
A Simulator for Distributed Cache Management
in Friend-to-Friend Networks

Keynan Pratt
University of Calgary
Calgary, AB Canada

kjpratt@cpsc.ucalgary.ca

Carey Williamson
University of Calgary
Calgary, AB Canada

carey@cpsc.ucalgary.ca

ABSTRACT
Multimedia streaming services such as YouTube and Net-
flix consume a staggering amount of Internet bandwidth [1].
Furthermore, traditional mechanisms such as proxy caches,
content distribution networks, and redundant traffic elimi-
nation are rendered ineffective by copyright concerns, regu-
latory issues, and the growing prevalence of end-to-end en-
cryption. One possible solution is a peer-to-peer caching
system with social relationships at the core of its topology
construction. A social topology carries an implicit level of
trust, and induces a relatively high degree of correlation be-
tween users that can be exploited by the system as a whole.
For example, two users with shared interests are more likely
to have relevant videos in cache for each other. This short
paper discusses the design of a simulator for such a system
to provide insight into the performance of different cache
management policies.

CCS Concepts
•Networks → Network simulations; Network performance
modeling; •Computing methodologies→ Simulation tools;
Massively parallel algorithms;

Keywords
Friend-to-Friend, F2F, P2P, Distributed Caching, Parallel-
DES, Simulation, Haskell

1. INTRODUCTION
Friend-to-Friend (F2F) systems are a sub-class of Peer-to-

Peer (P2P) systems. The primary distinction is that F2F
systems operate with a constrained topology based on social
relationships. In F2F systems, a user node may only peer
with nodes for which the user knows the operator. This
constraint allows the system to assume that the other nodes
are trustworthy.

A notable example of an F2F system is Freenet [5]. Freenet
is a well-known anonymity system that uses heuristic-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada
c© 2016 ACM. ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901398

routing to achieve expected log-squared routing distance
without any node having knowledge of the network beyond
its immediate connections [5]. Additionally, the system may
assume connected nodes have more properties in common
than would randomly chosen nodes. Examples of such com-
monalities include geo-location, shared interests, education
level, and socio-economic background.

This short paper describes work in progress towards a sim-
ulator for Netflix content delivery in F2F networks. One mo-
tivation for this simulator is the growing volume of media
streaming traffic on campus networks. For example, recent
work at the University of Calgary studied five months of
campus Internet traffic [10]. Of the 2 PB of data analyzed,
more than 500 TB of traffic was identified as Netflix video.
Detailed analysis showed that a 12 TB cache at the campus
edge could save approximately 250 TB of Internet traffic.
However, even if Netflix could be persuaded to position edge
nodes on every university campus, this would not solve the
general case, leaving other services such as Hulu, Amazon
Prime, and YouTube to install their own edge nodes. Addi-
tionally, university edge caching is made ineffective by the
growing use of end-to-end encryption. This necessitates an
end system solution that can operate on the encrypted data.

This work-in-progress paper outlines the construction of
a simulation engine that, based on limited empirical mea-
surements, can guide the construction and optimization of a
distributed caching system. The remaining sections of this
paper discuss the design of the simulator, as well as its key
components for topology generation, workload generation,
and cache management.

2. DESIGN RATIONALE
The Haskell language was chosen for the simulator. Haskell

is a pure functional language known for its mathematical
rigor. In particular, the strict type system (and the require-
ment that all side-effect causing code be made explicit) pre-
vent many common programming errors that could under-
mine the results of simulation. Additionally, the simulator’s
architecture is built on Cloud Haskell1, a message-passing
library based on Erlang’s OTP framework that can achieve
high reliability and linear process scaling [2].

In the design of the simulator, two key properties must
be maintained: the simulation must be agnostic about the
data source; and the simulation must scale well with respect
to the size of the social graph, and the number of content
requests.

1https://haskell-distributed.github.io/

79

In the long term, we wish to examine the efficiency of var-
ious cache management strategies and synchronization poli-
cies for F2F networks. In the initial prototype, synthetically
generated data will be produced with a range of parameters
to identify the properties under which each policy performs
well. Thus, the simulation uses the following interface:

simulate :: (Cache c, Generator ContentEvent g)
=> Graph
−> Map Vertex g
−> Map Vertex c
−> Process SimResults

where Graph and Map are standard Haskell containers,
and Process refers to the Cloud Haskell distributed.process.
Process monad.

The network topologies are assumed to be static. While
social topologies are dynamic, it’s assumed that changes of
any one node are slight enough to have little or no impact
on system behavior.

