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ABSTRACT: Distributed agent-based architectures can be used to build powerful models and simulations. Although 
such architectures can themselves be used as a means of interoperating with other simulations, it can more useful to 
integrate them into a standard simulation interoperability architecture such as HLA, leveraging the benefits of each. 
 
Instances of one such agent-based architecture, Cougaar, have been integrated with other models as federates in HLA 
federations. Cougaar is a Java-based architecture for the construction of robust large-scale distributed agent-based 
applications. It has been used to demonstrate the feasibility of using advanced agent-based technology to conduct rapid, 
large scale, distributed logistics planning, execution, and replanning in extremely chaotic environments in DARPA's 
Advanced Logistics Program and UltraLog Program, and to demonstrate effective analysis of logistics support for an 
FCS Unit of Action in the Army's Future Combat Systems program. 
 
This paper describes how a Cougaar-based agent society modeling a small logistics supply network was integrated as a 
federate in V1.3 and 1516 HLA federations. It describes how to interface the society and the HLA RTI; how to 
synchronize society time with HLA RTI time; and how to map agents, objects, and actions in the society to HLA objects 
and interactions. The lessons learned in this demonstration integration effort can be applied to large-scale efforts, such 
as integrating large Cougaar-based logistics simulations with combat simulations (e.g., OneSAF). 
 

 
1 Introduction 

Distributed agent-based architectures such as Cougaar [1] 
and others [2] can be used to build powerful models and 
simulations.  
 
Agents are independent software entities that react to 
events and initiate actions by themselves. Different agent-
based architectures yield agents with varying capability 
levels. Agents can have or define roles, tasks, beliefs, 
desires, or intentions. Agents can be static (remain on 
their original platform) or mobile (can move to another 
platform). Some agents are considered intelligent and 
some agent systems are considered intelligent [3].  
 
A distributed system is a collection of separate processes 
or information systems that can act together as a single 
system. Distributed agent computing involves agent-based 

systems that operate in a distributed manner. They are 
used to implement complex behavior or to model or 
simulate complex systems. 
 
Although distributed agent-based architectures can 
themselves be used as a means of interoperating with 
other simulations, it can be more useful to integrate them 
into a standard simulation interoperability architecture 
such as HLA, leveraging the benefits of each and 
allowing them to interoperate with existing compliant 
simulations. In this work we demonstrated integration of a 
distributed agent-based architecture (Cougaar) with a 
standard simulation interoperability architecture (HLA) 
by designing and developing a prototype Cougaar-based 
logistics simulation that was also an HLA federate. 



2 Distributed Agent Computing with 
Cougaar  

Cougaar is a distributed multi-agent system infrastructure 
developed to provide a flexible framework in which to 
solve complex problems.  
 
2.1 Cougaar Architecture 

Cougaar (for Cognitive Agent Architecture) is a Java-
based architecture, which is well suited to integration with 
HLA because its rich design can model diverse objects 
and interactions between those objects. Problems modeled 
within the Cougaar architecture are capable of reacting to 
a dynamically changing environment. As plans change, 
Cougaar, seen as a workflow engine, adapts. The solution 
is reworked creating a modified workflow for the plan, 
composed of viewable, traceable components [1]. 
 
The Society is an important concept in the Cougaar 
architecture. The Cougaar Society is composed of a 
collection of Agents with various capabilities (plugins) 
that work together to solve a particular problem (see 
Figure 1). The agents within the society can be organized 
into Cougaar Communities. The communities can be 
multi-tier with logically related agents, which usually 
tackle a particular sub-task or may share common 
information that is not made available to the rest of the 
agents in the society. Membership in Cougaar 
Communities is not distinct, so an agent may be a 
member of one, many, or no community. 
 
Organizing the conceptual society onto a physical 
platform necessitates the definition of the Cougaar Node, 
defined as a single Java Virtual Machine (JVM) instance. 
Agents and communities may be grouped onto a node 
based upon proximity to a data source, such as a database, 
or to facilitate inter-agent communication, as the JVM is 
used to shortcut the message transport layer. Agents 
sharing a single JVM benefit from loop back in-memory 
transport. It might be cogent to place agents with heavy 
interactions on the same node as long as CPU and 
memory constraints are not overburdened.  
 
