
Maria Hybinette, UGA Maria Hybinette, UGA

Operating Systems
Deadlock

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Questions?

• What is a deadlock?
• What causes a deadlock?
• How do you deal with (potential) deadlocks?

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock: What is a deadlock?

• All entities are waiting for a resource that is held by
another waiting entity.

–  Since all are waiting for each other, none can provide any of the
things being waited for (they are ALL blocked).

• Simple Example: narrow bridge (resource access to the
bridge) --
–  if a deadlock occurs, resolved if one car backs up

I don�t back
up for idiots

Deitel & Deitel anecdote

No problem --
I do!

Maria Hybinette, UGA Maria Hybinette, UGA

A += 10;

B += 20;

A += B;

A += 30

B += 10;

A += 20;

A += B;

B += 30

Thread Maria Thread Tucker

Example (Review): Two Threads?

• Two threads access two shared variables, A and B
–  Variable A is protected by lock a
–  Variable B by lock b

• How to add lock and unlock statements?

lock(b)

lock(a);

unlock(a);

unlock(b);

Does this
work?

lock(a);

lock(b);

unlock(b)

unlock(a)

Time

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Maria & Tucker

lock(a);
A += 10;
lock(b);
B += 20;

A += B;
unlock(b)
A += 30
unlock(a)

Thread Maria

Thread Tucker

Maria gets lock a

Time Thread Tucker Thread Maria

lock(b)
B += 10;
lock(a);
A += 20;

A += B;
unlock(a);
B += 30
unlock(b);

Tucker gets lock b

Maria waits for lock b

Tucker waits lock b

Waits

Maria Hybinette, UGA Maria Hybinette, UGA

Representing Deadlock
• Two common ways of representing
deadlock:
–  Vertices (circles or rectangles)

• threads (or processes) in system
• resources [types] (e.g., locks, semaphores, printers)

–  Edges : indicates either (determined by direction):
• `waiting for� or `wants� (head of arrow on resource) OR
•  `held by� (head of arrow on thread)

T1 T2

�waiting for�

T2T1

R1

R2

held bywants

wantsheld by

Wait-For Graph Resource Allocation Graph (RAG)

Maria Hybinette, UGA Maria Hybinette, UGA

4 Conditions for Deadlock

• Mutual exclusion:
–  Resource cannot be shared
–  Requests are delayed until resource is released

• Hold and wait:
–  Thread holds one resource while it waits for another

• No preemption:
–  previously granted resources cannot forcibly be

taken away
• Circular wait:

–  Circular dependencies exist in �waits-for� or
�resource-allocation� graphs

–  Each is waiting for a resource held by next member
of the chain.

All four conditions must hold simultaneously

All four conditions must hold simultaneously

Maria Hybinette, UGA Maria Hybinette, UGA

 What to do: Handling Deadlock
1.  Ignore

–  Easiest and most common approach (e.g., UNIX).
2.  Deadlock prevention

–  Ensure deadlock does not happen
–  Ensure at least one of 4 conditions does not occur

1.  Hold&Wait, No Preemption, Circularity, Mutual Exclusion
2.  System build so deadlock cannot happen

3.  Deadlock detection and recovery
–  Allow deadlocks, but detect when occur
–  Recover and continue

4.  Deadlock avoidance
–  Ensure deadlock does not happen
–  Use information about resource requests to dynamically

avoid unsafe situations (Thursday)

Ostrich algorithm

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention

• Approach
–  Ensure 1 of 4 conditions cannot occur
–  Negate each of the 4 conditions

• No single approach is appropriate (or possible)
for all circumstancesl

• Examples …

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention:
 Mutual Exclusion

• No mutual exclusion
• --> Make access to resources
sharable ;

• Examples: Access to files
–  Read-only files
–  Printer daemon needs exclusive access

to the printer, there is only one printer
daemon -- uses spooling.

