

Enhancing Server Availability and Security Through
 Failure-Oblivious Computing

Enhancing Server Availability and Security Through
 Failure-Oblivious Computing

Enhancing Server Availability and Security Through
 Failure-Oblivious ComputingEnhancing Server Availability and Security Through

 Failure-Oblivious Computing

Michael Contreras

Enhancing Server Availability and Security Through
Failure-Oblivious Computing

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy,Tudor Leu, and
William S. Beebee, Jr.

Student
presentation

Problem

● Memory Errors and Memory Corruption

● Buffer Overflow

● Out of Bounds Array Accesses

● Invalid Pointer Accesses

● Importance

● Exploits

● Program Termination / Service Availability Lost

● System Robustness

Problem

● Memory Errors can cause the computation to:

● Terminate with addressing exception

● Become stuck in an infinite loop

● Change flow of control

● Corrupt data structures that must be consistent

● Produce unacceptable results

Approach

● Failure-Oblivious Computing

● Mechanism to protect against memory errors and
corruption

– Ignore invalid writes

– Manufacture values for invalid reads

– Program does not know it has made an error – Oblivious

– Program continues execution

● Implemented at the compiler level

– Inserts dynamic boundary checks

– Inserts continuation code

Evaluation

● Assumptions

● Tests limited to buffer overrun attacks

● Servers tested have short error propagation
distances

● Weaknesses

● Unanticipated Execution Paths

– Manufactured results can lead the program down an
unexpected path leading to incorrect results

● Bystander Effect

– Create dependency on the mechanism and overall
production quality is decreased

Evaluation

● Strengths

● Availability

– Program remains available after failure occurs

● Security

– Program is invulnerable to common memory related
attacks

● Minimal Adoption Cost

– Implemented by the compiler – No code modification
necessary

● Reduced Administration Overhead

– Patches for the sole purpose of fixing memory related
security holes can be safely ignored

Evaluation

● Testing

● Evaluated impact on several widely used open-
source servers with known memory errors

– Pine, Apache, Sendmail, MC, Mutt

● Three versions of each program

– Standard Compilation

– CRED Compilation

– Failure-Oblivious Compilation

● Criteria

– Security and Resilience

– Performance

– Stability

Evaluation
● Pine

● Error

– Escaping “From” field into heap-allocated buffer

● Security and Resilience

– Standard version results in a Segmentation Fault, CRED version
catches the error and terminates program

– Both leave pine unusable as the error occurs during initialization

– Failure-Oblivious causes field to be truncated
● Different execution path correctly parses field allowing successful

execution

● Stability

– 25 messages a day interleaved with malicious input

– Input of 100,000 messages

● Performance

Evaluation
● Apache

● Error

– URL re-write match pattern offsets saved into static buffer

● Security and Resilience

– Standard version results in Segmentation Violation, CRED
catches error and terminates

– Apache starts a new child process to continue serving requests

– Failure-Oblivious ignores the invalid writes, preventing the
attack and process termination

● Stability

– 400 requests a day in addition to tens of thousands of requests
from local box, interleaved with malicious input

● Performance

Evaluation
● Sendmail

● Error

– Translation of address into static buffer

● Security and Resilience

– Standard version results in Segmentation Violation, CRED
catches error and terminates

– CRED version completely disabled by another memory error
during initialization

– Failure-Oblivious version ignores error, continues execution

● Stability

– Used to send hundreds of thousands of messages, interleaved
with malicious input

● Performance

Evaluation
● Midnight Commander

● Error

– Accessing uninitialized buffer when parsing links in tgz files

● Security and Resilience

– Standard version results in Segmentation Violation, CRED
catches the error and terminates

– Failure-Oblivious allows program to continue and display results

● Stability

– Daily use with interleaved accesses of problematic files

● Performance

Evaluation
● Mutt

● Error

– Converting from UTF-8 to UTF-7 into heap-allocated buffer

● Security and Resilience

– Standard version results in Segmentation Fault, CRED version
catches the error and terminates

– Failure-Oblivious version effectively truncates the name

● Stability

– Daily use interleaved with malicious input

– Processed 100,000 emails successfully

● Performance

Related Work

● CRED

● Safe-C compiler

– Terminates the program with an error message at first
memory error

– Similar to safe languages such as ML and Java which
throw exceptions

● Acceptability-Oriented Computing

● Acceptability Properties

– Must hold for program execution to remain acceptable

● Acceptability Enforcement

– Built by programmer to ensure Acceptability Properties
hold

Related Work

● Variants and Extensions

● Boundless Memory Blocks

– Insert code to save invalid writes into table to retrieve
later

● Redirected invalid access back at appropriate offset

● Transactional Function Termination

● Dynamically detect Buffer Overflows

– Terminate Execution of function immediately.

● Static Analysis

● Program Annotations

● Heuristics

Related Work

● Buffer-Overrun Detection Tools

● StackGuard

● StackShield

● Rebooting

● Manual Error Detection and Recovery

● Failure Recovery Blocks and Exception Handlers

– Programmer anticipates error, provides recovery strategy

● Data Structure Repair

– Programmer provides data structure consistency
specification

Result

● Failure-Oblivious Computation

● Enhances availability, resilience, and security

– Error does not corrupt address space and data structures
of the computation

– Continued execution through error

– In many cases, converts unexpected or malicious input
into a predetermined error case

● Possible solution to one of the main goals of
computer science

– Create robust, resilient software that handles unexpected
errors

