
Maria Hybinette, UGA Maria Hybinette, UGA

Operating Systems
Threads

Maria Hybinette, UGA Maria Hybinette, UGA

Chapter:		Threads:	Ques/ons	

• How	is	a	thread	different	from	a	process?	

• Why	are	threads	useful?	

• How	can	POSIX	threads	be	useful?	
–  (Portable	Opera/ng	System	Interface)	API	–	enabling	portability	

between	UNIX(es)	and	other	opera/ng	systems.	

• What	are	user-level	and	kernel-level	threads?	

• What	are	problems		with	threads?	

Maria Hybinette, UGA Maria Hybinette, UGA

Review:	What	is	a	Process?	

A	thread	have		
	(1)	an	execu/on	stream	and			
	(2)	a	context	

•  Execu/on	stream	
–  stream	of	instruc/ons	
–  sequen/al	sequence	of	instruc/ons	
–  “thread”	of	control	

•  Process	‘context’	(seen	picture	of	this	already)	
–  Everything	needed	to	run	(restart)	the	process	…	
–  Registers	

• program	counter,	stack	pointer,	general	purpose…	

–  Address	space	
• Everything	the	process	can	access	in	memory	
• Heap,	stack,	code	

A process is a program in execution…

Running on a
thread

code data files

registers stack

Maria Hybinette, UGA Maria Hybinette, UGA

Review:	What	Makes	up	a	Process?	

• Program	code	(text)	

• Data		
–  global	variables	
–  heap	(dynamically	allocated	memory)	

• Process	stack	
–  func/on	parameters	

–  return	addresses	
–  local	variables	and	func/ons	

• OS	Resources	
• Registers		

–  program		counter,	stack	pointer	

User Mode
Address
Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

Maria Hybinette, UGA Maria Hybinette, UGA

Issues	with	Processes()?	

• How	do	processes	(independent	memory	
space)	communicate?	
–  Not	really	that	simple	(seen	it,	tried	it	–	and	you	have	
too):	

• Message	passing	(send	and	receive)	

• Shared	Memory:	Set	up	a	shared	memory	area	(easier)?	

• Problems:	
–  Overhead:	Both	methods	add	some	kernel	overhead	
lowering	(poten/al)	performance	

–  Complicated:	IPC	is	not	really	that	“natural”	
• increases	the	complexity	of	your	code	

main()
 {
 i = 55;
 fork();
 // what is i

Maria Hybinette, UGA Maria Hybinette, UGA

Processes	versus	Threads	
Thread	(s):	
• An	execu/on	stream	that	shares	an	address	space		

–  Overcome	data	flow	over	a	file	descriptor		
–  Overcome	se_ng	up	`/ghter	memory’	space	

• Mul/ple	threads	within	a	single	process	
Examples:		
• Two	processes	(copies	of	each	other)	examining	memory	address	
0xffe84264	see	different	values	(i.e.,	different	contents)	
–  same	frame	of	reference	

• Two	threads	examining	memory	address	0xffe84264	see	same		
value	(i.e.,	same	contents)	

• Examples:	
•  ctest/i-process.c	
•  			ctest/i-threading.c,

main()
 {
 i = 55;
 fork();
 // what is i

 thread: shares i same memory storage

Maria Hybinette, UGA Maria Hybinette, UGA

#include <stdio.h> // # printf
#include <unistd.h> // # fork
#include <stdlib.h> // # exit

pid_t childpid = -1;
int i;

int main(int argc, char *argv[])
{
 int i = -55;

 if((childpid = fork()) == 0)
 {
 fflush(stdout);
 printf("[1. child (%10d)]: i = %3d address = %p\n", childpid, i, (void*) &i);
 sleep(1);
 i = 11;
 printf("[2. child (%10d)]: i = %3d address = %p\n", childpid, i, (void*) &i);
 exit(0);
 }
 else
 {
 // try to make sure parent is executed after child 'changes' i.
 sleep(10);
 printf("[b. parent (%10d)]: i = %3d address = %p\n", childpid, i, (void *) &i);
 }
 wait((int *) 0);

 printf("[w. parent (%10d)]: i = %3d address = %p\n", childpid, i, (void *) &i);
}

Maria Hybinette, UGA Maria Hybinette, UGA

What	Makes	up	a	Thread?	