Agents are Cougaar components with a defined 
functionality and a local memory store called a 
Blackboard. The functionality (or behavior) of the agent 
emerges from the composite of plugins within the agent’s 
makeup. The agents are responsible for scheduling the 
execute cycles of the plugins and the management of the 
messaging system that is responsible for inter-agent 
communications. Removing the details of messaging from 
the plugins allows the plugins to focus on domain specific 
functionality instead of infrastructure details. The plugins 
themselves represent the business logic, which passes 

information between itself, other plugins within the agent, 
and other agents, by publishing objects to the local 
Blackboard.  
 
The Blackboard is the collective memory store of the 
agent. It implements a publish/subscribe API. Each plugin 
is able to view objects on the Blackboard by creating 
subscriptions. The subscriptions show the plugin a view 
of the Blackboard in which it is interested. Likewise, 
plugins add or publish objects to the Blackboard. The 
published objects are available to all plugins within the 
agent. These Blackboard objects can be used as a means 
of communication and are persisted. The Cougaar 
infrastructure facilitates notification of all changes 
affecting a plugin’s subscriptions within a transaction. 
The transaction represents the adds/removes/changes 
made to objects described by the subscriptions since the 
plugin’s last execute cycle. This ensures that the plugin is 
processing a complete and consistent set of interesting 
Blackboard objects. All changes that a plugin makes to 
the Blackboard are kept local to that plugin until the 
plugin has completed its cycle at which time the entire set 
of changes is advertised to all agent members via updates 
to their subscriptions. 
 
The Logic Provider (LP) is an agent component, which 
watches Blackboard activity. They are very lightweight 
and are responsible for messaging and Blackboard 
modifications. All adds, rescinds and changes to objects 
on the Blackboard invoke an LP. The use of a Logic 
Provider is nearly transparent to the plugin developer. A 
plugin need only publish an inter-agent object to the 
Blackboard and the LP will silently handle the message 
transport. 
 
Two common communication patterns used in the 
Cougaar Architecture are Plugin-Plugin and Agent-Agent. 
The plugin-to-plugin communications uses asynchronous 
messaging within a JVM. This usually takes the form of a 
query or object published to the Blackboard resulting in 
one or more responses received back. The agent-to-agent 
messaging relies upon its Logic Providers to translate the 
message into “message space” [4]. 
 
2.2 Running a Cougaar Society 

Cougaar societies can be defined within an XML file and 
run manually with the scripts provided with the Cougaar 
infrastructure.  The XML files define the agents and their 
plugin content. Most societies require a boilerplate set of 
plugins within each agent. Plugins that may be found in 
most agents are Service plugins that establish a 
client/server relationship between agents, Yellow Pages 
plugins which assist the agent in finding services, White 
Pages plugins which do lookups to help agents find other 
agents (similar to DNS), PrototypeProviders that 



contribute to the creation of Assets, Servlets for data 
visualization, and domain plugins to handle the job the 
society is tasked to do. 
 
Many tools have been developed under the UltraLog 
project (an extension to Cougaar, described below) to aid 
the user in society run and control. Although bringing up 
a group of agents on each node can run a distributed 
society, it becomes difficult when your society grows to 
more than two or three machines. Acme was developed 
under the UltraLog project for automated testing and 
scripted tailoring of a society. Acme uses Ruby scripts 
and rule files to modify the behavior of the society pre-
run by adding/subtracting plugins or plugin parameters. 
Acme also allows the user to script time advances, 
perturbations, and data retrieval into a society’s run, 
which fosters growing complexity.  
 
The preferred user interface for the Cougaar society is the 
Java servlet as it easily lends itself to a distributed 

architecture. Servlets are server side, browser enabled 
modules that are very similar to a plugin. Many servlets 
aid the user in the visualization of interesting Blackboard 
objects. The UltraLog society uses servlets to monitor 
society completion and correctness, profile memory usage 
during runs, view objects on the Blackboard and traverse 
their lineage, manually advance society time, and much 
more. 
 
