

CSCI [4 | 6]730 Operating Systems

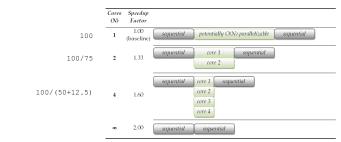
Maria Hybinette, UGA

File System

Chapter 10-11: File System

- •What are files? What is file meta-data?
- How are directories organized?
- •What operations can be performed on files?
- How are directories organized?
- •What is the difference between hard & soft links?
- How are files protected?

Maria Hybinette, UGA


Maria Hybinette, UGA

Motivation: I/O is Important

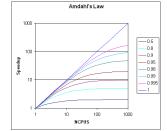
- How could we get applications to run faster?
 - 'speedup' applications by running them on multiple processors:
 - 1 processor runs in 10 seconds.
 - 4 processors runs in 5 seconds.
 - Speedup = T(1)/ T(n) = 2.
- Applications have two essential components:
 - Processing
 - Input/Output (I/O)
- I/O performance is the bottleneck and therefore it predicts application performance

I/O performance predicts application performance

• Amdahl's Law: (Speedup is limited by the slowest component) For a fixed problem size - if continually improve only part of application (e.g., processing), then achieve diminishing returns in speedup.

 Another Way to Look at IT: infinite speedup and affect only 15% of the overall task roughly: 1/(1-0.15) =1.18 times faster is max!

I/O performance predicts application performance


- Amdahl's Law: If continually improve only part of application (e.g., processing), then achieve diminishing returns in speedup
 - Example: infinite speedup and affect only 15% of the overall task roughly: 1/(1-0.15) = 1.18 times faster is max!
- f: portion of application that is improved (e.g., processing)
- speedup_f: speedup of a portion of application

• Speedup_{Application} =
$$1/((1-f) + (f/speedup_f))$$

- Examples:

- f = .15, speedup_f = 2, speedup_{app} = 1.08 • f = 1/3, speedup_f = 2, speedup_{app} = 1.20
- f = 1/2, speedup_f = 2, speedup_{app} = 1.33

Example: When only 10% of the application is sequential the maximum speedup using infinite number of processors is 10. 1/(1-9/10) = 10.

	-	
10% (.1)	10	5.26
10% (.1)	20	6.90
10% (.1)	100	9.17
10% (.1)	100,000	9.99 (~10)
25% (.25)	5	2.50
25% (.25)	10	3.08
25% (.25)	20	3.48
25% (.25)	100	3.88
25% (.25)	100,000	3.99 (~4)
40% (.40)	5	1.92
40% (.40)	10	2.17

Maria Hybinette, UGA

Maria Hybinette, UGA

Role of OS for I/O

- Standard library
 - Provide abstractions, consistent interface
 - Simplify access to hardware devices
- Resource coordination
 - Provide protection across users/processes
 - Provide fair and efficient performance
 Requires understanding of underlying device characteristics
- · User processes do not have direct access to devices
 - Could crash entire system
 - Could read/write data without appropriate permissions
 Could hog device unfairly
- OS exports higher-level functions
 - File system: Provides file and directory abstractions
 - File system operations: mkdir, create, read, write

Abstraction: File

• User view

- Named collection of bytes (defined by user)
 - Untyped or typed
 - Examples: text, source, object, executables, applicationspecific
- Permanently and conveniently available

Operating system view

- Map bytes as collection of blocks on physical nonvolatile storage device
 - Magnetic disks, tapes, NVRAM, battery-backed RAM
 - Persistent across reboots and power failure

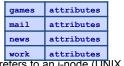
Files Attributes: Meta-Data

System information associated with each file:

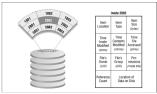
- Name only information kept in human-readable form.
- Type needed for systems that support different types.
- Location pointer to file location on device/disk.
- Size current file size.
- · Protection bits controls who can do reading, writing, executing.
- Time, date, and user identification data for protection, security, and usage monitoring.
- Special file?
 - Directory, Symbolic link…

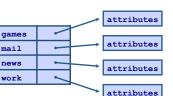
Meta-data is stored on disk:

- Conceptually: meta-data can be stored as an array on disk (e.g., directory)


{atlas:maria:143} ls -lig ch11.ppt 231343 -rw-r--r-- 1 profs 815616 Nov 4 2002 ch11.ppt

Maria Hybinette, UGA


Maria Hybinette, UGA


Directory Implementation

- Directory system function: Maps ASCII names onto what is needed to locate the data
- Where do we store the files' attributes?
 - A simple directory: fixed sized entries attributes stored with the entry

Directory in each entry just refers to an i-node (UNIX implementation)

Directory Structure

• A directory "file" is a sequence of lines; each line holds an i-node number (index-node)

and a file name

895690	""
288767	""
287243	"maria.html"
287259	"gunnar.txt"

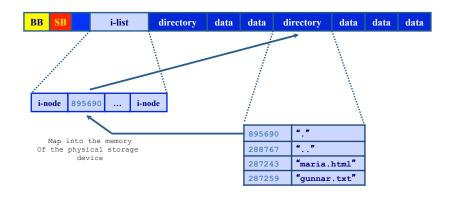
- The data is stored as binary so we cannot simply cat to view it:
- but some UNIXs allow an "octal dump" (other formats also available)) and -c

