
Maria Hybinette, UGA Maria Hybinette, UGA

Operating Systems

RPC: Processes

Maria Hybinette, UGA Maria Hybinette, UGA

Chapter 3: Processes: Outline
• Process Concept: views of a process
• Process Scheduling
• Operations on Processes
• Cooperating Processes
• Inter Process Communication (IPC)

–  Local
• Pipe
• Shared Memory
• Messages (Queues)

–  Remote
• Lower Level: Sockets, MPI, Myrinet
• Higher Level: RPC, RMI, WebServices, CORBA,

Maria Hybinette, UGA Maria Hybinette, UGA

Client-Server Remote Machine
Communication Mechanisms

• Socket communication (Possible bonus project)
• Remote Procedure Calls (Project due next
week).

• Remote Method Invocation (Briefly, on your own)

Maria Hybinette, UGA Maria Hybinette, UGA

Remote Procedure Calls (RPC)
• Inter-machine process to process

communication
–  (abstract) procedure calls across a network:
–  FunctionCall [address] [parameters]
–  Address – machine [& port]
–  rusers, rstat, rlogin, rup => daemons at ports

• Registered library calls (port mapper)
• Many are now disabled due to security concerns (here)

–  Hides message passing I/O from programmer

• Looks (almost) like a procedure call -- but client
invokes a procedure on a server.
–  Pass arguments – get results
–  Fits into high-level programming language constructs
–  Well understood

Maria Hybinette, UGA Maria Hybinette, UGA

Address:		IP_number[:Port_number]	

• Iden3fies	the	ul#mate	des#na#on		

• IP	addresses	iden3fy	hosts		
–  127.0.0.1,	172.20.10.15,	128.192.101.135	
–  {ingrid:509}	nslookup	nike.cs.uga.edu	
–  ifconfig	

• Host	has	many	applica3ons		à	
ports	

• Ports	(16-bit	iden3fier)	1-65,535	
(about	2000	are	reserved).		

Well-known 1-1,023
Registered 1,024-49,151
Dynamic 49,152-65,535

7	

Echo	
80	

WWW	

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

25	

Mail	(SMTP)	22	

Secure	shell/file(ssh,	sLp,	scp),		

rlogin	
513	

Maria Hybinette, UGA Maria Hybinette, UGA

rlogin	[nike.cs.uga.edu:513]	

• Problems:	Passwords	
transmiMed	unencrypted.	

• .rlogin/.rhosts	files	
–  Allow	logins	without	a	password	

Maria Hybinette, UGA Maria Hybinette, UGA

RPC	Calls	:	Portmapper	

• RPC	applica3ons	picks	any	available	port	then	
registers	with	a	portmapper	daemon	

Maria Hybinette, UGA Maria Hybinette, UGA

Remote Procedure Calls (RPC)

• RPC High level view:
– Calling process attempt to call a �remote�

routine on server
– Calling process (client) is suspended
– Parameters are passed across network to

a process server
– Server executes procedure
– Return results across network
– Calling process resumes

Maria Hybinette, UGA Maria Hybinette, UGA

Remote Procedure Calls

• Usually built on top sockets (UDP)

• stubs – client-side proxy for the actual procedure
on the server.

• The client-side stub locates the server and
marshalls the parameters.

• The server-side stub receives this message,
unpacks the ‘marshalled’ parameters, and then
performs the procedure call on the server.

Maria Hybinette, UGA Maria Hybinette, UGA

Client/Server Model Using RPC

•  The server stub uses the message to generate a local procedure call to the
server

•  If the local procedure call returns a value, the server stub builds a message
and sends it to the client stub, which receives it and returns the result(s) to the
client

client

call

return

server

call

return

kernel kernel

network

client
stub

 unpack
results

XDR unpack
parameters

pack
results

server
stub

Each RPC
invocation by a
client process calls
a client stub,
which builds a
message and
sends it to a server
stub

XDR pack
parameters

Association 5 tuple {protocol, local-address, local-process, foreign-address, foreign-process}

Maria Hybinette, UGA Maria Hybinette, UGA

RPC Association Between
Machines

• Association between remote and local host
–  5 tuple

•  {protocol, local-address, local-process, foreign-address, foreign-
process}

• Protocol : transport protocol typically TCP or UDP, needs to be
common between hosts

• Local/foreign address: Typically the IP address
• Local/foreign process: Typically the port number (not PID)

Maria Hybinette, UGA Maria Hybinette, UGA

Binding

• RPC application is packed into a program
and is assigned an identifier (Port)

• Portmap : allocate port numbers for RPC
programs

Portmapper

Server Process

Registration data flow

Client Process

Procedure Call data flow

Maria Hybinette, UGA Maria Hybinette, UGA

Execution of RPC

Maria Hybinette, UGA Maria Hybinette, UGA

Remote Procedure Calls

• Machine independent representation of data:
–  Differ if most [or least] significant byte is in the

high memory address
–  External data representation (XDR)

• Allows more complex representation that
goes beyond:

– htonl() routines.
• Fixed or dynamic address binding

–  Dynamic: Matchmaker daemon at a fixed
address (given name of RPC returns port of
requested daemon)

Maria Hybinette, UGA Maria Hybinette, UGA

Hide	Complexity	
Program	to	generate	code	

• rpcgen generates C code from a file written in
�RPC language��avoids programmer to worry about networking
details

–  Stylistics – end with an X.
 <name>.x, e.g., avg.x
–  rpcgen avg.x

•  Leaves	the	programmer	with	3	tasks:	

–  avg.x	
–  Create Client routine (main program on local host), then run it.

