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Chapter:		Threads:	Ques/ons	

• How	is	a	thread	different	from	a	process?	

• Why	are	threads	useful?	

• How	can	POSIX	threads	be	useful?	
–  (Portable	Opera/ng	System	Interface)	API	–	enabling	portability	

between	UNIX(es)	and	other	opera/ng	systems.	

• What	are	user-level	and	kernel-level	threads?	

• What	are	problems		with	threads?	
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Review:	What	is	a	Process?	

A	thread	have		
	(1)	an	execu/on	stream	and			
	(2)	a	context	

•  Execu/on	stream	
–  stream	of	instruc/ons	
–  sequen/al	sequence	of	instruc/ons	
–  “thread”	of	control	

•  Process	‘context’	(seen	picture	of	this	already)	
–  Everything	needed	to	run	(restart)	the	process	…	
–  Registers	

• program	counter,	stack	pointer,	general	purpose…	

–  Address	space	
• Everything	the	process	can	access	in	memory	
• Heap,	stack,	code	

A process is a program in execution… 

Running on a 
thread 

code data files 

registers stack 
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Review:	What	Makes	up	a	Process?	

• Program	code	(text)	

• Data		
–  global	variables	
–  heap	(dynamically	allocated	memory)	

• Process	stack	
–  func/on	parameters	

–  return	addresses	
–  local	variables	and	func/ons	

• OS	Resources	
• Registers		

–  program		counter,	stack	pointer	
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Issues	with	Processes()?	

• How	do	processes	(independent	memory	
space)	communicate?	
–  Not	really	that	simple	(seen	it,	tried	it	–	and	you	have	
too):	

• Message	passing	(send	and	receive)	

• Shared	Memory:	Set	up	a	shared	memory	area	(easier)?	

• Problems:	
–  Overhead:	Both	methods	add	some	kernel	overhead	
lowering	(poten/al)	performance	

–  Complicated:	IPC	is	not	really	that	“natural”	
• increases	the	complexity	of	your	code	

main() 
   { 
   i = 55; 
   fork(); 
   // what is i 
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Processes	versus	Threads	
Thread	(s):	
• An	execu/on	stream	that	shares	an	address	space		

–  Overcome	data	flow	over	a	file	descriptor		
–  Overcome	se_ng	up	`/ghter	memory’	space	

• Mul/ple	threads	within	a	single	process	
Examples:		
• Two	processes	(copies	of	each	other)	examining	memory	address	
0xffe84264	see	different	values	(i.e.,	different	contents)	
–  same	frame	of	reference	

• Two	threads	examining	memory	address	0xffe84264	see	same		
value	(i.e.,	same	contents)	

• Examples:	
•   ctest/i-process.c	
•  			ctest/i-threading.c, 

main() 
   { 
   i = 55; 
   fork(); 
   // what is i 

 thread: shares i same memory storage 
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#include <stdio.h>   // # printf 
#include <unistd.h>  // # fork 
#include <stdlib.h>  // # exit 
 
pid_t childpid = -1; 
int i; 
 
int main( int argc, char *argv[] ) 
{ 
 int i = -55; 
 
 if( (childpid = fork()) == 0 ) 
        { 
        fflush(stdout); 
        printf("[1. child  (%10d)]: i = %3d address = %p\n", childpid, i, (void*) &i ); 
        sleep(1); 
        i = 11; 
        printf("[2. child  (%10d)]: i = %3d address = %p\n", childpid, i, (void*) &i ); 
        exit(0); 
        } 
  else 
        { 
        // try to make sure parent is executed after child 'changes' i. 
        sleep(10); 
        printf("[b. parent (%10d)]: i = %3d address = %p\n", childpid, i, (void *) &i ); 
        } 
  wait( (int *) 0 ); 
 
  printf("[w. parent (%10d)]: i = %3d address = %p\n", childpid, i, (void *) &i ); 
} 
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What	Makes	up	a	Thread?	