0000000	\0	۱r	252	312	\0	\f	\0	001		\0	\0	\0	\0	004	g	377
0000020	\0	\f	\0	002			\0	\0	\0	004	b	013	\0	024	\0	\n
0000040	m	a	r	i	a		h	t	m	1	\0	\0	\0	004	b	033
0000060 Maria Hybinette, UGA	\0	024	\0	\n	g	u	n	n	a	r		t	x	t	\0	\0

Directory Organization

- Organization technique: Map file name to blocks of file data on disk
 - Actually (indirectly), map file name to file meta-data (which enables one to find data on disk)
- Simplest approach: Single-level directory
 - Each file has unique name
 - Special part of disk holds directory listing
 - Contains <file name, meta-data index> pairs
 - How should this data structure be organized???
- Two-level directory
 - Directory for each user
 - Specify file with user name and file name
 - Disadvantage: Each user cannot organize files

Maria Hybinette, UGA


Directories: Tree-Structured

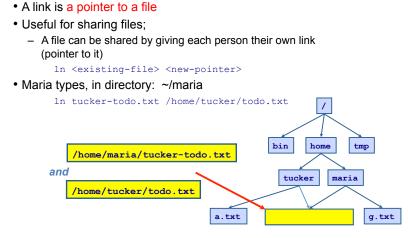
- Directory listing contains <name, index>, but name can be directory

 Directory is stored and treated like a file
 - Special bit set in meta-data for directories
 - User programs can read directories
 - · Only system programs can write directories
 - Specify full pathname by separating directories and files with special characters (e.g., \ or /)
- Special directories
 - Root '/': Fixed index for meta-data (e.g., 2)
 - This directory: .
 - Parent directory: ..
- Example: mkdir /a/b/c
 - Read meta-data 2 '/' (by default 2 is root in linux), look for "a": find <"a", 5>
 - Read 5, look for "b": find <"b", 9>
 - Read 9, verify no "c" exists; allocate c and add "c" to directory

Maria Hybinette, UGA

File System Expanded

Acyclic-Graph Directories


- More general than tree structure
 - Add connections across the tree (no cycles)
- Create links from one file (or directory) to another
- Hard link: "1n a b" ("a" must exist already)
- Idea: Can use name "a" or "b" to get to same file data
- Implementation: Multiple directory entries point to same meta-data

link("maria.html", "tucker.html");

390 "." 367 "" 288767 "" 287243 "maria.html" 287259 "munnar.html"					<i>4</i> 7
288767 "" 288767 "" 287243 "maria.html" 287259 "munnar t	5690	ao 4 ,7		895690	"
287243 "maria.html"				288767	
3 maria.html" 287259 "guppar t	7	7"		007040	4
	4	maria.html"		287243	maria.html
	59			287259	"gunnar.txt"
	"gunnar.txt"	gunnar.txt	1 6	007040	"tucker.html"

Maria Hybinette, UGA

Why Links?

Creating Links

• Changes to a file affect every link:

{atlas} cat file_a
This is file A.
{atlas} ln file_a file_b
{atlas} cat file_b
This is file A
{atlas} echo "appending this to b" >> file_b
{atlas} cat file_b
This is file A.
appending this to b
{atlas} cat file_a
This is file A.
appending this to b

Maria Hybinette, UGA

Seeing Links

Compare status information :

{saffron:maria:104} 1s -1 file_a file_b file_c -rw-r--r-- 2 maria 36 May 24 10:52 file_a -rw-r--r-- 2 maria 36 May 24 10:52 file_b -rw-r--r-- 1 maria 16 May 24 10:55 file_c File mode, # links, owners name, group name, #bytes, date, pathname

• Look at i-node number:

{saffron:maria:105} ls -i file_a file_b file_c
3534 file_a 3534 file_b
5800 file_c

- Directories may appear to have more links: {saffron:maria:106} ls -ld dir drwxr-xr-x 2 maria users 68 Apr 7 17:57 dir/ {saffron:maria:107} mkdir dir/hello {saffron:maria:108} ls -ld dir drwxr-xr-x 3 maria users 68 Apr 7 17:58 dir/
- This is because subdirectories (e.g. directories inside dir/) have a link back to their parent.

Removing a Link

- Removing or deleting a link does not necessarily remove the file (why?)
- Only when the file *and* every link is gone will the file be removed

Maria Hybinette, UGA

Symbolic Links

- The links described so far are hard links
 - A hard link is a pointer to a file which must be on the same file system
- A symbolic link is an *indirect pointer* to a file
 - Stores the pathname of the file that it points to
 - Symbolic links can link across file systems
- Symbolic links are listed differently:

{saffron:ingrid:62} ln -s dir ~/unix/d/Sdir
{saffron:ingrid:62} ls -lFd dir ~/unix/d/Sdir
lrwxr-xr-x 1 ingrid staff 3 1 Apr 21:51 /home/ingrid/unix/d/Sdir@ -> dir
drwxr-xr-x 3 ingrid staff 102 1 Apr 21:39 dir/

Maria Hybinette, UGA

Maria Hybinette, UGA

Delete

Rename file

Copy file

Review: File Operations

- Traverse pathname, allocate meta-data and directory entry

- Find (or allocate) blocks of file on disk; update meta-data

- Remove directory entry, free disk space allocated to file

Allocate new directory entry, find space on disk and copy

Truncate file (set size to 0, keep other attributes)

· Create file with given pathname /a/b/file

Read from (or write to) offset in file

- Free disk space allocated to file

- Change permissions in meta-data

Change directory entry

Change access permissions

Hard Linking Directories?

• Question for thought Should it be permitted?

Maria Hybinette, UGA