
Maria Hybinette, UGA Maria Hybinette, UGA

CSCI [4|6] 730
 Operating Systems

Virtual Memory

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Memory Questions?

• What is virtual memory and when is it useful?
• What is demand paging?
• What pages should :

–  Persist in memory, and
–  and which should be replaced?

• What is trashing and how can it be prevented?
• What is the working set model?

Maria Hybinette, UGA Maria Hybinette, UGA

Operating System’s Goals

• Support processes when there is not
enough physical memory
–  Single process with very large address space
–  Multiple processes with combined address spaces

• User code should be independent of
amount of physical memory
–  Correctness, if not performance

Maria Hybinette, UGA Maria Hybinette, UGA

The Illusion: �Virtual� Memory
• OS provides an illusion of
more memory than is
physically available:
–  Large, infinite, logical space (fiction)
–  Small physical memory (reality)

• Why should this work (allowing
the illusion)?
–  Typically: Only part of the program

needs to be in memory (at a particular
time) for execution

–  Efficiency: Relies on key properties of
user processes

• workload and
• machine architecture (hardware)

Disk

Maria Hybinette, UGA Maria Hybinette, UGA

The Million Dollar Question?

• How do the OS decide what is in �main�
memory and what is on disk?

• How can we decide?
–  We can:

• Memory Access Patterns

Maria Hybinette, UGA Maria Hybinette, UGA

Observations: Memory Access
Patterns

• Sequential memory accesses of a process
are predictable and tend to have locality of
reference:
–  Spatial: reference memory addresses near

previously referenced addresses (in physical
memory)

–  Temporal: reference memory addresses that
have referenced in the past (or recent past).

• Processes spend majority of time in small
portion of code
–  Estimate: 90% of time in it is 10% of code,

doesn’t jump around much.
•  Implication:

–  Process only uses small amount of address
space at any moment

–  Only small amount of address space must
be resident in physical memory

Maria Hybinette, UGA Maria Hybinette, UGA

Approach: Demand Paging

•  (Old) Approach 1: Favor one
process and bring (swap in) in its
entire address space.

•  (New) Approach 2: Demand Paging:
Bring in pages into memory only
when needed (lazy pager instead of
a swapper).
–  Less memory
–  Faster response time?

• Process viewed as a sequence of
page accesses rather than
contiguous address space

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Memory Approach:
Intuition

• Idea: OS keeps unreferenced pages on disk and
referenced pages in physical memory

–  Slower, cheaper backing store than memory

• Process can run
–  Even when not all pages are loaded into main memory

• OS and hardware cooperate to provide illusion of large disk
as fast as main memory
–  Same behavior as if all of address space in main memory
–  Hopefully have similar performance!

• Requirements:
–  OS must have mechanism to identify location of each page in

address space in memory, or on disk
–  OS must have (allocation) policy for

• determining which pages live in memory, and
• which (remain) on disk

–  OS must have (replacement) policy which pages should be
evicted.

Maria Hybinette, UGA Maria Hybinette, UGA

Reflect: Virtual Address Space
Mechanisms

• Each page in virtual address space maps to one of three
locations:
–  Physical main memory: Small, fast, expensive
–  Disk (backing store): Large, slow, cheap
–  Nothing (error): Free

Disk Storage

main memory

cache

registers

Smaller, faster
and more
expensive

Bigger, slower
and cheaper

Leverage memory
hierarchy of machine
architecture
Each layer acts as
�backing store� for the
layer above

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Address Space Mechanisms

Extend page tables with an extra bit to
indicate whether it is in memory or
on disk (a resident bit):

•  valid (or invalid)
•  Page in memory: valid bit set in page

table entry (PTE)
•  Page out to disk: valid bit cleared

(invalid)
• PTE points to block on disk
• Causes trap into OS when page is

referenced
• Trap: page fault

• Page table ?
–  Main memory
–  Cache (the look-aside buffer) TLB

1
1
1
1
0

0
0

!