●  Own stack (Is it necessary?)
●  Own registers (Is it

necessary?)
»  Own program counter
»  Own stack pointer

●  State (running, sleeping)
●  Signal mask

User Mode
Address
Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

routine1
var1
var2

Stack Pointer

Program Counter

Maria Hybinette, UGA Maria Hybinette, UGA

Single	and	Mul/threaded	Process	

code data files

registers stack

code data files

registers

stack

registers

stack

registers

stack

Maria Hybinette, UGA Maria Hybinette, UGA

Why	Support	Threads?	

• Divide	large	task	across	several	coopera6ve	threads	
• Mul/-threaded	task	has	many	performance	benefits	

●  Examples:
» Web Server: create threads to:

–  Get network message from client
–  Get URL data from disk
–  Compose response
–  Send a response

» Word processor: create threads to:
–  Display graphics
–  Read keystrokes from users
–  Perform spelling and grammar checking in

background

Maria Hybinette, UGA Maria Hybinette, UGA

Why	Support	Threads?	

• Divide	large	task	across	several	coopera/ve	threads	
• Mul6-threaded	task	has	many	performance	benefits	

●  Adapt to slow devices
»  One thread waits for device while other threads computes

●  Defer work
»  One thread performs non-critical work in the background,

when idle
●  Parallelism

»  Each thread runs simultaneously on a multiprocessor

Maria Hybinette, UGA Maria Hybinette, UGA

Why	Threads	instead	of	a	Processes?	

• Advantages	of	Threads:	
–  Thread	opera/ons	cheaper	than	corresponding	process	

opera/ons	
• In	terms	of:	Crea/on,	termina/on,	(context)	switching	

–  IPC	cheap	through	shared	memory	
• No	need	to	invoke	kernel	to	communicate	between	threads	

• Disadvantages	of	Threads:	
–  True	Concurrent	programming	is	a	challenge	(what	does	this	

mean?	True	concurrency?)	

–  Synchroniza/on	between	threads	needed	to	use	shared	
variables	(more	on	this	later	–	this	is	HARD).	

–  Parallelism	vs.	Concurrency	

Maria Hybinette, UGA Maria Hybinette, UGA

Why	are	Threads	Challenging?		
pthread1 Example:	Output?	

main()
{

pthread_t t1, t2;
char *msg1 = “Thread 1”; char *msg2 = “Thread 2”;
int ret1, ret2;
ret1 = pthread_create(&t1, NULL, print_fn, (void *)msg1);
ret2 = pthread_create(&t2, NULL, print_fn, (void *)msg2);
if(ret1 || ret2)
{

fprintf(stderr, “ERROR: pthread_created failed.\n”);
exit(1);

}
pthread_join(t1, NULL);
pthread_join(t2, NULL);
printf(“Thread 1 and thread 2 complete.\n”);

}
void print_fn(void *ptr)
{

printf(“%s\n”, (char *)ptr);
}

gcc pthread1.c -o pthread1 -lpthread

Maria Hybinette, UGA Maria Hybinette, UGA

Why	are	Threads	Challenging?	

• Example:	Transfer	$50.00	between	two	
accounts	and	output	the	total	balance	of	the	
accounts:	

• Tasks:	

M = Balance in Maria’s account (begin $100)

T = Balance in Tucker’s account (begin $50)

B = Total balance

T = 50, M = 100
M = M - $50.00
T = T + $50.00
B = M + T

Idea: on distributing
the tasks:
(1)  One thread debits

and credits
(2)   The other Totals
Does that work?

Maria Hybinette, UGA Maria Hybinette, UGA

Why	are	Threads	Challenging?	

• Tasks:	 T = 50, M = 100
M = M - $50.00
T = T + $50.00
B = M + T

M = M - $50.00
T = T + $50.00
B = M + T

M = M - $50.00
B = M + T
T = T + $50.00

B = M + T
M = M - $50.00
T = T + $50.00

One thread debits
& credits

One thread totals

B = $150 B = $100 B = $150
Maria Hybinette, UGA Maria Hybinette, UGA

Common	Programming	Models	

• Manager/worker	
–  Single	manager	handles	input	and	assigns	work	to	
the	worker	threads	

• Producer/consumer	
– Mul/ple	producer	threads	create	data	(or	work)	
that	is	handled	by	one	of	the	mul/ple	consumer	
threads		

• Pipeline	
–  Task	is	divided	into	series	of	subtasks,	each	of	
which	is	handled	in	series	by	a	different	thread	