●  Own stack (Is it necessary?) 
●  Own registers (Is it 

necessary?) 
»  Own program counter 
»  Own stack pointer 

●  State (running, sleeping) 
●  Signal mask 
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Single	and	Mul/threaded	Process	
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Why	Support	Threads?	

• Divide	large	task	across	several	coopera6ve	threads	
• Mul/-threaded	task	has	many	performance	benefits	

●  Examples: 
» Web Server: create threads to: 

–  Get network message from client 
–  Get URL data from disk 
–  Compose response 
–  Send a response   

» Word processor: create threads to: 
–  Display graphics 
–  Read keystrokes from users  
–  Perform spelling and grammar checking in 

background 
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Why	Support	Threads?	

• Divide	large	task	across	several	coopera/ve	threads	
• Mul6-threaded	task	has	many	performance	benefits	

●  Adapt to slow devices 
»  One thread waits for device while other threads computes 

●  Defer work 
»  One thread performs non-critical work in the background, 

when idle 
●  Parallelism 

»  Each thread runs simultaneously on a multiprocessor 

Maria Hybinette, UGA Maria Hybinette, UGA 

Why	Threads	instead	of	a	Processes?	

• Advantages	of	Threads:	
–  Thread	opera/ons	cheaper	than	corresponding	process	

opera/ons	
• In	terms	of:	Crea/on,	termina/on,	(context)	switching	

–  IPC	cheap	through	shared	memory	
• No	need	to	invoke	kernel	to	communicate	between	threads	

• Disadvantages	of	Threads:	
–  True	Concurrent	programming	is	a	challenge	(what	does	this	

mean?	True	concurrency?)	

–  Synchroniza/on	between	threads	needed	to	use	shared	
variables	(more	on	this	later	–	this	is	HARD).	

–  Parallelism	vs.	Concurrency	
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Why	are	Threads	Challenging?		
pthread1 Example:	Output?	

main()
{

pthread_t t1, t2;
char *msg1 = “Thread 1”; char *msg2 = “Thread 2”;
int ret1, ret2;
ret1 = pthread_create( &t1, NULL, print_fn, (void *)msg1 );
ret2 = pthread_create( &t2, NULL, print_fn, (void *)msg2 );
if( ret1 || ret2 ) 
{

fprintf(stderr, “ERROR: pthread_created failed.\n”);
exit(1);

}
pthread_join( t1, NULL );
pthread_join( t2, NULL );
printf( “Thread 1 and thread 2 complete.\n” );

}
void print_fn(void *ptr)
{ 

printf(“%s\n”, (char *)ptr);
}

gcc pthread1.c -o pthread1 -lpthread 
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Why	are	Threads	Challenging?	

• Example:	Transfer	$50.00	between	two	
accounts	and	output	the	total	balance	of	the	
accounts:	

• Tasks:	

M = Balance in Maria’s account (begin $100) 

T = Balance in Tucker’s account (begin $50) 

B = Total balance 

T = 50, M = 100 
M = M - $50.00 
T = T + $50.00 
B = M + T 

Idea: on distributing 
the  tasks: 
(1)  One thread debits 

and credits 
(2)   The other Totals 
Does that work? 
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Why	are	Threads	Challenging?	

• Tasks:	 T = 50, M = 100 
M = M - $50.00 
T = T + $50.00 
B = M + T 

M = M - $50.00 
T = T + $50.00 
B = M + T 

M = M - $50.00 
B = M + T 
T = T + $50.00 

B = M + T 
M = M - $50.00 
T = T + $50.00 

One thread debits 
& credits 

One thread totals 

B = $150 B = $100 B = $150 
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Common	Programming	Models	

• Manager/worker	
–  Single	manager	handles	input	and	assigns	work	to	
the	worker	threads	

• Producer/consumer	
– Mul/ple	producer	threads	create	data	(or	work)	
that	is	handled	by	one	of	the	mul/ple	consumer	
threads		

• Pipeline	
–  Task	is	divided	into	series	of	subtasks,	each	of	
which	is	handled	in	series	by	a	different	thread	
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Thread	Support	