The core simulator engine operates as follows. Once sim-
ulation has begun, the graph G(V,E) is partitioned using
an approximation algorithm. The result is k sets containing
approximately |V |/k vertices each, where k is the number
of processes over which the computational load is to be dis-
tributed. Each process pi has ownership of one set Mi of
master nodes. Process pi constructs the set Si = {v | u ∈
Mi, v 6∈Mi, (u, v) ∈ E ∨ (v, u) ∈ E}. For all v ∈ Si, a slave
replica of the master cache is created. Whenever the master
cache is modified, the new entry and the simulation time at
which it was inserted are transmitted to every process that
possesses a slave replica. If, at time t, the process pi at-
tempts to read from a slave cache where the master replica
is owned by pj , it first applies any updates it has received
from pj prior to time t. If the last update received from
pj occurred at or after time t, the read of the slave replica
succeeds. If the read of the slave replica fails, then the pro-
cess pi announces an update with no content occurred at
time t− 1; it then pauses simulation. pi continues receiving
updates and resumes simulation when a read of the slave
replica succeeds.

The simulator design ensures deadlock-free operation. To
understand this, assume process pi is blocked waiting for an
up-to-date slave replica for a node managed by pj at time t.
Then, if pj is blocked it must be the case that pj is blocked
waiting for an event that happens prior to t− 1, so pj can’t
be blocked waiting for an event from pi. It is easy to see how
this property generalizes to many processes. Thus, deadlock
is not possible in the discrete-event simulator.

3. TOPOLOGY GENERATION
The simulator currently supports several social network

topology models. Of primary interest are graphs that are
small-world and scale-free, as observed in real-world social
networks. We consider Watts-Strogatz (WS), Barabási-Albert,
and the Stochastic Block Model. For comparison, we also
include the Erdős-Rényi model of random graphs.

For each of these models, the graphs generated are ana-
lyzed to understand the properties that influence the sim-
ulation results. We focus on the graph diameter, radius,
average path length, clustering coefficient, and degree dis-
tribution. Brief descriptions of these metrics and properties
are given below.

3.1 Graph Properties

3.1.1 Eccentricity
The eccentricity of a vertex v, denoted ε(v), is the length

of the shortest path P (v, u) to the vertex u that is far-
thest away from it (i.e., there exists no vertex w such that
P (v, w) > P (v, u)).

3.1.2 Radius & Diameter
The radius of a graph is given by minv∈V [ε(v)] and the

diameter is given by maxv∈V [ε(v)]

3.1.3 Clustering Coefficient
There exist two common methods for measuring the clus-

tering coefficient of a graph, specifically:

C∆ =
3 ∗ number of triangles

number of connected triplets of vertices

and the Watts-Strogatz clustering coefficient [12]:

CWS =

∑
i (cws

i)

|V |
cWS
i =

2ei
ki(ki − 1)

where, for vertex vi, ei is the number of connected neighbors
and ki is the degree of the vertex.

3.2 Graph Models
All simulated graph models accept the input parameter

n = |V |. We constrain the parameter davg, the average
degree of a vertex, to be within one order of magnitude of
that observed in online social networks. According to PEW
research [7], the average Facebook user has 338 friends. Thus
davg is constrained to the range [10, 4000]. The same PEW
study estimated the median number of friends at 200, with
39% of users having less than 100 friends and 15% having
more than 500. This gives us a rough approximation of
the slope of the degree distribution to be emulated when
constructing scale-free graphs.

3.2.1 Erdős-Rényi Graphs
In an Erdős-Rényi graph, the existence of every edge is

sampled according to a Bernoulli distribution with proba-

bility p [8]. Values of p are chosen such that p = |E|
n

and

p > log(n)
n

. The latter constraint ensures that with high
probability (w.h.p.), the graph is connected [9].

3.2.2 Watts-Strogatz Graphs
The Watts-Strogatz model [13] is designed to produce

graphs with a notably higher clustering coefficient than in
Erdős-Rényi graphs. The model takes two additional pa-
rameters: k where 2|k and n � k � logn � 1; and
β ∈ [0, 1]. The graph is initially constructed as a ring lattice
with neighborhood size k. Therefore the graph will contain
nk
2

edges. Every edge is moved according to probability
β. If β = 0, the lattice structure is preserved. As β ap-
proaches unity, the graph resembles an Erdős-Rényi graph
where p = nk

2n2 . Additionally, as β goes to 1, the average

path length rapidly approaches log n
log k

, and the clustering co-

efficient degrades to k
n

. The small-world properties of these
graphs are most prominent for intermediate values of β, be-
fore the clustering coefficient drops, and the average path
length shrinks. One limitation of this model is the unreal-
istic degree distribution. The WS degree distribution tends

80

(a) Erdős-Rényi Graph (b) Watts-Strogatz Graph (c) Barabási-Albert (d) q-Clique Tree

Figure 1: Graph examples for n ≈ 30 and davg ≈ 4

Table 1: Small (n ≈ 30, davg ≈ 4, β = 0.28)

Model Diameter Avg Path Length CWS

Erdős-Rényi Graphs 6 2.559 0.134
Watts-Strogatz 5 2.578 0.133
Barabási-Albert 4 2.308 0.238
q-Clique Tree 3 1.80 0.810

Table 2: Medium (n = 1000, davg = 10, β = 0.28)

Model Diameter Avg Path Length CWS

Erdős-Rényi Graphs 6 3.307 0.009
Watts Strogatz 6 3.660 0.263
Barabási-Albert 5 2.989 0.036
q-Clique Tree 5 2.787 0.874

towards a Poisson, while observed social networks have a
power-law distribution.

