoT and simulation. With simulation, we can test how a
target system behaves under different scenarios and road
conditions. In summary, to integrate IoT and simulation
effectively, we need a middle-ware that is capable of offer-
ing message service in near real-time and a scalable mining
repository with suitable analytics support. Next, we will
discuss about the implementation of such a suitable middle-
ware.

2.3 Messaging Middleware
A messaging middleware helps connecting various hetero-

geneous devices seamlessly and controls the flow of events ex-
tensively by supporting various plugins and interfaces mak-
ing it very extensible. So, a critical part in realizing the
proposed system is using a suitable middleware that could
facilitate dynamic data to flow in near real time. Although
our framework is generic that any messaging framework can
be used, for our prototype implementation we adopt Rab-
bitMQ as our messaging middleware for the following rea-
sons.

1. As it supports a standard messaging protocol AMQP
and it is not confined by any proprietary, client specific
messaging protocol.

2. All the messages are collected by the RabbitMQ. This
type of message storage pattern is very similar to a
push-style data flow. All the messages move from
where they are produced to where they are consumed
in a fluid manner, without having to periodically pull
messages at various end points.

Next we briefly explain how RabbitMQ works.

2.3.1 RabbitMQ
RabbitMQ stores messages in queues and acts as a broker

between two types of processes, producers and consumers.

There are two core units that form RabbitMQ namely, Queues
and Exchanges/Router [26]. In simple terms, every mes-
sage that is passed through RabbitMQ has to be placed in
a queue. The main function of the router is to route the
messages from the appropriate producer to the appropriate
consumer. Each message consists of a simple header, spec-
ifying where it is heading to. The router doesn’t read or
process the message, it simply delivers the message to the
appropriate queues. The consumers on the other hand, can
either subscribe to a particular message or keep polling to see
if a message is received. The router in RabbitMQ is called
as exchanges. Figure 3 shows a simplified architecture of
the components involved in the RabbitMQ messaging sys-
tem [5].

Figure 3: RabbitMQ Architecture

The producers in RabbitMQ generates messages which
are then pushed to the exchanges. The exchanges then ap-
ply some routing rules on these messages and push each
message to the appropriate queues, thus providing a deliv-
ery service. The messages can either be directly delivered,
or it can be delivered because of an existing subscription
system. The routing choices simply depend on the value of
the routing key which is available in the header part of the
message. This header is constructed by the producer itself.
If a particular message is to be sent to more than one queue,
then the exchanges take the responsibility of duplicating the
message and delivering it to the queues. Consumers always
must have a permanent connection with their corresponding
exchanges, so that the exchanges may be aware of the exact
details of the queues the consumers have subscribed to. In
addition to separate queues for consumers, in our prototype
system, we also have a common queue that stores all incom-
ing messages to all exchanges in their order of arrival. This
common queue is what mining repository is subscribed to.
All operations inside RabbitMQ are done in memory and
they are transferred to the disk periodically. All the mes-
sages in our simulator are time-stamped and their order is
maintained consistently throughout the simulation.

2.4 Mining Repository
The most important requirement of a mining repository

for the proposed framework is the ability to store and access
large data in near real-time and agility for data growth and
updates. A near real time search engine with standardized
API is its main attraction. Most databases or mining repos-
itories that store large volumes of data, require some sort
of sorting, filtering and other such capabilities, to segregate
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and organise that data so that it can be easy to write queries
for searching the data. In this case, offline analysis is the
only solution.

Again, any mining repository with above capability can
be used in our framework, we adopt Elasticsearch for our
prototype implementation. We briefly explain Elasticsearch
next.

2.4.1 Elastic Search
Elasticsearch is one of the most popular mining reposi-

tories with rich functionalities [19]. We use Elasticsearch
in our proposed framework for the following reasons that
illustrate its functionality.

1. Availability and cost: It is a open source software and
that makes it easier to integrate with any application.

2. Scalability: When it comes to data storage, we con-
sider scaling from two perspectives. 1) Vertical or
scale up - Adding more hardware, powerful servers, 2)
Horizontal or scale out - Adding more servers. Elas-
ticsearch is distributed by nature. A running Elastic
search server is called a node. Two or more nodes form
a cluster. Elasticsearch is heavily supported to run in
clusters.

3. Near real-time Search, Data Analysis, and Visualiza-
tion: Elasticsearch stores data in indexes. An index
is analogous to a database in a Relational Database
Management System (RDBMS). Each document in an
Elasticsearch index is a JSON object. All the docu-
ments are indexed as soon as they are added to an
index, however they are only updated at a pre-defined
time interval ( 1 second). For large scale applications,
the Elasticsearch server does not refresh after each up-
date using the default interval because it is costly in
terms of disk i/o operations. However, we have the
ability to set a custom update interval based on the
application.