2.3 UltraLog as an Application of Cougaar 

UltraLog is a four-year project sponsored by the Defense 
Advanced Research Projects Agency (DARPA) [5]. It is a 
layer built on top of the Cougaar architecture with the 
goal of adding survivability to Cougaar by incorporating 
robustness, scalability, security and stability into its 
design. At the core, UltraLog was developed to model 
military logistics within a distributed multi-agent system. 
It is composed of plugin components, containing the 

Figure 1. Plugin, Agent, and Node Structure of the Cougaar Architecture [6] 
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business logic for modeled agents, domain specific data 
as well as additions to the Cougaar infrastructure. 
 
The UltraLog test society models the behavior of a large 
set of military organizations provided by a set of logistics 
support organizations, which interact with each other as 
they plan and execute a military operation.  Each agent 
models a single military organization with its physical 
assets, business rules, and relationships to other 
organizations. The present full UltraLog society has over 
500 agents running on more than twenty nodes. Each 
agent’s behavior is defined by its collection of plugins.  
 
All military organization agents produce demand for 
materiel based on their physical assets and their planned 
activities. The agents, also called organizations in this 
context, equipped with the appropriate demand plugins 
will produce demand tasks. The assets themselves 
encapsulate their demand rate information. Special 
plugins called PrototypeProviders are called during the 
creation of an asset to populate it with necessary 
information, usually derived from a database. For 
example, demand for DF2 (diesel fuel) can be easily 
traced within the society to the Major End Item (MEI) 
that produced that demand, such as a tank or a truck asset. 
Demand tasks are objects published to the Blackboard 
that communicate need for re-supply from inventory 
points. Each task has a lineage with a parent. Inventory 
points within the same organization or a supporting 
organization will receive the message and respond to the 
task with its ability to comply. The subtleties in the task 
structure, including preferences, scoring functions and 
confidence, allow a rich communication between agents. 
 
Like MEI assets, inventory assets are created with the 
necessary business logic that represents the practices of 
that organization. Inventory points are aggregation points. 
UltraLog’s inventory managers aggregate demand over a 
commodity and item pair. Although each demand task is 
distinct on the Blackboard with its own lineage, 
individual demand becomes indistinct within the 
aggregate bin. The inventory plugins will manage their 
inventory bins using detailed business logic tailored to the 
specific agent in which it resides. Re-supply tasks are 
issued by the inventory plugin to stock enough of a 
particular item to safely accommodate demand from its 
customers for a defined period of time and to keep the 
supply chain from falling behind the demand. 
 
In the UltraLog society, some of the re-supply tasks 
produced by inventory points are expanded into 
transportation tasks and sent to transportation agents. The 
transportation agents model ground, air, and ship 
transport and make use of Genetic Algorithms (GA) for 
scheduling.  The extent that the transportation plan meets 
the request is returned in the results attached to the 

transport task. The Cougaar infrastructure propagates that 
information up through the expanded supply task so all 
dependent agents receive notification of results. 
 
The society can run strictly in a planning mode where the 
solution is predictive or in an execution mode where the 
solution is generated through simulation or captured from 
real-world operations. The planning mode is based on 
static information and the operation takes place entirely in 
the future. One method of simulating execution of the 
plan involves jumping Cougaar’s society time forward by 
some expected time increment. As time moves forward, 
demand generators (plugins built to produce simulated 
‘actual’ demand) are employed. The actual demand is 
derived from the predicted demand with some deviation 
generated using a Poisson distribution. Another method 
could be based on integration with combat simulation 
models that model individual vehicle activities. The 
execution demand is received by the inventory points who 
replace the predicted customer demand with the actual 
demand, where available, and modify the existing plan to 
accommodate any significant variance from the 
prediction. 
 
2.4 FCS Supportability as an Application of UltraLog 

The FCS (Future Combat Systems) Supportability 
prototype extends UltraLog functionality. The FCS 
Supportability (FCSS) society runs within the full 
UltraLog society but it centers on the Unit of Action 
(UA). The UA is modeled after the rapidly deployed and 
self-sufficient military brigade envisioned for FCS. The 
duration of its scenario is relatively short encompassing 
days instead of months.  Initially, FCSS is handling a 
single commodity, fuel. The agents in the UA are 
designed to reduce the logistics footprint, requiring much 
less support than a traditional brigade. The UA agents are 
also highly mobile; they traverse a hostile environment 
that makes the act of re-supplying more difficult. 
 