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention
Hold and Wait

•  Make rules on how a resources
hold and requests(waits) on
resources

•  Two General Approaches:
1.  A Thread only requests resources when it

does not hold other resources
•  release resources before requesting new

ones
lock(a);
A += 10;
unlock(a)
lock(b);
B += 20;
unlock(b)
lock(a)
A += 30
unlock(a)

Thread Tucker Thread Maria

lock(b)
B += 10;
Unlock(b);
lock(a);
A += 20;
unlock(a);
lock(b)
B += 30
unlock(b);

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention
Hold and Wait

•  Two Approaches:
2.  Atomically acquire all resources at once

(all or none)
»  Example: Single lock to protect all (other

variations - e.g., release access to one
variable earlier)

lock(AB);
A += 10;
B += 20;
A += 30
unlock(AB)

Thread Tucker Thread Maria

lock(AB)
B += 10;
A += 20;
B += 30
unlock(AB);

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention
 Hold and Wait

•  Summary the Two Approaches:
1.  Only request resources when it does not hold other

resources
2.  Atomically acquire all resources at once

•  Problems:
–  Low resource utilization: ties up resources other

processes could be using
–  May not know required resources before execution
–  Starvation: A thread that need popular resources may

wait forever

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention
No Preemption

•  Two Approaches:
1.  Preempt requestors resource

•  Example: B is holding some resources and then
requests additional resources that are held by
other threads, then B releases all its resources
(and start over)

2.  Preempt holders resource
•  Example: A waiting for something held by B, then take

resource away from B and give them to A (B starts
over).

•  Not possible if resource cannot be saved and
restored
–  Can�t take away a lock without causing

problems
•  Only works for some resources (e.g., CPU and

memory)
–  May cause thrashing.

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Prevention
Circular Wait Condition

• Impose ordering on resources
–  Give all resources a ranking or priority;

must acquire highest ranked resource first.
• Dijskstra: Establishing the convention that

all resources will be requested in order, and
released in reverse order,

Mutual exclusion
Hold and wait
No preemption
Circular wait

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Detection & Recovery

1. Allow system to enter deadlock state
2. Detection algorithm
3. Recovery scheme

Maria Hybinette, UGA Maria Hybinette, UGA

Side	Node	

• Discovering	a	deadlock	a2er	it	occurs,	is	decidable	
• Discovering	it	‘before’	it	occurs,	is	in	general	un-
decidable:	same	as	the	hal>ng	problem.	

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Detection

Single Instance of Each Resource
Type

• Maintain a wait-for graph (it works on RAGS as well)
–  Nodes are processes.
–  Simplify: removes resource nodes and collapse edges
–  Pi → Pj if Pi is waiting for Pj.

• Periodically invoke an algorithm (breath first) that searches
for a cycle in the graph.

Resource Allocation
Graphs (RAGs) Wait For

Maria Hybinette, UGA Maria Hybinette, UGA

Example Code : A depth first
search to find circles

L = {empty list} and Nodes = {list of all unvisited nodes};
current node = initial node // pick one randomly
while(current node is not the initial node twice) then done

 L.enqueue(current node); // add to node to end of L
 if(current node is in L twice)
 there is a cycle ⇒ cycle and return

 if(there is an unmarked arc explore that one)
mark the arc as visited and use destination as new

current node
 else // backtrack

go back to previous node
 Back to initial node there is no cycle

For each node in the graph:

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock detection

•  Do a depth-first-search on the resource
allocation graph (RAG)

D, E, G ?

are deadlocked

A, C, F ?

are not deadlocked because S can
be allocated to either and then the
others can take turn to complete

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Deadlock Detection

•  Do a depth-first-search on the resource
allocation graph

Initialize a list to the empty list, designate arcs as
�unvisited�

T

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Deadlock Detection

•  Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Deadlock Detection

•  Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Deadlock Detection

•  Do a depth-first-search on the resource
allocation graph

T

Maria Hybinette, UGA Maria Hybinette, UGA

• What	about	resources	that	have	mul>ple	resources	
(e.g.,	mul>ple	printers)	

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Detection with Multiple
Resources

• Theorem: If a graph does not contain a cycle
then no processes are deadlocked
–  A cycle in a RAG is a necessary condition for deadlock
–  BUT is it a sufficient condition?

P3 P1

P2

P4

waiting

waiting

holding

holding

holding

Printers

CD-WR

Maria Hybinette, UGA Maria Hybinette, UGA

• Next	create	an	algorithm	with	mul>ple	instances,	
and	its	data	structures.	
–  Matrices	and	Vectors	each	column	are	numbers	available	of	a	

par>cular	kind	or	type,	e.g.,	printers.	
	