3.2.3 Barabási-Albert Graphs
The Barabási-Albert model [3] produces scale-free graphs.

From an initial graph containing n0 vertices, the remaining
n − n0 vertices are added. For each additional vertex, m
edges are created. Each edge connects the vertex to an ex-
isting vertex vi with probability pi = di

2E
where di is the

current degree of vi. The resulting graph has degree dis-
tribution roughly P (d) ∼ d−3. Scale-free graphs are ultra-
small-world with average path length log n

log log n
. However, as n

grows, the clustering coefficient tends towards n−0.75, much
lower than observed in social networks.

3.2.4 Recursive Clique Trees
Recursive Clique Trees, as discussed by [6], are determin-

istically generated hierarchical graphs that exhibit both the
small-world and scale-free properties. The graph is con-
structed according to two parameters q and t, where q is
the clique size, and t is the recursive depth. The graph
grows exponentially with parameter t, while q controls both
the clustering coefficient and the degree distribution.

Examples of the four graph models are shown in Figure
1, with their graph metrics given in Table 1.

4. WORKLOAD GENERATION
Workload generation is focused on content requests that

reflect general viewing habits. As a control, one class of
generator samples independently from the empirical Zipf-like
distribution identified by [10]. However, it is reasonable to
consider correlation between the viewing habits of friends in
a social network, as well as for content events to depend on
previous events observed by the same node. The correlations
arise from common interests, social recommendation, word-

Table 3: Large (n = 10, 000, davg = 20, β = 0.28)

Model Diameter Avg Path Length CWS

Erdős-Rényi Graphs 5 3.401 0.002
Watts Strogatz 5 3.744 0.269
Barabási-Albert 5 3.065 0.011
q-Clique Tree 5 3.064 0.875

of-mouth, and social engagement. Dependence is most pro-
nounced in terms of viewing habits. After watching episode
6, a user is very likely to watch episode 7, and extremely
unlikely to watch episode 28.

In order to include these dependencies in our simulation,
samples are taken from a composition of multiple distribu-
tions, each of which is unique to a particular node. Each
node starts with the same distribution as the control. As
events are processed the distribution is updated to reflect
the correlation and dependence outlined above. The primary
technique used is the Least-Recently-Used (LRU) stack model
commonly used for modeling temporal locality in caching
simulations.

A practice among some viewers is to “binge watch” spe-
cific TV series. Thus, there will be a strong tendency to
watch only a small number of series at a time, consuming
one to completion before moving on. Additionally, in order
to accurately reflect the real world, new content will be-
come available mid-simulation. The arrival of new content
may interrupt the current series being viewed.

5. CACHING ARCHITECTURE
The design of an effective caching architecture is the main

motivation for our simulator. It is desirable to avoid a cross-
network query if the query would fail. Therefore, each node
maintains a Bloom filter [4] of each neighbor’s cache. Tuning
the size of the Bloom filter relative to the cache size will be
an important optimization question during simulation.

Prior to their deployment of end-to-end encryption, Net-
flix was known to buffer video via multiple HTTP request-
response operations. In a production system, each individ-
ual HTTP request must be representable as a cache query.
Additionally, each request would specify a time offset into
the video. The flexibility offered by this API must be mir-
rored in a production cache. Therefore, each video occupies
a single entry in the cache, though the entry may be incom-
plete or even contain holes. In order to minimize message-
passing overhead in simulation, each movie or TV episode
is treated as a single cache entry, storing only the integer
identifying the video requested.

Common cache management policies such as FIFO, LRU,
and LFU will be considered. However, traditional caching
policies are applied in a single user environment; the dis-
tributed environment creates opportunities for unique cache

81

semantics. Consider the perception of a single node. It does
this node no good for all of its neighbors to store the most
popular piece of content. As soon as the closest neighbor has
the content in cache, the node ceases to gain benefit from
other neighbors caching the same content. In some sense,
cache space is wasted if they do so. The neighbor, when
pulling a piece of content, may choose not to cache it.