In keeping with this design, the functionality of the 
inventory plugin was extended to bring inventory 
management down to the MEI level. Each inventory asset, 
for example, can now refer directly to the vehicle as well 
as the item it maintains. Agents, in addition to modeling 
organizations, also model trucks and tanks. Because these 
mobile agents maneuver in and out of hostile territory, it 
is necessary to refill at convenient points. The inventory 
plugin was also extended to add new business rules and 
algorithms to the refill generation module of the inventory 
plugin that will find acceptable re-fueling points. 
 
The needs of the UA society also had a dramatic impact 
on the transportation plugins. The UA society has an 
extremely flat support structure; all the re-supply requests 
are now expanded into transport tasks. Instead of 



refueling an organization, as in the original UltraLog 
society, the fuel trucks must travel to each individual UA 
vehicle and meet the vehicle during its requested time. 
Being late or early may result in the truck arriving during 
an offensive period, putting the truck at higher risk. New 
GA scheduling rules were developed to handle this 
interesting scheduling problem. 
 
Simulation in the UA took on the characteristics of the 
society itself, in that its time advance is at a greater pace, 
hourly instead of daily, to better mirror the quickly 
changing scenario. The demand generators were also 
enhanced for FCSS to generate hourly actual demand as 
well as accept the simulation data from an outside source. 
This opens the way for FCSS to interact with third party 
simulation tools. 
 
3 The High Level Architecture (HLA) 

The High Level Architecture (HLA) is a standard 
technical architecture for the interoperation of 
simulations.  
 
3.1 Overview of HLA 

HLA is based on the idea that a single simulation cannot 
meet the needs of all users. Originally developed for the 
US Department of Defense under the leadership of the 
Defense Modeling and Simulation Office, it was specified 
as the standard technical architecture for all DoD 
simulations in 1996. The latest version of this HLA 
specification (1.3) was adopted in 1998. This 
specification formed the basis for the draft IEEE standard 
for simulation interoperability (IEEE 1516), which was 
approved as an open standard in 2000 [7, 8]. 
 
A group of simulations interoperating via HLA is known 
as a federation. A federation has three main functional 
components. The first component is the set of simulations 
themselves, referred to as federates. Federates can also be 
interfaces to live players and tools that passively collect 
simulation data and monitor simulation activities.  
 
The second component is the Runtime Infrastructure 
(RTI), which is a distributed operating system for the 
federation. It provides the following services for the 
federation: 
 
• Federation management 
• Declaration management 
• Object management 
• Ownership management 
• Time management 
• Data distribution management 
 

A reference RTI was originally available through DMSO. 
A variety of RTIs are now commercially available in 
HLA 1.3 and IEEE 1516 versions. Some of these RTIs are 
fully asynchronous while others are partially 
asynchronous (requiring periodic calling of a “tick” 
method to allow the RTI to perform operations). 
 
The third component of the federation is the RTI 
interface. This allows the federates to interface to the RTI 
and access its services. The federates interact with each 
other through these services. The HLA interface 
specification mandates APIs in various languages 
including Java and C++.  
 
The HLA Federation Object Model (FOM) describes the 
set of objects, attributes and interactions shared across a 
federation. It is specified in a file read by each federate at 
startup. 
 
Three general time synchronization methods can be used 
with HLA [9]: 
 
• No synchronization: Each federate advances time at 

its own pace. This results in federations running with 
divergent representations of time. 

• Conservative synchronization: This avoids the 
possibility of processing events out of time stamp 
order. Messages sent under this synchronization are 
given time stamps. In federates that can receive or 
send these messages, their time is referred to as 
logical time. Different federates can have different 
logical times. The RTI manages messages so they 
cannot be received by a federate until no earlier 
messages can be received; it manages time 
advancement requests with the same restriction. 

• Optimistic synchronization: This allows the 
possibility of processing events out of order, but 
provides a mechanism for rolling events back when 
this occurs. 

 
3.2 Purpose and Goals of Integration 

Existing military combat simulations lack sophisticated 
logistics components. As recent reports indicate, logistics 
support is critical to combat operations [10]. 
 