Maria Hybinette, UGA Maria Hybinette, UGA

Thread	Support	

• Three	approaches	to	provide	thread	
support	
– User-level	threads	
– Kernel-level	threads	
– Hybrid	of	User-level	and	Kernel-level	threads	

Maria Hybinette, UGA Maria Hybinette, UGA

Latencies	

• Comparing	user-level	threads,	kernel	threads,	and	
processes		

•  Thread/Process	Crea/on	Cost:	Null	fork	
–  Evaluate	–with	Null	fork:		the	/me	to	create,	schedule,	execute,	and	complete	

the	en/ty	that	invokes	the	null	procedure		

•  Thread/Process	Synchroniza/on	Cost:		Signal-wait		
–  Evaluate	–	with	Signal-Wait:	the	/me	for	an	en/ty	to	signal	a	wai/ng	en/ty	and	

then	wait	on	a	condi/on	(overhead	of	synchroniza5on)	

Procedure call = 7 us
Kernel Trap = 17 us User Level

Threads
Kernel Level

Threads Processes

Null fork 34 948 11,300
Signal-wait 37 441 1,840

30X,12X

Maria Hybinette, UGA Maria Hybinette, UGA

User-Level	Threads	

• Many-to-one	thread	mapping	
–  Implemented	by	user-level	run/me	libraries		

• Create,	schedule,	synchronize	threads	at	user-
level,	state	in	user	level	space	

–  OS	is	not	aware	of	user-level	threads	
• OS	thinks	each	process	contains	only	a	single	
thread	of	control	

P P

●  Advantages
»  Does not require OS support; Portable
»  Can tune scheduling policy to meet application (user level)

demands
»  Lower overhead thread operations since no system calls

●  Disadvantages
»  Cannot leverage multiprocessors (no true parallelism)
»  Entire process blocks when one thread blocks

Maria Hybinette, UGA Maria Hybinette, UGA

Blocked	UL	Threads:	Jacke/ng	

• Avoids	‘blocking’	on	system	calls	that	block	(e.g.,	I/O)	
•  Solu/on:	

–  Instead	of	calling	a	blocking	system	call	call	an	applica/on	level	I/O	jacket	
rou/ne	(a	nonblocking	call)	

–  Jacket	rou/ne	provides	code	that	determines	whether	I/O	device	is	busy	or	
available	(idle).	

–  Busy:	
• Thread	enters	the	ready	state	and	passes	control	to	another	thread	
• Control	returns	to	thread	it	retries	

–  Idle:	
• Thread	is	allowed	to	make	system	call.	

Maria Hybinette, UGA Maria Hybinette, UGA

Kernel-Level	Threads	

• One-to-one	thread	mapping	
–  OS	provides	each	user-level	thread	with	a	kernel	

thread	
–  Each	kernel	thread	scheduled	independently	
–  Thread	opera/ons	(crea/on,	scheduling,	

synchroniza/on)	performed	by	OS	

●  Advantages
»  Each kernel-level thread can run in parallel on a

multiprocessor
»  When one thread blocks, other threads from process can

be scheduled

●  Disadvantages
»  Higher overhead for thread operations
»  OS must scale well with increasing number of threads

P P

Maria Hybinette, UGA Maria Hybinette, UGA

Two-Level	Model	

• one-one	&	(strict)	many-to-many	
–  OS	provides	each	user-level	thread	with	a	kernel	

thread	
–  Supports	both	bound	an	unbound	threads	

• Bound	threads	-	permanently	bound	to	a	single	kernel	
level	thread	

• Unbound	threads	may	move	to	other	kernel	threads	

●  Advantages
»  Flexible, best of two worlds

●  Disadvantages
»  More complicated

P P P

Maria Hybinette, UGA Maria Hybinette, UGA

Hybrid	of	Kernel	&	User	-Level	Threads	

• m	-	n	thread	mapping	(many	to	many)	
–  Applica/on	creates	m	threads	

–  OS	provides	pool	of	n	kernel	threads	
–  Few	user-level	threads	mapped	to	each	kernel-level	

thread	

●  Advantages
»  Can get best of user-level and kernel-level implementations
»  Works well given many short-lived user threads mapped to

constant-size pool
●  Disadvantages

»  Complicated…
»  How to select mappings?
»  How to determine the best number of kernel threads?

