
Maria Hybinette, University of Georgia 1

Transparent and Adaptive Computational
Block Caching for Multi-Agent-based

Simulation on a PDES Core

Yin Xiong, Maria Hybinette, Eileen Kraemer

Computer Science Department
The University of Georgia

Maria Hybinette, University of Georgia 2

Target Applications: Variable
Computation Period

● Problem: Inefficiencies in Agent Based Simulations:
Redundant computations

● Observations:
» Computations Repeat

– Cyclic systems
» Expensive computations: Planning algorithms

(e.g., A* deliberates for 10 ms - 1,000 ms on a 2
GHz Pentium).

» Classic caching: Hide disk access cost: KNN
● Main Goal:

Increase efficiency by reusing computation

Maria Hybinette, University of Georgia 3

General Approach

● Cache computations and re-use when they repeat
instead of re-compute (Function Caching).

T
im

e

Input Transformation Output
Maria Hybinette, University of Georgia 4

Factors Affecting Benefit of
Caching

● Cache size
● Cost of consulting & updating the cache
● Execution time of the computation
● Probability of a hit: Hit rate

E(Costuse_cache) =
hit_rate * Costlookup_hit
+ (1 - hit_rate) * (Costlookup_miss + Costcomputation+ Costinsert)

Effective Time

Maria Hybinette, University of Georgia 5

Caching is
Not Always a Good Idea

E(Costuse_cache) =
hit_rate * Costlookup_hit

+ (1 - hit_rate) * (Costlookup_miss + Costcomputation+ Costinsert)

● Low hit rate
● Very fast computations (e.g., many PDES computations

).
● Only when Costuse_cache < Costcomputation is caching

worthwhile

Maria Hybinette, University of Georgia 6

How Much Speedup is Possible?

Neglecting cache warm up and fixed costs

Expected Speedup = Costcomputation / Costuse_cache

Upper bound (hit_rate = 1)
= Costcomputation / Costlookup

In our experiments Costcomputation / Costlookup = ~1- ~10

1.68 ms (experimental threshold when it is worthwhile) - 16 ms

Maria Hybinette, University of Georgia 7

On the Computational Granularity of
Agent Based Computations.

Observations:
● Many agent based systems assume a time step of 33 msec (video

output frequency) e.g., Player/Stage [Gerkey et. al 2005].
● Typically ‘thinking’ time is computationally intensive

» Example: A* [Hart et. al. 1968], a classic (and well used) planning
algorithm - overhead ranges between 10 msec – 1,000 ms on a 2 GHz
Pentium) [Balch 2008].

» Lees et al. 2004 use a 10 msec deliberation delay in their experiments
(to emulate a planning period).

● Other researchers report similar overhead, e.g., 80% of an agents
time step was spent on thinking (time step = 1 sec) [Uhrmacher
2000].

Maria Hybinette, University of Georgia 8

Adaptive Caching

● General Observation: Independent of the particular
deliberating / planning algorithm, the expected length
of the computations in ABSs are variable in time.

● Solution: Use adaptive caching –
» for lengthy computation avoid re-computation by using a

cache (e.g., deliberative agents).
» for short or finer computations (e.g., fast reactive agents)

avoid caching computations.
» for medium computations: reactive ‘schemas’ that are

amenable to caching –manipulating sensor information
across ‘motor schemas’ e.g., an agent reacts to a stimulus in
different schemes.

– Input may be ‘nondeterministic’ initially – but the same input is
analyzed many times across motor schemas/

Maria Hybinette, University of Georgia 9

Summary of Key Ideas

● Only cache when it is worthwhile avoid
caching when it is not.

» Avoid
» Cluster

● Use an on-line pre-processor to monitor
computations.

● Maximize transparency.

Maria Hybinette, University of Georgia 10

Problems:

● Problems: What about a large input space,
random input variables, and time stamps (do
not repeat often)?

● Solution: Enable breaking the computations
into smaller units or blocks, we call it Block
Caching.

Maria Hybinette, University of Georgia 11

Previous vs. New Approach

● Earlier Approach: Exploited the PDES
paradigm (messages (intercepted) at the
logical process level) [Chugh & Hybinette
2004]. Simulation dependent.