	

–  Alloca>on	Matrix	
–  Request	Matrix	
–  Numbers	in	Existence	Vector	
–  Numbers	Available	Vector	

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Detection Algorithm:
 Multiple Resource Instances

●  Available: Indicates the number of available resources of each type (m)
●  Allocation: Number of resources of each type currently allocated (nxm)
●  Request: current requests of each thread (nxm)

»  If Request [ij] = k, then process Pi is requesting k more instances of type. Rj.

What I have (now!) What I am requesting now

Doesn�t
Change

Maria Hybinette, UGA Maria Hybinette, UGA

Example

• Algorithmic Question: Is there a possible
allocation sequence of resources so that each
process can complete?

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

Initially all processes are unmarked.
1.  Look for an unmarked process Pi, whose

needs can be satisfied (all):
–  the ith whole row of R (need) is less than or equal to

A(vailable) (i.e, all the resource(s) is/are available)

2. If such a process is found, add the i-th row of
C(urrently allocated) to A(vailable), mark the
process and go back to step 1 (b/c it is done
processing and can release its resource)

3. If no such process exists the algorithm
terminates

If all marked, no deadlock,
o/w deadlocked

A marked process means it can run to completion

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

Can we satisfy a ROW in the Request Matrix?

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

 2 2 2 0

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

 2 2 2 0

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

 4 2 2 1
 2 2 2 0

Maria Hybinette, UGA Maria Hybinette, UGA

Detection algorithm

 4 2 2 1
 2 2 2 0

No deadlock!

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock detection issues

• How often should the algorithm run?
–  After every resource request?
–  Periodically?
–  When CPU utilization is low?
–  When we suspect deadlock because some thread has been

asleep for a long period of time?

Maria Hybinette, UGA Maria Hybinette, UGA

Recovery from deadlock
• What should be done to recover?

–  Abort deadlocked processes and reclaim resources
–  Temporarily reclaim resource, if possible
–  Abort one process at a time until deadlock cycle is eliminated

• Where to start?
–  Low priority process
–  How long process has been executing
–  How many resources a process holds
–  Batch or interactive
–  Number of processes that must be terminated

Maria Hybinette, UGA Maria Hybinette, UGA

Other deadlock recovery
techniques

• Recovery through rollback
–  Save state periodically

• take a checkpoint
• start computation again from checkpoint

–  Done for large computation systems

Maria Hybinette, UGA Maria Hybinette, UGA

Review: Handling Deadlock
•  Ignore

–  Easiest and most common approach (e.g., UNIX).
• Deadlock prevention

–  Ensure deadlock does not happen
–  Ensure at least one of 4 conditions does not occur

• Deadlock detection and recovery
–  Allow deadlocks, but detect when occur
–  Recover and continue

• Deadlock avoidance
–  Ensure deadlock does not happen
–  Use information about resource requests to dynamically avoid unsafe

situations

Ostrich algorithm

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock avoidance
Don’t allocate resource if it leads to deadlock

• Detection vs. avoidance…
–  Detection – �optimistic� (pretends that everything is A-OK)

approach
• Allocate resources
• �Break� system to fix it

–  Avoidance – �pessimistic� (conservative) approach
• Don’t allocate resources if it lead to deadlock
• If a process requests a resource...
 ... make it wait until you are sure it’s OK
 (see if it safe to proceed)

–  Which one to use depends upon the application

• Lets create an Avoidance Deadlock Algorithm !
…

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

instruction

Process A
t1 t2 t3 t4

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

instruction

Process A
t1 t2 t3 t4

Requests Printer

Requests CD-RW

Releases Printer

Releases CD-RW

RP RC RLP RLC

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
in

st
ru

ct
io

n
Pr

oc
es

s B

tW

tX

tY

tZ

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

in
st

ru
ct

io
n

Pr
oc

es
s B

tW

tX

tY

tZ

Requests Printer
Releases CD-RW

Releases Printer

Request CD-RW

RC

RP

RLC

RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction
RP RC RLP RLC

RC

RP

RLC

RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

Both processes
Request the 1 CD-RW

RC

RP

RLC

RLP

RP RC RLP RLC

Mutual
Exclusion

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
Pr

oc
es

s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

Both processes
Request the 1 Printer

RC

RP

RLC

RLP

RP RC RLP RLC

Mutual
Exclusion

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

RC

RP

RLC

RLP

RP RC RLP RLP

Unsafe: Forbidden
Zone (Why?)