–  User specified
–  OS dynamically adjusts number depending on system load

P P

Maria Hybinette, UGA Maria Hybinette, UGA

Summary:	Thread	Models	

•  Kernel	Level:	Windows	95/98/NT/2000,	Solaris,	Linux	
• User	Level:	Mach,	C-threads,	Solaris	threads	
• Hybrids:	IRIX,	HP-UX,	True	64	UNIX,	Older	Solaris	models	
• API:	POSIX	P-threads		

–  	à	Na/ve	threading	interface	for	Linux	now	1:1	model	

P P P P P P

Maria Hybinette, UGA Maria Hybinette, UGA

Design:		
Threading	Issues:	fork()	&	exec()	

• fork()	
–  Duplicate	all	threads?	
–  Duplicate	only	the	thread	that	performs	the	fork	

–  Resul/ng	new	process	is	single	threaded?	
–  ->	solu/on	provide	two	different	forks	(mfork)	

• exec()	
–  Replaces	the	process	-	including	all	threads?	
–  If	exec	is	aper	fork	then	replacing	all	threads	is	unnecessary.	

Maria Hybinette, UGA Maria Hybinette, UGA

Threading	Issues:	Cancella/on	

• Example	1:	User	pushes	top	buqon	on	a	web	
browsers	-	while	other	threads	are	images	(one	
thread	per	image).	
–  Asynchronous	Cancella/on:	Immediate	(OS	need	to	reclaim	resources)	

• Example	2:	Several	threads	concurrently	searches	
data	base	and	one	thread	finds	target	data.	
–  Deferred	Cancella/on:	Thread	terminates	it	self	when	no/ces	it	is	

scheduled	for	termina/on.	

Maria Hybinette, UGA Maria Hybinette, UGA

Threading	Issues:	Threads	and	Signals	

•  Problem:	To	which	thread	should	OS	deliver	signal?	
• Op/on	1:	Require	sender	to	specify	thread	ID	(instead	of	process	id)	

–  Sender	may	not	know	about	individual	threads	

• Op/on	2:	OS	picks	des/na/on	thread	
–  POSIX:	Each	thread	has	signal	mask	(disable	specified	signals)	
–  OS	delivers	signal	to	all	threads	without	signal	masked	
–  Applica/on	determines	which	thread	is	most	appropriate	for	handing	signal	

•  Synchronous	-	delivered	to	the	same	process	that	caused	the	signal	
• Asynchronous	-	event	is	external	to	running	process.	

Maria Hybinette, UGA Maria Hybinette, UGA

Other	Thread	Issues	

• Crea/ng	thread	is	s/ll	costly…	
• No	bound	of	number	of	threads…	

	

Maria Hybinette, UGA Maria Hybinette, UGA

Thread	Pools		

• Create	a	number	of	threads	in	a	pool	where	a	
number	of	threads	await	work	

• Advantages:	
–  Usually	slightly	faster	to	service	a	request	with	an	exis/ng	thread	than	

wai/ng	to	create	a	new	thread	
–  Allows	the	number	of	threads	in	the	applica/on(s)	to	be	bound	to	the	

size	of	the	pool	

• The	number	of	threads	can	be	set	heuris/cally	based	
on	the	hardware	and	can	even	be	dynamically	
adjusted	taking	into	account	user	sta/s/cs.	

Maria Hybinette, UGA Maria Hybinette, UGA

IPC:	Shared	Memory	

• Processes	
–  Each	process	has	private	address	space		
–  Explicitly	set	up	shared	memory	segment	within	each	address	

space	

• Threads	
–  Always	share	address	space	(use	heap	for	shared	data),	don’t	

need	to	set	up	shared	space	already	there.	

• Advantages	
–  Fast	and	easy	to	share	data	

• Disadvantages	
–  Must	synchronize	data	accesses;	error	prone	(later)	

Maria Hybinette, UGA Maria Hybinette, UGA

IPC:	Message	Passing	(also	for	threads,	
similar	to	processes)	

• Message	passing	most	commonly	used	between	processes	
–  Explicitly	pass	data	between	sender	(src)	+	receiver	(des/na/on)	
–  Example:	Unix	pipes	

• Advantages:		
–  Makes	sharing	explicit	
–  Improves	modularity	(narrow	interface)	
–  Does	not	require	trust	between	sender	and	receiver	

• Disadvantages:		
–  Performance	overhead	to	copy	messages	

•  Issues:		
–  How	to	name	source	and	des/na/on?	