4. RESTful API: Since Elasticsearch is a RESTful server,
the most widely used way to communicate with the
client is through its REST API. A client normally
opens a connection with the Elasticsearch server, posts
a JSON Object as a request and receives a JSON ob-
ject as a response. This is very useful, because there is
no restriction on the type of client, the programming
languages used. Any client can communicate with the
Elasticsearch server with HTTP requests.

5. Popularity: It is used by thousands of organizations
worldwide including Netflix, Facebook, GitHub, etc.,

In our traffic simulator, we store all the events occurring
during the simulation. Each event is associated with a time-
stamp and is stored on Elasticsearch server in JSON format.
By querying the events using the appropriate message, we
can get real time results for analysis.

Kibana is the graphical front end for Elasticsearch and
provides data visualization and analytic capabilities. Kibana
is a browser based interface and provides the capability to
search, view and interact directly with the data stored at
the Elasticsearch indices. Kibana automatically generates
queries for Elasticsearch, the queries are similar to the ones
a programmer might write, using the Elasticsearch API. Our

kibana dashboard shows us a list of events that are being
pushed to the Elasticsearch server at each update.

Kibana allows us to view the events (in our case) logged by
the Elasticsearch server, sort and perform search queries on
the data presented. Advanced search options such as saving
a search, loading a saved search are available and is very
handy. Kibana supports visualization tools in the form of
various kinds of charts. This allows us to view and compare
various scenarios from the live data presented to us and not
having to stop and start the simulator again and again. We
focus on the business intelligence aspect of Elasticsearch in
our simulator, mostly because of ease of use and its plug-in
type architecture. There are other scalable search engine
solutions that are available like Solr could be used in-place
of Elasticsearch.

3. ROAD TRAFFIC SIMULATION
Traffic systems provide a variety of features such as dy-

namic state change, real time decision making, unexpected
congestion etc, that makes it hard to conceive, analyze and
test this system. Also, a traffic system consists of many
participants with dissimilar interests. Simulation can be a
very useful tool to help capture the effect of influencing fac-
tors in a real-life traffic system, such as pedestrians, road
blockage etc and view the outcomes without disturbing an
existing implementation. We briefly review some of the re-
search done in traffic simulation systems. The authors in
[12] present an elaborate survey on the state-of-art Intel-
ligent Transportation Systems presently in use across the
globe. The authors identify three main research trends on
Intelligent Transport Systems (ITS) -

ITS based on Wireless Sensor Networks
An example of an ITS based on WSNs would be Advanced
Traveller Information Systems (ATIS) for Indian Cities de-
veloped in India in 2014[6]. In this project, over 100 GPS
devices and cameras were mounted at intersections. These
use wireless communication to transfer information collected
on the traffic conditions to the central control center. This
information is then converted into data that can be used
by travelers, using travel time prediction models and algo-
rithms. The travelers would then be informed about the
traffic by the use of strategically placed Variable Message
Signs(VMS).

ITS based on Vehicular Sensor Networks
An example of a VSN based traffic control system would be
the Mobeyes Project[11]. In this project, all the data sensed
by the vehicular nodes are locally processed within the vehi-
cles. The data nodes generate feature-rich data summaries
with time and context information. There is no necessity
for the road-side infrastructure. Instead of road-side infras-
tructure, the project has Mobeye data collectors that work
more or less like police patrolling agents and collect data
from their neighboring vehicular nodes.

Vehicular Ad-hoc Network Simulators
In literature, a road traffic simulator is normally called a
VANET simulator. The authors in [3] classify VANET sim-
ulation software in three different categories: (a) vehicular
mobility generators, (b) network simulators, and (c) VANET
simulators. Vehicular mobility generators are useful in cre-
ating realistic, accurate patterns of movement of vehicles in
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various scenarios. Vehicular mobility generators fundamen-
tally apply mobility models used in the VANET domain
to simulate the movement of vehicles accurately. Output
from a vehicular mobility generator will generally be a trace
file, containing trip details for each vehicle, spanning across
the simulation period. This trace file, can then be used
in network simulators such as OMNET++[28], NS3[23] etc
for further analysis. Network simulators perform in-depth
analysis of data packets, packet loss, transmission delays
etc. VANET simulators allows us to change the behaviour
of vehicles based on a given condition within an integrated
framework [3]. VANET simulators provide both the ability
to generate vehicular mobility as well as network simula-
tion. The VANET simulators specified above, presently, has
no support for integration with the Internet of Things[4, 22].

The future is going to be revolutionized by the Internet of
Things, specially in the mobility space. Therefore, we see a
need for simulators that incorporate necessary support for
Internet of Things. In the next section, we describe in detail,
our road traffic simulator, that integrates both Internet Of
Things and discrete event simulation in this context.

