
Maria Hybinette, UGA Maria Hybinette, UGA

CSCI	[4|6]730	

	Opera2ng	Systems	

File	System:	Implementa2on	

Maria Hybinette, UGA Maria Hybinette, UGA

How	are	file	systems	implemented?	

• How	do	we	represent	
–  Directories	(link	file	names	to	file	“structure”)	

–  The	list	of	blocks	containing	the	data	
–  Other	informa2on	such	as	access	control	list	or	permissions,	owner,	

2me	of	access,	etc?		

• How	can	we	be	smart	about	the	layout?	

Maria Hybinette, UGA Maria Hybinette, UGA

File	System	Design	Mo2va2ons	

• Workloads	influence	design	of	file	system	

• File	characteris2cs	(measurements	of	UNIX	and	

NT):	

–  Most	files	are	small	(about	8KB)	
• Block	size	can’t	be	too	big	(why	not?)	
• Is	this	s2ll	true?	Why?	

–  BUT	-	Most	of	the	disk	is	allocated	to	large	files	

• (90%	of	data	is	in	10%	of	number	of	files)	

• Large	file	access	should	be	reasonable	efficient.	

• Support	various	file	access	pacerns…	

Maria Hybinette, UGA Maria Hybinette, UGA

File	System	Design	Mo2va2on	(cont)	

• Access	pacerns:	
–  Sequen2al:	Data	in	file	is	read/wricen	in	order	

• Most	common	access	pacern	

–  Random	(direct):	Access	block	without	referencing	the	predecessor	

block	

• Difficult	to	op2mize	

–  Access	files	in	same	directory	together		

• Spa2al	locality	
–  Access	meta-data	(i-node,	FCB)	when	access	file	

• Need	meta-data	to	find	data	

Maria Hybinette, UGA Maria Hybinette, UGA

File	Opera2on	Implementa2on	

• Seek:	Reposi2oning	within	a	file:	
–  Directory	searched	for	appropriate	entry	&	current	file	

posi2on	pointer	is	updated	(also	called	a	file	seek)	

• Dele2ng	a	file:	
–  Search	directory	entry	for	named	file,	release	associated	file	

space	and	erase	directory	entry	

• Trunca2ng	a	file:	
–  Keep	acributes	the	same,	but	reset	file	size	to	0,	and	

reclaim	file	space.	

Maria Hybinette, UGA Maria Hybinette, UGA

File	Opera2on	Implementa2on	

•  Create	a	file:		
–  Find	space	in	the	file	system,	and	add	a	directory	entry.	

• Wri2ng	in	a	file:	

–  System	call	specifying	name	&	informa2on	to	be	wricen.		

•  Given	name,	system	searches	directory	structure	to	find	file.	System	keeps	write	
pointer	to	the	loca2on	where	next	write	occurs,	upda2ng	as	writes	are	
performed.	Update	meta-data.	

•  Reading	a	file:	
–  System	call	specifying	name	of	file	&	where	in	memory	to	s2ck	contents.	

Name	is	used	to	find	file,	and	a	read	pointer	is	kept	to	point	to	next	read	
posi2on.	(can	combine	write	&	read	to	current	file	posi3on	pointer).	Update	
meta-data.	

Thought Questions: How should files be accessed on reads
and writes? How can we avoid reading/searching directory
on every read/write access?

Maria Hybinette, UGA Maria Hybinette, UGA

• Need	to	caches	open	file	pointers	
–  HINT:	we	have	file	descriptors	in	UNIX,	it	is	a	reason	for	this.	

• How	do	we	do	this	procedurally?	

Maria Hybinette, UGA Maria Hybinette, UGA

Opening	Files	

• Observa2on:	Expensive	to	access	files	with	full	pathnames	

–  On	every	read/write	opera2on:		
• Traverse	directory	structure	
• Check	access	permissions	

	

•  Idea!:	Separate	open()	before	first	access		
–  User	specifies	mode:	read	and/or	write	

–  Search	directories	once	for	filename	and	check	permissions	

–  Copy	relevant	meta-data	to	system	wide	open	file	table	in	memory	

–  Return	index	in	open	file	table	to	process	(file	descriptor)	
–  Process	uses	file	descriptor	to	read/write	to	file	

• Mul2-process	support:	via	a	separate	per-process-open	file	table	where	
each	process	maintains	

–  Current	file	posi2on	in	file	(offset	for	read/write)	
–  Open	mode	

Maria Hybinette, UGA Maria Hybinette, UGA

Mul2-Process	File	Access	Support	

• Two	level	of	internal	tables:	
–  Per-process	open	file	table		

• Tracks	all	files	open	by	a	process	(process-centric	
informa2on):	

–  Current	posi2on	pointer	(on	read/write)	where	did	it	read/
write	last,	and	access	Rights	

–  Indexes	into	the	system-wide	table	for	other	info.	