•  ravg <host> <parameters>
•  ravg localhost 1 2 3 4
•  ravg vcf4 1 2 3 4
•  ravg vcf4 $RANDOM $RANDOM

–  Create Server program (e.g., actual code to compute something, e.g., an average), then run
it:

•  avg_proc &
•  rpcinfo –p localhost

http://www.linuxjournal.com/article/2204?page=0,1
https://docs.oracle.com/cd/E19683-01/816-1435/rpcgenpguide-21470/index.html

Maria Hybinette, UGA Maria Hybinette, UGA

Tutorial (linux journal)
• rpcgen generates C code from a file written in
�RPC language���<name>. x, e.g., avg.x

• (Create these) Application programmer (you) write

code for:
–  Client routine (main program)

• ravg <host> <parameters>
–  Server program (e.g., actual code to compute average)

• avg_proc.c

Default output rpcgen Syntax Example

Header file <name>.h avg.h

XDR data type translate
routines (from type in .h file)

<name>_xdr.c avg._xdr.c

stub program for server <name>_svc.c avg_svc.c

stub program for client <name>_clnt.c avg_clnt.c

Maria Hybinette, UGA Maria Hybinette, UGA

Application Routines of Interest

• Server Routine:
–  average_1_svc (input_data,):

• A avg_proc.c routine that is called from the server stub that was
generated by rpcgen

• Client Routine:
–  average_prog_1()

• Local routine that parse parameter and that ultimately calls a �local�
average_1 routine from generated code in avg_clnt.c that packs
parameters (also uses routines in avg_xdr.c and sends code to
server.

Maria Hybinette, UGA Maria Hybinette, UGA

avg.x : RPC language file
const MAXAVGSIZE = 200;
struct input_data
 {
 double input_data<200>;
 };

typedef struct input_data input_data;

program AVERAGEPROG {
 version AVERAGEVERS {
 double AVERAGE(input_data) = 1;
 } = 1; /* version */
} = 22855; /* �port number� */

ravg.c : Client Program(1)
/* client code - calls client stub, xdr client, xdr xerver, server stub, server routine */
#include "avg.h" /* header file generated by rpcgen */
#include <stdlib.h>

/* local routine client prototype can be whatever you want */
void averageprog_1(char* host, int argc, char *argv[])
{
 CLIENT *clnt; /* client handle, rpc.h */
 double f, :*result_1, *dp,
 char *endptr;
 int i;
 input_data average_1_arg; /* input_data rpc struct */

 average_1_arg.input_data.input_data_val = (double*) malloc(MAXAVGSIZE* sizeof(double));

 dp = average_1_arg.input_data.input_data_val; /* ptr to beginning of data */
 average_1_arg.input_data.input_data_len = argc - 2; /* set number of items */

 for(i = 1; i <= (argc - 2); i++)
 { /* str to d ASCII string to floating point nubmer */
 f = strtod(argv[i+1], &endptr);
 printf("value = %e\n", f);
 *dp = f;
 dp++;
 }

ravg.c : Client Program (2)
 /* clnt_create(host, program, version, protocol)
 * generic client create routine from rpc library
 * program = AVERAGEPROG is the number 22855
 * version = AVERAGEVERS is 1
 * protocol = transfer protocol */
 clnt = clnt_create(host, AVERAGEPROG, AVERAGEVERS, "udp");
 if (clnt == NULL)
 { clnt_pcreateerror(host); /* rpc error library */
 exit(1);
 }
 /* now call average routine 'just' like a local routine, but this will now go over

network
 * average_1 is definined in the client stub in avg_clnt.c that was generated by rpcgen
 * send in ptr to the parameters or args in first field, and client handle in second
 * field (created in clnt_create) average_1 ultimately calls clnt_call() macro see
 * man rpc, then calls the remote routine associated with the client handle
 * so AVERAGEPROG, VERSION */
 result_1 = average_1(&average_1_arg, clnt);
 if (result_1 == NULL)
 {
 clnt_perror(clnt, "call failed:");
 }

 clnt_destroy(clnt);
 printf("average = %e\n",*result_1);
} /* end average_1 prodedure */ /* next slide main() */

ravg.c : Client Program (3)
int main(int argc, char* argv[])
{
 char *host;