Recall that the social topology is small-world and there-
fore has a high clustering coefficient. In other words, your
friends are frequently friends with each other. Assume that
a node can discover or approximate the distance of each
neighbor to the closest source (i.e., Netflix server), and to
any mutually connected neighbors. Let the in-network avail-
ability of a piece of content γ be defined as the percentage of
neighbors who have a mutual neighbor who has the content
and is closer to them than to the source. Then, the node
may choose to store the content with probability p = f(γ).
Two functions of interest are:

f(γ) = 1− γ and f(γ) = 1− S(12γ − 6)

where S(x) is the sigmoid function. An alternative mea-
sure of availability would be for each node to provide each
neighbor with a second Bloom filter suggesting the pieces of
content to which it has nearby access. This measure would
produce lower message overhead and greater accuracy at the
expense of leaking information to nodes without a direct
connection.

6. CURRENT CHALLENGES

6.1 Random Number Generation
One unexpected technical challenge was random number

generation. Implementations of common pseudo-random num-
ber generators (PRNG), such as the Mersenne twist, are
available in Haskell. However, these implementations may
be incomplete, or have drawbacks such as the inability to
safely split the period across multiple parallel streams. We
have implemented the xorshift-128-plus algorithm to serve
as the underlying U(0,1) PRNG. While no PRNG is known
to pass all of the standard TestU01 [11] statistical tests,
xor0shift passes many more of these tests than does the
Mersenne twist, which is believed to be the most popular
PRNG in use today. Additionally, the xorshift-128-plus is
fast, requires minimal state, and has a period many orders
of magnitude larger than required in most simulations.

6.2 Parallel Performance
Our simulator is designed to exploit the inherently dis-

tributed nature of the problem. Each simulated node de-
pends only on having current knowledge of its neighbors.
Simulation run-time is expected to scale linearly with the
number of vertices in the social graph for a fixed value of
davg. To see why this is true, consider the extreme case
n = k, where all edges cross partition boundaries. Then
for a given content event, the node must process d incoming
messages, perform the update reading from d slave repli-
cas, and broadcast d outgoing messages. Each process will
need to remain in near lockstep, so the entire simulation
will progress at the rate of the slowest node (with highest
degree). Synchronization overhead in a partition is bounded
by the number of partition-crossing edges, while event pro-
cessing time is bounded by the degree of the node.

The key to simulation performance will be good partition-
ing of the vertices.

An optimal partitioning minimizes the number of edges
between processes and the number of slave replicas that need
to be maintained. The upper bound on the number of cross-
ing edges for a 2-cut is nd

2
. As the slope of the distribution

increases, efficient partitioning is expected to become more
likely.

Inefficient partitioning results in higher memory usage
and higher communication overhead when cache updates are
broadcast. Provided n � davg, performance should scale
well if k is increased proportionally. As either k or d ap-
proach n, message overhead will become large.

7. FUTURE DIRECTIONS
The path to a working simulation is clear in most respects.

It is still necessary to identify a good partitioning algorithm
for each graph model. The implementation is expected to
be complete in time to present preliminary results in May.

8. REFERENCES
[1] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. Zhang,

M. Varvello, and M. Steiner. Measurement study of
netflix, hulu, and a tale of three cdns. IEEE/ACM
Transactions on Networking, 23(6):1984–1997, Dec
2015.

[2] J. Armstrong. Erlang. Communications of the ACM,
53(9):68, 2010.

[3] A. Barabási and R. Albert. Statistical mechanics of
complex networks. Reviews of Modern Physics,
74(January):48–94, 2002.

[4] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. Designing Privacy Enhancing
Technologies., pages 46–66, 2001.

[6] F. Comellas, G. Fertin, and A. Raspaud. Recursive
graphs with small-world scale-free properties. Physical
Review E - Statistical, Nonlinear, and Soft Matter
Physics, 69(3 2):2–5, 2004.

[7] M. Duggan and A. Smith. Social media update 2013.
Pew Internet and American Life Project, 2013.

[8] P. Erdös and A. Rényi. On random graphs.
Publicationes Mathematicae, 6:290–297, 1959.

[9] P. Erdos and A. Renyi. The evolution of random
graphs. Publ. Math. Inst. Hungar. Acad. Sci, 5(1):17,
1961.

[10] M. Laterman. NetFlix and Twitch Traffic
Characterization. Master’s thesis, University of
Calgary, 2015.

[11] P. L’Ecuyer and R. Simard. TestU01: A c Library for
empirical testing of random number generators. ACM
Transactions on Mathematical Software, 33(4), 2007.

[12] Q. Telesford, K. Joyce, S. Hayasaka, J. Burdette, and
P. Laurienti. The Ubiquity of Small-World Networks.
Brain Connectivity, 1(5):367–375, Dec. 2011.

[13] D. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–2, 1998.

82