Frame # valid-invalid bit

page table

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Memory Mechanisms
(cont)

The TLB factor: Hardware and OS cooperate to
translate addresses

•  First, hardware checks TLB for virtual address
–  TLB hit: Address translation is done; page in

physical memory
–  TLB miss:

•  Hardware or OS walk page tables
•  If PTE designates page is valid, then page in physical

memory

•  Main Memory Miss: Not in main memory: Page
fault (i.e., invalid)

–  Trap into OS (not handled by hardware)
–  [if memory is full)] OS selects victim page in

memory to replace
•  Write victim page out to disk if modified (add dirty

bit to PTE)
–  OS reads referenced page from disk into memory
–  Page table is updated, valid bit is set
–  Process continues execution

8.5 Paging 373

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; a TLB lookup in
modern hardware is part of the instruction pipeline, essentially adding no
performance penalty. To be able to execute the search within a pipeline step,
however, the TLB must be kept small. It is typically between 32 and 1,024 entries
in size. Some CPUs implement separate instruction and data address TLBs. That
can double the number of TLB entries available, because those lookups occur
in different pipeline steps. We can see in this development an example of the
evolution of CPU technology: systems have evolved from having no TLBs to
having multiple levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by the
CPU, its page number is presented to the TLB. If the page number is found, its
frame number is immediately available and is used to access memory. As just
mentioned, these steps are executed as part of the instruction pipeline within
the CPU, adding no performance penalty compared with a system that does
not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. Depending on the CPU, this may be
done automatically in hardware or via an interrupt to the operating system.
When the frame number is obtained, we can use it to access memory (Figure
8.14). In addition, we add the page number and frame number to the TLB, so

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 8.14 Paging hardware with TLB.

PTE in TLB?

CPU checks TLB

PTE in TLB?

Access page table

Page in MM?
OS Instructs CPU
to read the page

from disk

CPU generates
physical address

Update TLB
CPU activates
I/O hardware

Page transferred
from disk to

main memory

Memory
Full?

Page replacement

Page tables
updated

Yes

Yes

Yes

No

No

No

Page fault routine

Flow of �Paging� Operations

8.5 Paging 373

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; a TLB lookup in
modern hardware is part of the instruction pipeline, essentially adding no
performance penalty. To be able to execute the search within a pipeline step,
however, the TLB must be kept small. It is typically between 32 and 1,024 entries
in size. Some CPUs implement separate instruction and data address TLBs. That
can double the number of TLB entries available, because those lookups occur
in different pipeline steps. We can see in this development an example of the
evolution of CPU technology: systems have evolved from having no TLBs to
having multiple levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by the
CPU, its page number is presented to the TLB. If the page number is found, its
frame number is immediately available and is used to access memory. As just
mentioned, these steps are executed as part of the instruction pipeline within
the CPU, adding no performance penalty compared with a system that does
not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. Depending on the CPU, this may be
done automatically in hardware or via an interrupt to the operating system.
When the frame number is obtained, we can use it to access memory (Figure
8.14). In addition, we add the page number and frame number to the TLB, so

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 8.14 Paging hardware with TLB.

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Memory Policies

• OS needs to decide on policies on page faults
concerning:
–  Page selection (When to bring in)

• When should a page (or pages) on disk be brought into memory?
• Two cases

–  When process starts, code pages begin on disk
–  As process runs, code and data pages may be moved to disk

–  Page replacement (What to replace)
• Which resident page (or pages) in memory should be thrown out to

disk?

• Goal: Minimize number of page faults
–  Page faults require milliseconds to handle (reading from disk)
–  Implication: Plenty of time for OS to make good decision

Maria Hybinette, UGA Maria Hybinette, UGA

The When: Page Selection

• When should a page be brought from disk into memory?
• Request paging: User specifies which pages are needed for

process
–  Problems:

• Manage memory by hand
• Users do not always know future references
• Users are not impartial (and infact they may be wrong)

• Demand paging: Load page only when page fault occurs
–  Intuition: Wait until page must absolutely be in memory
–  When process starts: No pages are loaded in memory
–  Advantage: Less work for user
–  Disadvantage: Pay cost of page fault for every newly accessed

page

Maria Hybinette, UGA Maria Hybinette, UGA

Page Selection Continued
• Pre-paging (anticipatory, prefetching): OS loads page into memory

before page is referenced
–  OS predicts future accesses (the oracle) and brings pages into memory

ahead of time (neighboring pages).
• How?
• Works well for some access patterns (e.g., sequential)

–  Advantages: May avoid page faults
–  Problems? :

• Hints: Combine demand or pre-paging with user- supplied hints
about page references
–  User specifies: may need page in future, don�t need this page anymore,

or sequential access pattern, ...
–  Example: madvise() in Unix (1994 4.4 BSD UNIX)

Maria Hybinette, UGA Maria Hybinette, UGA

Virtual Page Optimizations

• Copy-on-Write: on process creation allow parent
and child to share the same page in memory
until one modifies the page.

copy page C

Maria Hybinette, UGA Maria Hybinette, UGA

What happens if there is no free
frame?