• One	process,	set	of	processes,	or	mailbox	(port)	

–  Does	sending	process	wait	(I.e.,	block)	for	receiver?		
• Blocking:	Slows	down	sender	
• Non-blocking:	Requires	buffering	between	sender	and	receiver	

Maria Hybinette, UGA Maria Hybinette, UGA

IPC:	Signals	

•  Signal	
–  Sopware	interrupt	that	no/fies	a	process	of	an	event	
–  Examples:	SIGFPE,	SIGKILL,	SIGUSR1,	SIGSTOP,	SIGCONT	

• What	happens	when	a	signal	is	received?	
–  Catch:	Specify	signal	handler	to	be	called	
–  Ignore:	Rely	on	OS	default	ac/on	

• Example:	Abort,	memory	dump,	suspend	or	resume	process	

–  Mask:	Block	signal	so	it	is	not	delivered	
• May	be	temporary	(while	handling	signal	of	same	type)	

• Disadvantage	[signals]	
–  Does	not	specify	any	data	to	be	exchanged	
–  Complex	seman/cs	with	threads	

Thread Design

Maria Hybinette, UGA Maria Hybinette, UGA

Scheduler	Ac/va/ons		
(Notes)	

• Provides	beqer	OS	support	for	user	level	
threading	
– Dynamic	adjustment	of	number	of	kernel	level	
threads	to	user	level	threads:	

• E.g.	Two	level		and	the	m:n	thread	models	need	to	
maintain	appropriate	ra/os	

– Key	Idea:	Kernel	no/fies	thread	scheduler	of	all	
kernel	events	via		

• up-calls()	

*** Board & Read

Maria Hybinette, UGA Maria Hybinette, UGA

Scheduler	Ac/va/ons	

• Use	an	intermediate	data	structure	
between	user/kernel	level	threads.	

• Details:	User	level	threads	run	and	are	
scheduled	(by	the	user	level	scheduler)	
on		‘virtual	processor’		
–  A	data	structure	or	light-weigh	process	
(LWP)	that	is	between	the	kernel	thread	
and	the	user	thread.		

–  Each	LWP	is	aqached	to	a	kernel	thread	
and	kernel	threads	are	what	the	OS	
schedules	to	run	on	physical	processors.	

LWP

Kernel
Level
Thread

User
Level
Thread

Maria Hybinette, UGA Maria Hybinette, UGA

Scheduler	Ac/va/ons	

• An	applica/on	may	require	any	number	
of	LWPs	to	run	efficiently.	
– Example:	A	CPU-bound	applica/on	on	a	single	
processor.	

• Needs	only	one	LWP.	

– Example:	An	I/O-bound	applica/on		
• May	need	many	LWPs-	one	for	each	concurrent	
blocking	system	since	if	there	are	not	enough	LWPs,	
the	unassigned	threads	must	wait	for	one	of	the	LWPs	
to	return	from	the	kernel.	

Maria Hybinette, UGA Maria Hybinette, UGA

Scheduler	Ac/va/ons	
(notes)	

• Why	not	a	user	level	thread	scheduler	that	spawns	a	kernel	
thread	for	blocking	opera/ons?	
–  Forget	spawning,	use	a	pool	of	kernel	threads.	
–  But	how	do	we	know	if	an	opera/on	will	block?	

• read	might	block,	or	data	might	be	in	page	cache.	
• Any	memory	reference	might	cause	a	page	fault	to	disk.	

• Scheduler	Ac/va/ons	
–  Kernel	tells	user	when	a	thread	is	going	to	block,	via	an	
upcall.	

–  Kernel	can	provide	a	kernel	thread	to	run	the	user-level	
upcall	handler	(or	preempt	user	thread).	

–  User-level	scheduler	suspends	blocking	thread	and	can	
give	back	kernel	thread	it	was	running	on.	

Maria Hybinette, UGA Maria Hybinette, UGA

Quiz	3			

1.  What	resources	(context)	within	a	process	are	shared	between	
threads?	

2.  What	resources	(context)	cannot	be	shared	among	threads	within	the	
same	process?	

3.  What	happens	to	other	p-threads	within	the	same	process	when	a	
thread	reads	from	disk?	

4.  Are	POSIX	threads	user	OR	kernel	level	threads	?	

5.  Do	Java	threads	use	kernel	or	user	level	threads	(Jus/fy	your	answer)	