3.1 Simulation System
Traffic simulation models can be classified either as micro-

scopic or macroscopic. In a microscopic model, simulation is
centered around an individual vehicle and its performance
is evaluated across the entire network. In a macroscopic
simulation model, the entire network is modeled and this is
used to particularly model large scale systems. In order to
retain simplicity, we need a different model that allows us to
abstract the required entities and reduce the complexity of
the overall system[11]. The various components of a traffic
control management system such as vehicle, intersections,
road segments, sensors, traffic lights etc are to be modeled
independently. Discrete-event simulation supports this type
of modeling and provides us with an environment where we
can freely integrate the modeled entities. There is a global
simulation clock, that controls the entire simulation time-
range. Each entity has a list of events associated with it.
All events are ordered and executed based on their priority
within the event queue. All the events passing through the
middle-ware are consistently logged in the mining repository
for further data analysis.

The traffic network considered is a simple grid. The nodes
in the grid represent intersections and paths connecting the
nodes represent the road segments between intersections.
The network is connected, meaning there exists a path be-
tween two nodes. The IoT part of the system essentially
contains a collection of sensors and actuators. In our sim-
ulator, there is a sensor-actuator pair at each intersection,
in all the directions branching out from that particular in-
tersection. The sensor keeps measuring the number of cars
passing the road segment from the chosen intersection to the
next intersection, and posting this information continuously
to the middle-ware as depicted in Figure 4. The simulator
takes the sensor input and uses this input to predict future
traffic and the real-time road congestion scenario is passed
on to the actuators as messages. The actuator present at
each intersection, displays the current congestion statistics,
which will then influence the drivers’ choice of staying on the
same route or taking a different route to their destination.
The IoT system can simply send and receive messages from
the messaging middleware using AMQP requests.

Figure 4: Data Flow within the proposed framework

The simulator can be run on one master computer or on
several nodes, with one node acting as the coordinator. It
can be implemented in any language, we used JAVA. One
key design point of our simulator is that we wanted to make
the code as reproducible as possible and that can be achieved
only by implementing the simulator using off-the-shelf com-
ponents. Any traffic simulator which has the capability
to send/receive messages following the Advanced Message
Queuing Protocol (AMQP) can be used in place. The cho-
sen messaging middle-ware (RabbitMQ) offers us a wide va-
riety of plugins and interfaces for both the IoT environment
as well as the mining repository.

We next describe the simulation system components or
entities and events of the system.

3.2 System Entities

• Vehicle - represents the model of a vehicle in an ac-
tual traffic system. Each vehicle will know its source,
destination and will travel from the source to the des-
tination based on the velocity allowed in that road seg-
ment. Vehicle has intelligence to take routing decisions
based on the available real time sensor information at
each intersection.

• Node - represents the model of an intersection in an
actual traffic system. A node has four traffic lights,
representing a simplified model of a four-way intersec-
tion.

• Traffic Lights - represents the model of a traffic sig-
nal in an actual traffic system. It controls the flow of
vehicles from one intersection to the next.

• Road Segment - represents the model of an actual road
connecting two intersections. Each road segment has a
maximum capacity that specifies the allowable amount
of traffic at a particular time. The speed limit of
the road segment varies according to the current load.
Current load gives the number of vehicles traversing
the road segment at that time. The maximum allow-
able velocity (Vmax) is calculated using a Congestion
Formula given as follows -

Vmax = Max (10,Vmax- f(current load))

• Sensor - represents the model of a actual traffic sensor,
such as an induction loop or an overhead camera. The
sensor reports the number of vehicles passing through
the intersection in a real time basis.
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3.3 System Events
The simulation basically involves following events.

1. Vehicle Create Event - creates a vehicle with a source,
destination and a random velocity in the range (12,
28) m/s. The creation of this event is controlled using
a probability distribution.

2. Vehicle Begin Event - denotes the departure of a ve-
hicle from an intersection. Also invokes the Sensor
Increment Event.

3. Vehicle Reached Event - denotes the arrival of a vehicle
at an intersection. Also invokes the Sensor Decrement
Event.

4. Sensor Increment Event - increments the number of
vehicles by 1, for that particular road segment attached
to the sensor. It also decreases the maximum allowable
velocity for that road segment based on the Congestion
Formula.

5. Sensor Decrement Event - decrements the number of
vehicles by 1 when a particular vehicle reaches a node
attached to the road segment to which the sensor is
connected.

6. Traffic Light Green On Event - enables green light on a
particular intersection causing all the vehicles entering
the intersection to travel through its associated road
segment without stopping at the intersection.

7. Traffic Light Green Off Event - disables green light on
a particular intersection and will invoke a Traffic Light
Red On Event.

8. Traffic Light Red On Event - enables red light on a
particular intersection causing all the vehicles entering
the intersection to stop at the intersection and will
create a delay before invoking the Vehicle Begin Event.