• Page replacement
–  find some page in memory, that is not really in use, and

swap it out.

• Observation: Same page may be brought
into memory several times (so try to keep
that one in memory)

–  Frequently used.

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Strategies
• Which page in main memory should selected as victim?

–  Write out victim page to disk if modified (dirty bit set)
–  If victim page is not modified (clean), just discard (cheaper to

replace)

• OPT: Replace page not used for longest time in future

–  Advantage: Guaranteed to minimize number of page faults
–  Disadvantage: Requires that OS predict the future

• Not practical, but is good to use comparison (best you can do)
• Random: Replace any page at random

–  Advantage: Easy to implement
–  Surprise?: Works okay when memory is not severely over-

committed (recall lottery scheduling, random is not too shabby, in
many areas)

D A B B A B A C D

3 Frames

Future

A
B
C

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Continued

• FIFO: Replace page that has been in memory the longest
–  Intuition: First referenced long time ago, done with it now
–  Advantages:

• Fair: All pages receive equal residency
• Easy to implement (circular buffer)

–  Disadvantage: Some pages may always be needed
• L(east)RU: Replace page not used for longest time in past

–  Intuition: Use the past to predict the future
–  Advantages:

• With locality, LRU approximates OPT (but look backwards)
–  Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well

MFR, LFU

MRU

LRU

Maria Hybinette, UGA Maria Hybinette, UGA

How to Evaluate Page Replacement
Algorithms?

• Want: lowest page-fault rate (least #misses)
• Idea: Keep track of memory references – test
with particular string of memory references and
count page faults (based on real data or
generated)

• Algorithm: Convert address to page location
–  Example: Assume 100 bytes per page and

• Step 1: Assume the address sequence:
–  0100, 0210, 0250, 0300, 0350, 0380, 0400, 0160, 0250, 0505, 0100,

0110, 0230, 0350, 0450, 0450, 0500, 0500
• Step 2: Convert address to a page reference string:

–  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
• Step 3: Count page faults (hits don’t count).

Maria Hybinette, UGA Maria Hybinette, UGA

Example: Counting Faults of
FIFO Page Replacement

Algorithm

●  3 Frames are available
●  FIFO: Replace page that has been in memory the

longest
●  Count page faults ? [15]

First						IN		is	the	one	that	is	first	OUT	(not	last	accessed)	

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Example
(compare algorithms)

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

Page reference string: A B C A B D A D B C B
Three pages of physical memory

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

A B C

D

A B C A B C

Page reference string: A B C A B D A D B C B
Three pages of physical memory

1 1 1

HIT

HIT
MISS

Which one
to replace?

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

A B C

D

A B C A B C

Page reference string: A B C A B D A D B C B
Three pages of physical memory

1 1 1

HIT

HIT
MISS

Which one
to replace?

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

A B C

D

A B C

D

A B C

D

Page reference string: A B C A B D A D B C B
Three pages of physical memory

1 1 1

HIT

HIT

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Example

OPT FIFO LRU
ABC

B

D

A

D

B

C

B

A

A B C

D B C

D A C

D A B

C A B

A B C

A B D

B

A B C

A B D

C B D

Page reference string: A B C A B D A D B C B
Three pages of physical memory

5 7 5

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement:
Adding More Memory

• Add more physical memory, what happens to
performance?
–  Ideally the numbers of page faults should should decrease as

the number of available frames increases
–  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
–  If 1 page frame (any strategy) : Number of page faults? (lots)

• 12 page faults, one fault for every page
–  If 12 frames : Number of page faults? (fewer) more than we

need
• 5 page faults

Maria Hybinette, UGA Maria Hybinette, UGA

First-In-First-Out (FIFO) Algorithm:
Add Memory (3 Frames to 4 Frames)

• 4 frames

1 2 3

4 1 2
5 3 4

●  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
●  3 frames (3 pages can be in memory at a time per process)