• Three	approaches	to	provide	thread	
support	
– User-level	threads	
– Kernel-level	threads	
– Hybrid	of	User-level	and	Kernel-level	threads	
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Latencies	

• Comparing	user-level	threads,	kernel	threads,	and	
processes		

•  Thread/Process	Crea/on	Cost:	Null	fork	
–  Evaluate	–with	Null	fork:		the	/me	to	create,	schedule,	execute,	and	complete	

the	en/ty	that	invokes	the	null	procedure		

•  Thread/Process	Synchroniza/on	Cost:		Signal-wait		
–  Evaluate	–	with	Signal-Wait:	the	/me	for	an	en/ty	to	signal	a	wai/ng	en/ty	and	

then	wait	on	a	condi/on	(overhead	of	synchroniza5on)	

Procedure call = 7 us 
Kernel Trap = 17 us User Level 

Threads 
Kernel Level 

Threads Processes 

Null fork 34 948 11,300 
Signal-wait 37 441 1,840 

30X,12X  
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User-Level	Threads	

• Many-to-one	thread	mapping	
–  Implemented	by	user-level	run/me	libraries		

• Create,	schedule,	synchronize	threads	at	user-
level,	state	in	user	level	space	

–  OS	is	not	aware	of	user-level	threads	
• OS	thinks	each	process	contains	only	a	single	
thread	of	control	

P P 

●  Advantages 
»  Does not require OS support; Portable 
»  Can tune scheduling policy to meet application (user level) 

demands 
»  Lower overhead thread operations since no system calls 

●  Disadvantages 
»  Cannot leverage multiprocessors (no true parallelism) 
»  Entire process blocks when one thread blocks 
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Blocked	UL	Threads:	Jacke/ng	

• Avoids	‘blocking’	on	system	calls	that	block	(e.g.,	I/O)	
•  Solu/on:	

–  Instead	of	calling	a	blocking	system	call	call	an	applica/on	level	I/O	jacket	
rou/ne	(a	nonblocking	call)	

–  Jacket	rou/ne	provides	code	that	determines	whether	I/O	device	is	busy	or	
available	(idle).	

–  Busy:	
• Thread	enters	the	ready	state	and	passes	control	to	another	thread	
• Control	returns	to	thread	it	retries	

–  Idle:	
• Thread	is	allowed	to	make	system	call.	
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Kernel-Level	Threads	

• One-to-one	thread	mapping	
–  OS	provides	each	user-level	thread	with	a	kernel	

thread	
–  Each	kernel	thread	scheduled	independently	
–  Thread	opera/ons	(crea/on,	scheduling,	

synchroniza/on)	performed	by	OS	

●  Advantages 
»  Each kernel-level thread can run in parallel on a 

multiprocessor 
»  When one thread blocks, other threads from process can 

be scheduled 

●  Disadvantages 
»  Higher overhead for thread operations 
»  OS must scale well with increasing number of threads 

P P 
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Two-Level	Model	

• one-one	&	(strict)	many-to-many	
–  OS	provides	each	user-level	thread	with	a	kernel	

thread	
–  Supports	both	bound	an	unbound	threads	

• Bound	threads	-	permanently	bound	to	a	single	kernel	
level	thread	

• Unbound	threads	may	move	to	other	kernel	threads	

●  Advantages 
»  Flexible, best of two worlds 

●  Disadvantages 
»  More complicated 

P P P 
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Hybrid	of	Kernel	&	User	-Level	Threads	

• m	-	n	thread	mapping	(many	to	many)	
–  Applica/on	creates	m	threads	

–  OS	provides	pool	of	n	kernel	threads	
–  Few	user-level	threads	mapped	to	each	kernel-level	

thread	

●  Advantages 
»  Can get best of user-level and kernel-level implementations 
»  Works well given many short-lived user threads mapped to 

constant-size pool 
●  Disadvantages 

»  Complicated… 
»  How to select mappings? 
»  How to determine the best number of kernel threads? 