9. Traffic Light Red Off Event - disables red light on a
particular intersection and will invoke a Traffic Light
Green On Event.

3.3.1 Simulation Input Parameters
The road network which we have considered as the input

for this simulation is stored in a JSON format in the local file
system. This JSON file contains the information about the
nodes, intersections, road segments and how they are con-
nected to each other. At the beginning of the simulation,
the simulator parses through JSON file and converts it to
a in-memory graph data-structure. Vehicle Create Event
is called for the specified number of vehicles specified in
the simulation input parameters and each vehicle gets at-
tributed a random source and a random destination. The
shortest path between a given source and destination node
is calculated using Dijkstra’s shortest path algorithm.

3.3.2 Vehicle Routing
Each vehicle will check the sensor input and chooses it

route to the destination accordingly. The vehicle takes into
consideration, the maximum allowable speed limit of the K
shortest paths to the destination and predicts the time taken
for each of the K shortest paths to reach the destination.
The vehicle chooses the path which has minimum time to

reach the destination and routes to the next node based on
this time.

When the current load of a particular road segment in-
creases, the velocity of the cars traveling on that road seg-
ment decreases. This decrease is calculated using the for-
mula,

New Velocity = Max ( 10, Road segment current
velocity - (1.3 * current load) )

4. SIMULATION EXPERIMENTS
To demonstrate the functionality of the proposed simu-

lator, we present two experiments to compare the perfor-
mance of traditional traffic regulation system and adaptive
traffic regulation system. The first experiment compares the
number of vehicles that reach their destination. The second
experiment compares the average time taken by the vehicles
to reach the destination.

Experiment 1: Number of vehicles that reach destina-
tions
The simulation parameters used for experiment 1 is given in
Table 1.

Parameter Value
Input Grid Size 50 x 50
Initial Number of Cars 1000
Road Length [500 to 1600]m
Road Capacity [50 to 160]
Initial velocity - car [12 to 28]m/s
Simulation Period 1800 ticks

Table 1: Simulation Parameters for Experiment 1

In this experiment, we show the number of cars that reach
the destination with sensor input from the Internet of Things
environment in contrast to the scenario wherein the cars are
routed without any sensor input. In terms of the number of
cars reaching their destination at each simulation clock, we
see that the inclusion of sensor data consistently results in
increased performance.

The performance gets closer as the cars started decreasing
near the end of the simulation.

Experiment 2: Average time to reach destinations
In this experiment, we measure the average time taken by
the vehicles in the simulation to reach the destination with
and without the presence of the sensor input, while we vary
the rate of vehicle generation. The rate of vehicle generation
specifies the number of vehicles that will start at the same
simulation tick.

The simulation parameters used for experiment 2 is given
in Table 2.

In this experiment, we observe that the simulation with
sensor input performs fairly well for lower rates of vehi-
cle generation (rate ≤ 12). The greater this rate grows,
each road segment in the simulation becomes heavily con-
gested. This causes the vehicle to be re-routed to many
different paths before reaching the destination. In this sce-
nario, the simulation without sensor input performs com-
paratively well.
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Figure 5: Number of vehicles reached

Parameter Value
Input Grid Size 20 x 20
Initial Number of Cars 1000
Road Length [500 to 1600]m
Road Capacity [50 to 160]
Initial velocity - car [12 to 28]m/s
Simulation Period 1000 ticks

Table 2: Simulation Parameters for Experiment 2

5. CONCLUDING REMARKS
In this paper, we proposed a novel framework integrat-

ing simulation, IoT and mining repository using a message-
oriented middleware. The efficacy of the framework is demon-
strated in the context of simulating traffic congestion. Simu-
lation is used for prediction. IoT again has two components
sensors and actuators. Sensors collect data of the current
state of the system and feed to the simulation system. Based
on the simulation scenarios and data mining, decisions are
made to influence the system through actuators. The mes-
saging middleware glue together these components and facil-
itate effective communication among them. The middleware
could easily be hosted as a distributed system making it a
very fast and scalable solution. Using Elasticsearch on the
data mining for real-time data analysis give the simulator an
extra edge at the same time gracefully solving the scalability
problem.

We have conducted a limited simulation experiments to
demonstrate the proof of concept. Although these exper-
iments give some interesting results, we need to keep in
mind that vehicles with human drivers could be different
as we have limited knowledge on how each driver will be-
have based on additional information about the traffic. The
proposed system would be more suitable for driver-less ve-
hicular systems. Manual interaction with the system would
result in better traffic regulation for vehicles with human
drivers. There are several possibilities for further research on

Figure 6: Average Time to Reach Destination

this work including in depth study on road traffic congestion
and applying the proposed framework for other applications
such as energy system, resource management, etc.
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