1 2 3 4

5 1 2 3
4 5

●  FIFO Replacement – Belady�s Anomaly
»  Violates the Principle: More frames ⇒ less page faults
»  9 PF -> 10 PF (more page faults as we increase memory)
»  There is some string that have more page faults)

Maria Hybinette, UGA Maria Hybinette, UGA

Summary : Page Replacement:
Add memory

• Add more physical memory, what
happens to performance?
–  Ideally the numbers of page faults should should

decrease as number of available frames increases
–  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
–  If 1 page frame : 12 faults every access is fault
–  If 3 page frame: 9 faults
–  If 4 page frame: 10 faults
–  If 12 frames : 5 faults

Maria Hybinette, UGA Maria Hybinette, UGA

Page Replacement Comparison

• Add more physical memory, what
happens to performance?
–  LRU, OPT: Add more memory, guaranteed to have

fewer (or same number of) page faults
• Smaller memory sizes are guaranteed to contain a
subset of larger memory sizes

–  FIFO: Add more memory, usually have fewer page
faults

• Belady�s anomaly: But may actually have more page
faults!

Maria Hybinette, UGA Maria Hybinette, UGA

Implementing LRU
• Software Perfect LRU (Stack)

–  OS maintains ordered list of physical pages by reference time
–  When page is referenced: Move page to front of list (top)

• slow, worst case search n pages to find oldest
–  When need victim: Pick page at back of list (bottom) fast (1)
–  Trade-off: Slow on memory reference (find it), fast on replacement

• Avoid reference Cost: Hardware Perfect LRU
–  Associate register with each page (fast access)

• When page is referenced: Store system clock in register (fast)
–  When need victim: Scan through registers to find oldest clock (slow)
–  Trade-off: Fast on memory reference, slow on replacement (especially as

size of memory grows). Expensive.
•  In practice, do not implement Perfect LRU

–  LRU is an approximation anyway, so approximate it even more.
–  Goal: Find an old page, but just old enough

• not necessarily the very oldest

Maria Hybinette, UGA Maria Hybinette, UGA

Clock or Second Chance Algorithm

• Hardware (use a reference bit)
–  Keep use (or reference) bit for each page frame initialized

to 0.
–  When page is referenced (increment)

• set use bit (1), making it less likely to be replaced.
• Operating System

–  Page replacement: Look for page with where use bit is clear
(0) (has not been referenced for a while),

•  Pages that are set to 1 are decremented and clock is reset as well and
gets a second chance.

–  Implementation:
• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits while searching for replacement.
• Stop when find page with an already cleared use bit, replace

this page

Maria Hybinette, UGA Maria Hybinette, UGA

Clock Algorithm Example

• Worst Case – behaves same as
FIFO:
–  All bits are set -> FIFO (slow)

Maria Hybinette, UGA Maria Hybinette, UGA

Clock Extensions

• Replace multiple pages at once
–  Intuition: Expensive to run replacement algorithm and to write

single block to disk
–  Find multiple victims each time (multiple zeros)

• Use a Two-handed clock
–  Intuition (problem of the 1 handed clock)

•  If it takes long time for clock hand to sweep through pages, then all
use bits might be set (all are 1s)

–  Traditional clock cannot differentiate between usage of different pages
(only between 1s and 0s).

–  Allow smaller time between “clearing use bit” and testing
(reading the bit).

• First hand: Clears use bit
• Second hand: Looks for victim page with use bit still cleared

Maria Hybinette, UGA Maria Hybinette, UGA

More Clock Extensions
Provide a richer “past” history than just one
bit.
• Add a software byte (to keep a bit mask)

–  Intuition: Keep track of history when last used

• Implementation: Reference bit
–  With each page associate a bit, initially = 0
–  When page is referenced bit set to 1.
–  Keep a history of reference bit in an (8 bits) byte:

• Shift reference bit for each page into high order bit, and
other bits right one bit.

• 11000100 (more recently used than below)
• 01110111
• 00000000 (not ben referenced at all.