–  System-wide	open	file	table	
• Process	Independent	informa2on	

–  Loca2on	of	file	on	disk	
–  Access	dates,	file	size	
–  File	open	count	(#	processes	accessing	file)	

Maria Hybinette, UGA Maria Hybinette, UGA

Example:	Accessing	Files	

	(Steps	via	open())	
1.  Search	directory	structure	(part	

may	be	cached	in	memory)	

2.  Get	meta-data,	copy	(if	needed)	

into	system-wide	open	file	table		

3.  Adjust	count	of	#processes	that	

have	file	open	in	the	system	

wide	table.	

4.  Entry	made	in	per-process	open	

file	table,	w/	pointer	to	system	

wide	table	

5.  Return	pointer	to	entry	in	per-

process	file	table	to	applica2on	

open(*filename)

user space kernel space disk space

‘in-core’ directory structure file meta-data

directory structure

read(fd)

system-wide
open file table

per-process
open file table

file data blocks

file meta data

user space kernel space disk space

Maria Hybinette, UGA Maria Hybinette, UGA

Goals	

• OS	allocates	logical	block	numbers	(LBN)	to	meta-data,	file	data,	

and	directory	data	

–  Workload	items	accessed	together	should	be	close	in	LBN	space	

•  Implica2ons	

–  Large	files	should	be	allocated	sequen2ally	
–  Files	in	same	directory	should	be	allocated	near	each	other	

–  Data	should	be	allocated	near	its	meta-data	

• Meta-Data:	(though	ques2on)	Where	is	it	(or	should	it	be)	stored	

on	disk?	

–  Embedded	within	each	directory	entry	

–  In	data	structure	separate	from	directory	entry	

• Directory	entry	points	to	meta-data	

Maria Hybinette, UGA Maria Hybinette, UGA

Alloca2on	Strategies	

•  Progression	of	different	approaches	(reminiscent	of	memory	

structure	‘progression’	of	approaches)	

–  Con2guous	
–  Extent-based	
–  Linked	
–  File-Alloca2on	Tables	
–  Indexed	
–  Mul2-level	Indexed	

• Ques2ons/Issues:	
–  Amount	of	fragmenta2on	(internal	and	external)?	

–  Ability	to	grow	file	over	2me?	

–  Seek	cost	for	sequen2al	accesses?	
–  Speed	to	find	data	blocks	for	random	accesses?	

–  Wasted	space	for	pointers	to	data	blocks?	

Maria Hybinette, UGA Maria Hybinette, UGA

Con2guous	Alloca2on	

•  Allocate	each	file	to	con2guous	blocks	on	disk	
–  Meta-data:	(1)	Star2ng	block	and	(2)	size	of	file	(base	&	bound)	

–  OS	allocates	by	finding	sufficient	free	space	

• Must	predict	future	size	of	file;	Should	space	be	reserved?	

–  Examples:	IBM	OS/360,	CDROMS,	DVDs.	

•  Advantages:	
–  Licle	overhead	for	meta-data	

–  Excellent	performance	for	sequen2al	accesses	

–  Simple	to	calculate	random	addresses	

•  Disadvantages:	
–  Horrible	external	fragmenta3on	(Requires	periodic	compac2on)	

–  May	not	be	able	to	grow	file	without	moving	it	

•  Solu2on:	Extends	--	pointer	to	extent(s)	in	meta-data	(i-node)…	See	next	

A A A E B E B B B C C C

A A A B B B B C C C Free E

Maria Hybinette, UGA Maria Hybinette, UGA

Extent-Based	Alloca2on	

• Allocate	mul2ple	con2guous	regions	(extents)	per	file	(e.g.,	Veritas	File	

System).	