–  User specified 
–  OS dynamically adjusts number depending on system load 

P P 
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Summary:	Thread	Models	

•  Kernel	Level:	Windows	95/98/NT/2000,	Solaris,	Linux	
• User	Level:	Mach,	C-threads,	Solaris	threads	
• Hybrids:	IRIX,	HP-UX,	True	64	UNIX,	Older	Solaris	models	
• API:	POSIX	P-threads		

–  	à	Na/ve	threading	interface	for	Linux	now	1:1	model	

P P P P P P 
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Design:		
Threading	Issues:	fork()	&	exec()	

• fork()	
–  Duplicate	all	threads?	
–  Duplicate	only	the	thread	that	performs	the	fork	

–  Resul/ng	new	process	is	single	threaded?	
–  ->	solu/on	provide	two	different	forks	(mfork)	

• exec()	
–  Replaces	the	process	-	including	all	threads?	
–  If	exec	is	aper	fork	then	replacing	all	threads	is	unnecessary.	
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Threading	Issues:	Cancella/on	

• Example	1:	User	pushes	top	buqon	on	a	web	
browsers	-	while	other	threads	are	images	(one	
thread	per	image).	
–  Asynchronous	Cancella/on:	Immediate	(OS	need	to	reclaim	resources)	

• Example	2:	Several	threads	concurrently	searches	
data	base	and	one	thread	finds	target	data.	
–  Deferred	Cancella/on:	Thread	terminates	it	self	when	no/ces	it	is	

scheduled	for	termina/on.	
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Threading	Issues:	Threads	and	Signals	

•  Problem:	To	which	thread	should	OS	deliver	signal?	
• Op/on	1:	Require	sender	to	specify	thread	ID	(instead	of	process	id)	

–  Sender	may	not	know	about	individual	threads	

• Op/on	2:	OS	picks	des/na/on	thread	
–  POSIX:	Each	thread	has	signal	mask	(disable	specified	signals)	
–  OS	delivers	signal	to	all	threads	without	signal	masked	
–  Applica/on	determines	which	thread	is	most	appropriate	for	handing	signal	

•  Synchronous	-	delivered	to	the	same	process	that	caused	the	signal	
• Asynchronous	-	event	is	external	to	running	process.	
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Other	Thread	Issues	

• Crea/ng	thread	is	s/ll	costly…	
• No	bound	of	number	of	threads…	
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Thread	Pools		

• Create	a	number	of	threads	in	a	pool	where	a	
number	of	threads	await	work	

• Advantages:	
–  Usually	slightly	faster	to	service	a	request	with	an	exis/ng	thread	than	

wai/ng	to	create	a	new	thread	
–  Allows	the	number	of	threads	in	the	applica/on(s)	to	be	bound	to	the	

size	of	the	pool	

• The	number	of	threads	can	be	set	heuris/cally	based	
on	the	hardware	and	can	even	be	dynamically	
adjusted	taking	into	account	user	sta/s/cs.	
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IPC:	Shared	Memory	

• Processes	
–  Each	process	has	private	address	space		
–  Explicitly	set	up	shared	memory	segment	within	each	address	

space	

• Threads	
–  Always	share	address	space	(use	heap	for	shared	data),	don’t	

need	to	set	up	shared	space	already	there.	

• Advantages	
–  Fast	and	easy	to	share	data	

• Disadvantages	
–  Must	synchronize	data	accesses;	error	prone	(later)	

Maria Hybinette, UGA Maria Hybinette, UGA 

IPC:	Message	Passing	(also	for	threads,	
similar	to	processes)	

• Message	passing	most	commonly	used	between	processes	
–  Explicitly	pass	data	between	sender	(src)	+	receiver	(des/na/on)	
–  Example:	Unix	pipes	

• Advantages:		
–  Makes	sharing	explicit	
–  Improves	modularity	(narrow	interface)	
–  Does	not	require	trust	between	sender	and	receiver	

• Disadvantages:		
–  Performance	overhead	to	copy	messages	

•  Issues:		
–  How	to	name	source	and	des/na/on?	