Although Cougaar-based logistics simulations provide 
capabilities not available in current military simulation 
systems, a roadblock to their use has been a lack of 
interoperability with these systems. The primary purpose 
of our work was to demonstrate the ability of Cougaar 
societies to interact with other simulations via HLA. 
Showing that Cougaar-based logistics capabilities are 
applicable to existing simulation test beds would allow 
credible proposals of simulation systems based on 
Cougaar-HLA linkages. Specifically, this would allow the 



addition of realistic simulation of logistics to combat 
simulations such as OneSAF.  
 
Our specific technical goals with respect to our 
demonstration prototype were as follows: 
 
• Demonstrate that a Cougaar-based society of agents 

can act as an HLA federate, successfully publishing 
information to the federation and receiving 
information from the federation. 

• Demonstrate that Cougaar time mechanisms can 
successfully integrate with HLA time 
synchronization. 

• Demonstrate that a Cougaar society can work with a 
variety of RTIs: 
o HLA 1.3 and HLA 1516. 
o Fully asynchronous and partially asynchronous 

(tick-based) 
o Java and non-Java based 

• Develop techniques for creating or modifying 
Cougaar societies to be HLA federates. 

• Identify further areas of research as well as additional 
functionality required in a full-scale Cougaar HLA 
federate. 

 
4 Integration Approach 

Our integration approach involved reducing in size an 
existing Cougaar-based logistics simulation society, 
splitting the society into two societies that modeled the 
same organizations but which performed different 
functions, augmenting the societies to operate as HLA 
federates, and then interfacing them with various RTIs.  
 
4.1 Federation and Society Design 

We started with a small Cougaar-based UltraLog society 
that simulated the logistics aspects of a military hierarchy 
and its use of various supply items such as fuel, 
ammunition, and supply parts. We pared the society down 
to model only bulk fuel consumption and to contain only 
two fuel-consuming battalions at the bottom of the 
hierarchy. These were an artillery battalion (1-35-ARBN) 
and an infantry battalion (1-6-INFBN). The society 
contained a total of 19 organizational entities, which 
included the two battalions, their organizational chain of 
command (with NCA, National Command Authority, at 
the top), and their supply hierarchy. 
 
A Cougaar agent modeled each organizational entity. 
Each of these agents contained a variety of plugins to 
perform their actions. The fuel-consuming organization 
agents contained a demand generation plugin to project 
their bulk fuel requirements and to generate bulk fuel 
Supply tasks to model these requirements. Other plugins 

would then obtain these tasks from the blackboard and 
order fuel.  
 
For the initial proof-of-concept demonstration we created 
an HLA federation with two federates. The first federate 
was a general simulation of the above logistics 
organization. The second federate was a specific fuel 
demand model. The first federate obtained fuel demand 
data from the second federate via HLA. 
 
To create the federation we duplicated our demonstration 
society into two societies:  
 
• A high-fidelity logistics society that performed the 

general simulation 
• A demand generation society to model fuel demand 
 
In the high-fidelity logistics society we removed the 
demand generation plugin for the fuel consuming 
organization agents. In the demand generation society we 
left this plugin, but removed others that dealt with the 
Supply tasks after they were generated. We also removed 
all organizations not necessary for the demand generation 
function. This pruned society contained seven agents. 
 
4.2 Non-Cougaar Federate 

To ensure that our prototype experiments were valid with 
non-Cougaar-based federates, we performed verification 
experiments where the demand generation society was 
replaced with a non-Cougaar federate that performed the 
same function. This was a Java-based, non-agent program 
that performed the demand modeling with no Cougaar 
code. 
 
4.3 RTI Selection 

We tested our prototypes with three HLA RTIs that were 
readily available to us and which covered the capabilities 
we want to test:  
 
• Pitch 1516 LE 
• Pitch 1.3 LE 
• DMSO NG 1.3 
 
This selection allowed us the feasibility of using Cougaar 
with both DMSO 1.3 and IEEE 1516 RTIs, with fully 
asynchronous (Pitch) and partially asynchronous (DMSO) 
RTIs, and with Java-based (Pitch) and non-Java-based 
(DMSO) RTIs. 
 