–  Meta-data:	Small	array	(2-6)	designa2ng	each	extent		

• Each	entry:	star2ng	block	and	size	
•  Improves	con2guous	alloca2on	

–  File	can	grow	over	2me	(un2l	run	out	of	extents)	

–  Helps	with	external	fragmenta2on	

•  Advantages:	
–  Limited	overhead	for	meta-data	

–  Very	good	performance	for	sequen2al	accesses	

–  Simple	to	calculate	random	addresses	

•  Disadvantages	(Small	number	of	extents):	

–  External	fragmenta2on	can	s2ll	be	a	problem	

–  Not	able	to	grow	file	when	run	out	of	extents	

D A A A D B D B B B C C C B B

Maria Hybinette, UGA Maria Hybinette, UGA

Linked	Alloca2on		

•  Allocate	linked-list	of	fixed-sized	blocks	
–  Meta-data:	Loca2on	of	first	(fixed	size)	block	of	file	

•  Each	block	also	contains	pointer	to	next	block	
–  Examples:	TOPS-10,	Alto	

•  Advantages:	
–  No	external	fragmenta2on	

–  Files	can	be	easily	grown,	with	no	limit	

•  Disadvantages:	
–  Cannot	calculate	random	addresses	w/o	reading	previous	blocks	

–  Sequen2al	bandwidth	may	not	be	good	

•  Try	to	allocate	blocks	of	file	con2guously	for	best	performance	

–  Reliability	-	loose	pointer	(1)	cluster	blocks	(2)	user	double	linked	list		

•  Trade-off:	Block	size	(does	not	need	to	equal	sector	size)	
–  Larger	⇒	??	,	Smaller		⇒		??	[Thought	Ques2on]	

D A A A B B B B C C C B B D D D D B
Maria Hybinette, UGA Maria Hybinette, UGA

File-Alloca2on	Table	(FAT)	

•  Varia2on	of	Linked	alloca2on	(e.g.,	MS-DOS,	OS/

2)	

–  Keep	linked-list	informa2on	for	all	files	in	on-disk	

FAT	table		

–  Meta-data:	Loca2on	of	first	block	of	file	

•  And	then	lookup	rest	in	FAT	table	
–  FAT	located	at	beginning	of	each	par22on	

•  indexed	by	block	number	

•  entry	contains	block	number	of	next	entry	

•  Comparison	to	Linked	Alloca2on	

–  Advantage:	Random	access	improved	because	disk	

head	can	read	loca2on	in	FAT	

–  Disadvantage:	Read	from	two	disk	loca2ons	for	

every	data	read	(FAT	+	actual	block)	

–  Op2miza2on:	Cache	FAT	in	main	memory	

•  Advantage:	Greatly	improves	random	accesses	

•  S2ll	very	hard	to	access	random	file	blocks):	

3

10
11
7

10 2 7 4 12

2

12
14
-1

-1

11 3 6 14

0

2
3
4
5
6
7

1

8

10
11
12
13
14
15

9

File A: Links of Physical Blocks

File B: Links of Physical Blocks

File A starts here

File B starts here

Maria Hybinette, UGA Maria Hybinette, UGA

Indexed	Alloca2on	

•  Allocate	fixed-sized	blocks	for	each	file	
–  Meta-data:	Fixed-sized	array	of	block	pointers	

•  Allocate	space	for	ptrs	at	file	crea2on	2me	

–  Directory	Entry:	Address	of	index	block	

•  Advantages:	
–  no	external	fragmenta2on	(fixed	sized	blocks)	

–  supports	random	access	

•  Disadvantages:	
–  waste	of	space	(pointer),	space	wise	worse	than	linked	

list	

•  A	file	of	one	block	need	the	ENTIRE	addi2onal	block	for	
the	index	block	

•  Need	to	know	file	size	priory	
•  Implementa2on	Issues:	

–  How	big	should	an	index	block	be?	

•  not	too	small:	limits	file	size	

•  too	big:	lots	of	wasted	ointers	
–  How	do	we	accommodate	very	large	files?	

•  linked,	mul2leveled,	combined	

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

directory

jeep 19

file index block

9
16
1
10
25
-1
-1
-1

19

Maria Hybinette, UGA Maria Hybinette, UGA

Mul2-Level	Indexed	Files	

•  Varia2on	of	Indexed	Alloca2on	
–  Dynamically	allocate	hierarchy	of	pointers	

to	blocks	as	needed	

–  Meta-data:	Small	number	of	pointers	

allocated	sta2cally	

•  Addi2onal	pointers	to	blocks	of	pointers	
–  Examples:	UNIX	FFS-based	file	systems	

•  Comparison	to	Indexed	Alloca2on	

–  Advantage:	Does	not	waste	space	for	unneeded	

pointers	

•  S2ll	fast	access	for	small	files	

•  Can	grow	to	what	size??	
–  Disadvantage:	Need	to	read	indirect	blocks	of	

pointers	to	calculate	addresses	(extra	disk	read)	

•  Keep	indirect	blocks	cached	in	main	memory	

triple indirect

double indirect

single indirect

direct
address to data

blocks

size block count

time stamps(3)

owners (2)

mode

data

data

data

. . .
data

. . .

data

data

.
data

data

data

data

. . .
. . .