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

Trajectory showing
system progress

RP RC RLP RLP

RC

RP

RLC

RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

RC

RP

RLC

RLP

RP RC RLP RLP

B makes progress,
A is not running

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

B requests
the CD-RW

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
n

instruction

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

in
on

s

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Request is granted

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

in
on

s

instructinons

RC

RP

RLC

RLP

RP RC RLP RLP

A runs & makes
a request for printer

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Request is granted;
A proceeds

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
Pr

oc
es

s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

B runs & requests
the printer...

MUST WAIT!

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

A runs & requests
the CD-RW

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
A...
 holds printer
 requests CD-RW
B...
 holds CD-RW
 requests printerPr

oc
es

s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
A...
 holds printer
 requests CD-RW
B...
 holds CD-RW
 requests printer

DEADLOCK!

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

in
os

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories
A danger
 occurred here.

Should the OS
 give A the printer,
 or make it wait???Pr

oc
es

s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

This area is �unsafe�

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

instructions

RC

RP

RLC

RLP

RP RC RLP RLP

Within the �unsafe� area,
 deadlock is inevitable.

We don�t want to
enter this area.

The OS should make
A wait at this point!

Maria Hybinette, UGA Maria Hybinette, UGA

Process-resource trajectories

Pr
oc

es
s B

tW

tX

tY

tZ

Process A
t1 t2 t3 t4

in
st

ru
ct

io
ns

time

RC

RP

RLC

RLP

RP RC RLP RLP
B requests the printer,
B releases CD-RW,
B releases printer,
then A runs to completion!

Maria Hybinette, UGA Maria Hybinette, UGA

Safe states
• The current state:

 �which processes hold which resources�

• A �safe� state:
–  No deadlock, and
–  There is some scheduling order in which every process can run to

completion even if all of them request their maximum number of units
immediately

• The Banker�s Algorithm:
–  Goal: Avoid unsafe states!!!
–  Question: When a process requests more units, should the system (a)

grant the request or (b) make it wait?

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock Avoidance

• Dijkstra�s Banker’s Algorithm
• Idea: Avoid unsafe states of processes holding
resources
–  Unsafe states might lead to deadlock if processes make certain

future requests
• Eventually…

–  When process requests resource, only give if doesn�t cause
unsafe state

–  Problem: Requires processes to specify future resource
demands.

Maria Hybinette, UGA Maria Hybinette, UGA

The Banker’s Algorithm
• Assumptions:

–  Only one type of resource, with multiple units.
–  Processes declare their maximum potential resource needs ahead

of time (total sum is 22 units of credit but only has 10)

• When a process requests more units should the
system make it wait to ensure safety?

6
2
5

Example: One resource type with 10 units

3

Maria Hybinette, UGA Maria Hybinette, UGA

Safe states

• Safe state – �when system is not
deadlocked and there is some scheduling
order in which every process can run to
completion even if all of them suddenly
request their maximum number of
resource immediately�

6
2
5

10 total

3

Maria Hybinette, UGA Maria Hybinette, UGA

Unsafe/Safe state?

6
2
5

10 total

3

5
2
5

2

Unsafe!

The difference here is A
possesses 1 more resource

Safe

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance with multiple resource
types

Note: These are the max. possible
requests, which we assume
are known ahead of time

Maximum # Needed

Maria Hybinette, UGA Maria Hybinette, UGA

Banker�s algorithm for multiple
resources

•  Look for a row, R, whose unmet resource needs are all smaller
than or equal to A. If no such row exists, the system will
eventually deadlock since no process can run to completion

•  Assume the process of the row chosen requests all the
resources that it needs (which is guaranteed to be possible)
and finishes. Mark that process as terminated and add all its
resources to A vector

•  Repeat steps 1 and 2, until either all process are marked
terminated, in which case the initial state was safe, or until
deadlock occurs, in which case it was not

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance modeling
Available resource vector Total resource vector

Maximum Request Vector

Row 2 is what process 2 might need

RUN ALGORITHM ON EVERY
RESOURCE REQUEST

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

 2 2 2 0

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

 2 2 2 0

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Avoidance algorithm

 4 2 2 1
 2 2 2 0

More needed matrix

Maria Hybinette, UGA Maria Hybinette, UGA

Deadlock avoidance

• Deadlock avoidance is usually impossible
–  because you don�t know in advance what resources a process

will need!