• One	process,	set	of	processes,	or	mailbox	(port)	

–  Does	sending	process	wait	(I.e.,	block)	for	receiver?		
• Blocking:	Slows	down	sender	
• Non-blocking:	Requires	buffering	between	sender	and	receiver	
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IPC:	Signals	

•  Signal	
–  Sopware	interrupt	that	no/fies	a	process	of	an	event	
–  Examples:	SIGFPE,	SIGKILL,	SIGUSR1,	SIGSTOP,	SIGCONT	

• What	happens	when	a	signal	is	received?	
–  Catch:	Specify	signal	handler	to	be	called	
–  Ignore:	Rely	on	OS	default	ac/on	

• Example:	Abort,	memory	dump,	suspend	or	resume	process	

–  Mask:	Block	signal	so	it	is	not	delivered	
• May	be	temporary	(while	handling	signal	of	same	type)	

• Disadvantage	[signals]	
–  Does	not	specify	any	data	to	be	exchanged	
–  Complex	seman/cs	with	threads	

Thread Design 
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Scheduler	Ac/va/ons		
(Notes)	

• Provides	beqer	OS	support	for	user	level	
threading	
– Dynamic	adjustment	of	number	of	kernel	level	
threads	to	user	level	threads:	

• E.g.	Two	level		and	the	m:n	thread	models	need	to	
maintain	appropriate	ra/os	

– Key	Idea:	Kernel	no/fies	thread	scheduler	of	all	
kernel	events	via		

• up-calls()	

*** Board & Read 
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Scheduler	Ac/va/ons	

• Use	an	intermediate	data	structure	
between	user/kernel	level	threads.	

• Details:	User	level	threads	run	and	are	
scheduled	(by	the	user	level	scheduler)	
on		‘virtual	processor’		
–  A	data	structure	or	light-weigh	process	
(LWP)	that	is	between	the	kernel	thread	
and	the	user	thread.		

–  Each	LWP	is	aqached	to	a	kernel	thread	
and	kernel	threads	are	what	the	OS	
schedules	to	run	on	physical	processors.	

 

LWP 
 

Kernel 
Level 
Thread 

User 
Level 
Thread 
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Scheduler	Ac/va/ons	

• An	applica/on	may	require	any	number	
of	LWPs	to	run	efficiently.	
– Example:	A	CPU-bound	applica/on	on	a	single	
processor.	

• Needs	only	one	LWP.	

– Example:	An	I/O-bound	applica/on		
• May	need	many	LWPs-	one	for	each	concurrent	
blocking	system	since	if	there	are	not	enough	LWPs,	
the	unassigned	threads	must	wait	for	one	of	the	LWPs	
to	return	from	the	kernel.	
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Scheduler	Ac/va/ons	
(notes)	

• Why	not	a	user	level	thread	scheduler	that	spawns	a	kernel	
thread	for	blocking	opera/ons?	
–  Forget	spawning,	use	a	pool	of	kernel	threads.	
–  But	how	do	we	know	if	an	opera/on	will	block?	

• read	might	block,	or	data	might	be	in	page	cache.	
• Any	memory	reference	might	cause	a	page	fault	to	disk.	

• Scheduler	Ac/va/ons	
–  Kernel	tells	user	when	a	thread	is	going	to	block,	via	an	
upcall.	

–  Kernel	can	provide	a	kernel	thread	to	run	the	user-level	
upcall	handler	(or	preempt	user	thread).	

–  User-level	scheduler	suspends	blocking	thread	and	can	
give	back	kernel	thread	it	was	running	on.	
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Quiz	3			

1.  What	resources	(context)	within	a	process	are	shared	between	
threads?	

2.  What	resources	(context)	cannot	be	shared	among	threads	within	the	
same	process?	

3.  What	happens	to	other	p-threads	within	the	same	process	when	a	
thread	reads	from	disk?	

4.  Are	POSIX	threads	user	OR	kernel	level	threads	?	

5.  Do	Java	threads	use	kernel	or	user	level	threads	(Jus/fy	your	answer)	