. . .

i-node contains 15 pointers

12 direct
blocks

Intuition: most files are small

Maria Hybinette, UGA Maria Hybinette, UGA

Unix	i-nodes	

• 4.3	BSD		file	system	

• Inode	
–  	12	direct	block	addresses			
–  			1	indirect	block	of	addresses	
–  				1	double-indirect	addresses	

• Any	block	can	be	found	with	at	most	3	disk	accesses	

• Example:	if	block	addresses	are	4	bytes	and	blocks	are	

1024	bytes	what	is	the	maximum	file	size?	

–  Number	of	block	addresses	per	block	=	1024/4	=	256	

• Number	of	blocks	mapped	by	direct	blocks	à	12	

• Number	of	blocks	mapped	by	in-direct	blocks	à	256		(256	addresses)	

• Number	of	blocks	double	in-direct	blocks	à	2562	à	65,536	

–  Max	file	size:	(12	+	256	+	65,536)	*	1024	=	66MB	(67,383,296	bytes)		

• Modern	file	system	have	1	triple	index	blocks	 Maria Hybinette, UGA Maria Hybinette, UGA

Free-Space	Management	

• Mo2va2on:	Need	to	re-claim	space	from	deleted	

files,	keep	a	free	space	list,	indexed	by	blocks.	

• Two	main	approaches	to	implement	the	free	‘list’:	

–  Bit	Vector	
–  Linked	Lists	

Maria Hybinette, UGA Maria Hybinette, UGA

Bit	Vector	

•  Represent	the	list	of	free	blocks	as	a	bit	vector,	1	bit	represen2ng	one	
block	:	

	 	111111111111111001110101011101111...	
–  If	bit	i = 0	then	block	i	is	free,	if	i = 1	then	it	is	allocated	

•  Advantages:	Simple	to	use.	

•  Disadvantages:	The	vector	can	be	large,	17.5	million	elements	for	a	9	

GB	disk	(2.2	MB	worth	of	bits)	

•  Jus2fica2on:	if	free	sectors	are	uniformly	distributed	across	the	
disk	then	the	expected	number	of	bits	that	must	be	scanned	

before	finding	a	“0”	is	n/r 	where	
–  n =	total	number	of	blocks	on	the	disk	

–  r =	number	of	free	blocks	

If a disk is 90% full, then the average number of bits to be
scanned is 10, independent of the size of the disk (Really?)

Not likely,
if they were
I/O would be

poor

Maria Hybinette, UGA Maria Hybinette, UGA

Linked	List	Representa2ons	

• In-situ	linked	lists	(no	wasted	space)	

• Grouped	lists	(to	find	blocks	quicker)	

D

Next
group
block

GD

Free blockAllocated block

Maria Hybinette, UGA Maria Hybinette, UGA

File	System	Consistency	

• Mo2va2on:	Recover	from	a	system	crash	before	modified	files	wricen	

back	

–  Leads	to	inconsistency	in	FS	

–  fsck	(UNIX)	&	scandisk	(Windows)	check	FS	consistency	

•  Approach:	
–  Check	both	(1)	blocks	(block	consistency)	and	(2)	files	(consistency)	separately.	

•  Algorithm	1:	Block	Consistency:	

–  Build	2	tables,	each	containing	counter	for	all	blocks	(init	to	0)	

•  1st	table	checks	how	many	2mes	a	block	is	in	a	file	

•  2nd	table	records	how	o|en	block	is	present	in	the	free	list	
–  >1	not	possible	if	using	a	bitmap	

–  Read	all	i-nodes,	and	modify	table	1	

–  Read	free-list	and	modify	table	2	

–  Consistent	state	if	block	is	either	in	table	1	or	2,	but	not	both	

•  Algorithm	2:	File	Consistency:	

–  Use	a	file	counter	instead	of	a	block	counter	(appear	in	directories,	compare	

with	link	count	stored	in	inode)	

Maria Hybinette, UGA Maria Hybinette, UGA

Examples:	Inconsistent	States	

•  File	system	states	

(a)  	(1-0)	Consistent		
(b)	(0-0)	missing	block	-	no	harm	but	wasted	space	

(c)	(0-2)	duplicate	block	in	free	list	-	ok,	just	add	to	free	list	

(d)	(2-0)	duplicate	data	block	5	-	if	either	files	are	removed	block	will	be	on	free	list,	

leading	to	situa2ons	where	block	is	in	both	free	list	and	USE	list,	if	both	are	removed,	

block	in	free	list	twice	

ACTION:	allocate	new	block	to	copy	block	5	into	it,	insert	copy	in	one	of	the	files	