–  àLowest number is the LRU page

Maria Hybinette, UGA Maria Hybinette, UGA

Other Issues (R/W)

• Use dirty bit to give preference to dirty pages (to stay)
–  Intuition: More expensive to replace dirty pages

• Dirty pages must be written to disk, clean pages do not
–  Replace pages that have use bit and dirty bit cleared

0, 0 Not recently used, not modified Best to replace
0, 1 Not recently used, but modified Needs to be written out
1, 0 Recently used, not modified Probably used again soon

1, 1 Recently used and modified Probably used again soon and
need to be written out

Maria Hybinette, UGA Maria Hybinette, UGA

Problems with
LRU-based Replacement

• Locality of reference:
–  Same pages referred frequently (warm pages)
–  Example: 2, 1, 3, 2, 4, 2, 4, 1, 5, 6, 2, …

• Leading question:
–  Is a page that has been accessed once in the past as likely to be

accessed in the future as one that has been accessed N times?

Maria Hybinette, UGA Maria Hybinette, UGA

Problems with
LRU-based Replacement

• Example: 2, 1, 3, 2, 4, 2, 4, 1, 5, 6, 2, …
• Problem:

–  Dislodges warm pages if a long sequence of one time page
references occur.

•  In the above ex, page 2 may get dislodged by the access pattern
…, 4, 1, 5, 6,

–  LRU does not consider frequency of accesses
• Solution: Track frequency of accesses of a page

–  Pure LFU (Least-frequently-used) replacement
• Problem: but LFU can never forget pages from the far past…

(so we need to add aging to the algorithm….)

Maria Hybinette, UGA Maria Hybinette, UGA

Questions

• How to allocate memory across competing
processes?

• What is thrashing? What is a working set?
• How to ensure working set of all processes fit?

Maria Hybinette, UGA Maria Hybinette, UGA

Allocating Memory across
Processes

• Problem:
–  2 processes and 25 free frames how are these frames divided

up between processes?

• Three General Approaches:
–  Global Replacement
–  Per-Process Replacement
–  Per-User Replacement (set of processes linked to a user)

Maria Hybinette, UGA Maria Hybinette, UGA

Global Replacement
• Global replacement

–  Pages from all processes lumped into single replacement pool
–  Each process competes with other processes for frames
–  Advantages:

• Flexibility of allocation
• Minimize total number of page faults

–  Disadvantages:
• One memory-intensive process can hog memory, hurt all other processes

(not fair)
• Paging behavior of one process depends on the behavior of other processes

Maria Hybinette, UGA Maria Hybinette, UGA

Per-process replacement
• Per-process free pool of pages:

–  Equal, Fixed Allocation: Fixed number of pages per process
• 100 frames and 5 processes, give each 20 pages.
• Fixed fraction of physical memory

–  Proportional Allocation:
• Proportional to size of address space of a process.
• Adjust size allocated if a process have higher priority

• Page fault in one process only replaces frame of that process
• Advantage: Relieves interference from other processes
• Disadvantage: Potentially inefficient allocation of resources

Maria Hybinette, UGA Maria Hybinette, UGA

Per-User Replacement

• Advantages: Users running more processes
cannot hog memory

• Disadvantage: Inefficient allocation

Maria Hybinette, UGA Maria Hybinette, UGA

Over Committing Memory
• When does the Virtual Memory illusion break?
• Example:

–  Set of processes frequently referencing 33 important pages - more than
the memory available (then you are stuck with always replacing a page
that is frequently referenced).

• Physical memory can fit 32 pages

• What happens?
–  System Repeat Cycle:

• Reference page not in memory
• Replace a page in memory with newly referenced page
• Replace another page right away again, since all its pages are in active

use…

Maria Hybinette, UGA Maria Hybinette, UGA

Thrashing

• Thrashing:
–  Definition: Spends more time paging than execution, i.e. system

reading and writing pages instead of executing useful
instructions

–  Observation – A global replacement algorithm aggravates the
problem.

–  Symptom: Average memory access time equals to disk access
time

• Breaks the virtual memory illusion because memory appears as
slow as disk rather than disk appearing fast as memory (system is
reading/writing instead of executing)

• Memory appears as slow as disk, instead of disk appearing as fast
as memory

–  Processes execute less – system admits more processes -> thrashing
gets worse

Maria Hybinette, UGA Maria Hybinette, UGA

System does not know it is
thrashing

•  If a process does not have �enough� pages, the page-fault rate is very high.
–  low CPU utilization.
–  operating system thinks that it needs to increase the degree of multiprogramming.
–  another process added to the system

•  Why the CPU utilization decreases:
–  Suppose a process need more frames, starts faulting, removing frames from others, in

turn making the other processes fault
–  Processes queue up for the paging device, CPU decreases
–  OS add processes that immediately need new frames further taking away pages from

running processes

Maria Hybinette, UGA Maria Hybinette, UGA

Thrashing: Solutions
• Limit thrashing by using a local replacement

–  Process does not steal frames from other and cause others
to thrash

–  Average service time for a page fault can still increase…
• Admission Control:

–  Determine of much memory each process needs
–  Long-term scheduling policy:

• Run only processes whose memory requirement can be satisfied
• What if memory requirement of one process is too high?