● New Approach: Simulation Independency.
Maria Hybinette, University of Georgia 12

Overview of
Adaptive Caching

Execution time:
1. Warm-up execution phase, for each function:

a) Monitor: hit rate, query time, function run time
b) Threshold: Determine utility of using cache

2. Main execution phase, for each function:
a) Use cache (or not) depending on results from 1
b) Continue to randomly sample: hit rate, query time,

function run time
» Revise decision if conditions change

Maria Hybinette, University of Georgia 13

Cacheability

● Methods (do not need to be annotated)
● Blocks (need to be annotated)

Maria Hybinette, University of Georgia 14

Example Block

int a;
int b;
methodA(a, b, c, d) ;
if (c > d)
doSomething(c) ;

else
doSomethingElse(d);

Maria Hybinette, University of Georgia 15

Example

// beginComputationBlock dummy2 **
int a;
int b;
methodA(a, b, c, d) ;
if (c > d)
doSomething(c) ;

else
doSomethingElse(d);

// endComputationBlock dummy2

** Annotation only needed for blocks not methods

Maria Hybinette, University of Georgia 16

Example Configuration Stream

begin:dummy1
packageName: app
className: JPHold
return: length=double, point=int
Parameters: int a, double b
StateVariables: int height, int age
cachingFlag: on
end:dummy1

Maria Hybinette, University of Georgia 17

On-the-Fly Configuration

● Preprocessor reads configuration file (or stream snippet)
● Rewrites (re-generates) & recompiles effected code /

objects on-the-fly
● Regenerated code enabled in middleware

Maria Hybinette, University of Georgia 18

Statistical Manager

Preprocesses: Analyzes blocks:
» runs each block with a range of input

parameters.
» Determines threshold when it is worthwhile

to cache or not.
» Whether blocks are adaptive or not (soft

(adaptive), hard (not adaptive).

Maria Hybinette, University of Georgia 19

Experimental Platform

● Tested Caching in the SASSY framework–
Scalable Agent Simulation SYstem – Java
Based Optimistic Simulation System with an
optional Agent Based API.

● Benchmark: JPHold (with added ‘thinking’
computation, fibonacci – to vary the
computational load and assess the cost of
accessing cache).

● 10 Machines
● 40 PEs
● 1000 LPs

Maria Hybinette, University of Georgia 20

Cache-on vs Cache-off (assess
the threshold)

● 16 ms
● 6.5 ms
● 1.68 ms

● 1.5 ms

Maria Hybinette, University of Georgia 21

Adaptive (soft) Caching

● Max:
2.64 ms

Maria Hybinette, University of Georgia 22

Future Work

● Nested Functions or Blocks
● Various planning algorithm and input

parameters.
● Mix reactive and deliberative agents.
● Tile World.
● Ant / Bee Models (motor schemas given a

certain input share information).
● Lung Cancer & Liver Cell Cancer Models

(Deisboeck & Wang, Harvard-MIT) for clinical
predictions.

Maria Hybinette, University of Georgia 23

Related Work

● Function Caching: Replace application level function calls with
cache queries:

» Introduced by: Bellman (1957); Michie (1968)
» Incremental computations:

– Pugh & Teitelbaum (1989), Liu & Teitelbaum (1995)
» Sequential discrete event simulation:

– Staged Simulation: Walsh & Sirer (2003) function caching + currying
(break up computations), re-ordering and pre-computations) for network
simulations (framework).

● Simulation Cloning & Branching & Updateable Simulations:
» Hybinette & Fujimoto (1998); Chen & Turner, et al (2005); Strabburger (2000),

Peschlow, Martini & Liu (2008)
Updateable Simulations (Ferenci et al 2002)

● Related Optimization Techniques
» Lazy Re-Evaluation: West (1988)

● LP Caching (Chugh & Hybinette)

Maria Hybinette, University of Georgia 24

Summary of Key Ideas

● Only cache when it is worthwhile avoid
caching when it is not.

● Use an on-line pre-processor to monitor
computations.

● Maximize transparency.