 /* check correct syntax */
 if(argc < 3)
 {
 printf("usage: %s server_host value ...\n", argv[0]);
 exit(1);
 }

 if(argc > MAXAVGSIZE + 2)
 {
 printf("Two many input values\n");
 exit(2);
 }

 /* host name is in first parameter (after program name) */
 host = argv[1];
 averageprog_1(host, argc, argv);
}

avg_proc.c : Server Program (1)
#include <rpc/rpc.h>
#include "avg.h� /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */
static double sum_avg;

/* routine notice the _1 the version number and notice the client handle, not used here,

but
 * still needs to be a parameter */
double * average_1(input_data *input, CLIENT *client)
 {
 /* input is parameters were marshaled by generated routine */
 /* a pointer to a double, set to beginning of data array */
 double *dp = input->input_data.input_data_val;
 u_int i;
 sum_avg = 0;
 for(i = 1; i <= input->input_data.input_data_len; i++) /* iterate over input */
 {
 sum_avg = sum_avg + *dp; /* add what ptrs points to ('*' gets content) */
 dp++;
 }

 sum_avg = sum_avg / input->input_data.input_data_len;
 return(&sum_avg);
} /* end average_1 */ /* next is routine called from server stub generated by rpcgen */

avg_proc.c : Server Program
(1) #include <rpc/rpc.h>

#include "avg.h� /* avg.h generated rpcgen */
#include <stdio.h>

/* run locally on 'server' called by a remote client. */
static double sum_avg;

/* routine notice the _1 the version number and notice the client handle, not used here,

but
 * still needs to be a parameter */
double * average_1(input_data *input, CLIENT *client)
 {
 /* input is parameters were marshaled by generated routine */
 /* a pointer to a double, set to beginning of data array */
 double *dp = input->input_data.input_data_val;
 u_int i;
 sum_avg = 0;
 for(i = 1; i <= input->input_data.input_data_len; i++) /* iterate over input */
 {
 sum_avg = sum_avg + *dp; /* add what ptrs points to ('*' gets content) */
 dp++;
 }

 sum_avg = sum_avg / input->input_data.input_data_len;
 return(&sum_avg);
} /* end average_1 */ /* next is routine called from server stub generated by rpcgen */

avg_proc.c : Server Program
(2)

/*
 * server stub 'average_1_svc function handle called in avg_svc that was
 * generated by rpcgen
 * FYI:
 * result = (*local)((char *)&argument, rqstp);
 * where local is (char *(*)(char *, struct svc_req *)) average_1_svc;
 */

double * average_1_svc(input_data *input, struct svc_req *svc)
 {
 CLIENT *client;
 return(average_1(input, client));
 }

Maria Hybinette, UGA Maria Hybinette, UGA

Compilation on client

rpcgen avg.x # generates:
 # avg_clnt.c, avg_svc.c, avg_xdr.c, avg.h
gcc ravg.c –c # -c generates .o files
gcc avg_clnt.c –c
gcc avg_xdr.c –c
gcc –c ravg ravg.o avg_clnt.o avg_xdr.o -lnsl

Maria Hybinette, UGA Maria Hybinette, UGA

Compilation on server

rpcgen avg.x # generates:
 # avg_clnt.c, avg_svc.c, avg_xdr.c, avg.h
gcc avg_proc.c –c
gcc avg_svc.c –c
gcc –o avg_svc avg_proc.o avg_svc.o avg_xdr.o -lnsl

Maria Hybinette, UGA Maria Hybinette, UGA

~/.rhost

• Directly under your home directory on
each machine (client and server) create a
file named:
 ~/.rhost
• Add two or more lines in the
format:
 <machine_name> <login name>

• For end part of my
 file:

Maria Hybinette, UGA Maria Hybinette, UGA

Running:
• Start	server	avg_svc	on	node	4	on	nike	to	sit	and	wait	
for	clients	to	connect.	

• Run	client	ravg	on	node	5	on	nike	and	send	average	
request:	

Maria Hybinette, UGA Maria Hybinette, UGA

Resources
1.  http://users.cs.cf.ac.uk/Dave.Marshall/C/node33.html
2.  http://users.cs.cf.ac.uk/Dave.Marshall/C/node34.html

alternate:
https://docs.oracle.com/cd/E19683-01/816-1435/rpcgenpguide-21470/
index.html

3.  http://users.cs.cf.ac.uk/Dave.Marshall/C/node27.html
4.  http://www.linuxjournal.com/article/2204?page=0,2
5.  http://beej.us/guide/bgipc/html/single/bgipc.html

Nice tutorials on RPC and shared Memory:
(1)  Tutorial on RPC
(2)  RGPGen (and 2nd link similar to Dave’s tutorial).
(3)  Shared Memory
(4)  Linux journal tutorial that uses avg.x
(5)  Beej’s Guide to PIC
 Maria Hybinette, UGA Maria Hybinette, UGA

Remote Method Invocation

• Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

• RMI allows a Java program on one machine to invoke a
method on a remote object.

• Possible to Pass Objects(remote, local) as parameters to
remote methods (via serialization).

See Textbook i.e., reading assignment

Maria Hybinette, UGA Maria Hybinette, UGA

Marshalling Parameters

• Client invoke method: someMethod on a remote
object Server