–  Observation: a process moves through different ``localities��
through out is lifetime

• Locality: Set of pages that are actively used together
–  Solution: Idea: Amortize page allocated so that a process

get enough page for its current locality….

Maria Hybinette, UGA Maria Hybinette, UGA

Motivation for Solution

• Thrashing cannot be fixed with better replacement policies
–  Page replacement policies do not indicate that a page must be

kept in memory
–  Only show which pages are better than others to replace

• Student�s analogy to thrashing: Too many courses
–  Solution: Drop a course (focus on other remaning courses)

• OS solution: Admission control
–  Determine how much memory each process needs
–  Long-term scheduling policy

• Run only those processes whose memory requirements can be
satisfied

–  What if memory needs of one process are too large?

Maria Hybinette, UGA Maria Hybinette, UGA

Working Set
•  Informal definition

–  Collection of pages the process is referencing frequently
–  Collection of pages that must be resident to avoid thrashing

• Formal definition
–  Assume locality; use recent past to predict future
–  Pages referenced by process in last T seconds of execution
–  Working set changes slowly over time

• Example (figure out number of frames needed by
inspecting the past using a window based approach)

A A B C B B B C D C D E B B E E D F B F D B B E D B

A B C B D E F

TimeΔ = 8

Maria Hybinette, UGA Maria Hybinette, UGA

- Balance Set -
• Motivation: Process should not be scheduled unless current working

set can be resident in main memory
• Divide runnable processes into two groups:

–  Active: Working set is loaded
–  Inactive: Working set is swapped to disk

• Balance set: Sum of working sets of all active processes
•  Interaction with scheduler

–  If balance set exceeds size of memory, move some process to inactive
set

• Which process???
–  If balance set is less than size of memory, move some process to active

set
• Which process?

–  Any other considerations?

Maria Hybinette, UGA Maria Hybinette, UGA

Working Set Implementation

• Leverage use bits (as in the clock algorithm)
• OS maintains idle time for each page

–  Amount of CPU received by process since last access to page
–  Periodically scan all resident pages of a process

• If use bit is set, clear pages’ idle time
• If use bit is clear, add process CPU time (since last scan) to idle

time
–  If idle time < ΔT , page is in working set

Maria Hybinette, UGA Maria Hybinette, UGA

Thought Questions
• How should value of ΔT be configured?

–  What if ΔT is too large?
• How should working set be defined when pages are shared?

–  Put jobs sharing pages in same balance set
• What processes should compose balance set?
• How much memory is needed for a �balanced system�?

–  Balanced system: Each resource (e.g., CPU, memory, disk) becomes
bottleneck at nearly same time

–  How much memory is needed to keep the CPU busy?
–  With working set approach, CPU may be idle even with runnable

processes

Maria Hybinette, UGA Maria Hybinette, UGA

Page-Fault Frequency Scheme
•  Observation: Thrashing has a high page-fault rate
•  Idea: Control page fault-rate by controlling # frames that are allocated to a

process
–  Too high page fault rate : process need more frames
–  Too low : process has too many frames

•  Approach: Establish �acceptable� page-fault rate (upper and lower bound)
–  If actual rate falls below lower limit, process loses frame.
–  If actual rate exceeds upper limit, process gains frame.

Maria Hybinette, UGA Maria Hybinette, UGA

Current Trend: Thoughts?
• VM code is not as critical

–  Reason #1: Personal vs. time-shared machine
• Why does this matter? Clouds?

–  Reason #2: Memory is more affordable, more memory
• Less hardware support for replacement policies

–  Software emulation of use and dirty bits
• Larger page sizes

–  Better TLB coverage
–  Smaller page tables
–  Disadvantage: More internal fragmentation

• Multiple page sizes