4.4 Simulation Models 

There are two types of simulation models that HLA is 
designed to handle: continuous (time-stepped) and 



discrete (event-driven). A Cougaar society can map into 
either of these, depending on how it is set up. Time moves 
ahead in a Cougaar society in two ways. First, it 
continuously advances at the same rate as real (wallclock) 
time. Second, time can be advanced ahead to some future 
time. 
 
If time is left to continuously advance with real time or is 
advanced ahead in equal steps, the Cougaar society maps 
into the time-stepped simulation model. If time is 
advanced in unequal steps, the Cougaar society maps into 
the event-driven model.  
 
A simulation can operate in real-time, scaled real-time, or 
non-real-time. Although Cougaar societies generally are 
not designed to operate in real-time, there is nothing 
preventing them from doing so, since Cougaar by default 
runs in real-time. A properly designed Cougaar society 
with agents appropriately distributed across adequate 
machines can operate in real-time in conjunction with 
other real-time simulations or with humans. The design 
must ensure that the society operation is not constrained 
by inadequate computing resources. 
 
However, the great majority of existing Cougaar societies 
perform simulations lasting on the order of minutes to 
hours of wallclock time that model operations and events 
on the scale of days or months. They require time to be 
advanced ahead to perform useful analyses. In these 
cases, if time is stepped evenly, the society would operate 
in scaled real-time. If stepped unevenly, it would operate 
in non-real-time. 
 
4.5 Time Management 

In a Cougaar society, simulation time (also known as 
society time) is initialized to the start of physical time (the 
time in the system being modeled by the simulation) at 
the beginning of a run. Simulation time then advances at 
the same rate as wallclock time (one second per second). 
 
Simulation time can be stepped to a future point, at which 
point it resumes advancing at the same rate as wallclock 
time. For an accurate simulation, time should not be 
stepped unless the society is in a state of quiescence 
(reached a steady state after a planning change or 
previous time step). Although Cougaar does not prevent 
this by default, a Cougaar society can be set up to wait for 
quiescence before allowing a time step. 
 
Here is how the general HLA time synchronization 
methods apply to Cougaar federates: 
 
• No synchronization: This is not useful for a Cougaar 

society in execution (simulation) mode. However, if a 
society is only used as a planning model, this would 

be fine as there would be no point in expending effort 
to synchronize the society. 

• Conservative synchronization: This is the appropriate 
mechanism for a Cougaar society in execution mode. 
It fits well with Cougaar’s time advancement 
mechanism. 

• Optimistic synchronization: This is not a good match 
for a Cougaar society because Cougaar currently 
cannot roll back time. Since federations can contain 
federates with different synchronization methods, this 
does not limit the ability of Cougaar societies to be 
federation members. 

 
4.6 Development Approach 

To minimize development time and maximize learning, 
we used an iterative development approach with three 
main phases. This approach allowed us to get the 
prototype working in a simple, albeit non-standard, 
manner before moving on to the correct but more 
complex way.  
 
The technical details of these steps as well as the lessons 
learned are covered in Section 5. 
 
1. Build a federation without HLA time management 

This federation included two federates, each mapping to a 
Cougaar society. It involved building the prototype 
societies and checking that they ran independently on the 
same computer with no Cougaar interactions, interfacing 
the Cougaar society to a Java-based 1516 RTI via a single 
ambassador class, communicating demand via supply 
interactions, and coordinating time via time interactions. 
It also involved updates to some plugins and the time 
advance servlet. Once this operated successfully, we 
tested it with a non-Cougaar federate performing demand 
generation, and then moved it to a Java-based 1.3 RTI and 
confirmed operation. 

2. Build a federation with HLA time management 

This federation also included two federates, each mapping 
to a Cougaar society (Figure 2). It involved upgrading the 
society-RTI interface from a class to a Cougaar service, 
moving to a non-Java-based, partially asynchronous 1.3 
RTI, and replacing time interactions with a standard RTI 
time synchronization mechanism. It also involved further 
updates to some plugins and the time advance servlet.  

3. Build a federation with a multi-node Cougaar society:  

This federation included three federates, two mapping to 
each of the two nodes in the high-fidelity logistics society, 
and the third mapping to the other society (Figure 3). It 
involved splitting the high-fidelity logistics society into 
two nodes and retesting the federation. 
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4.7 Results of Integration Experiments  

We met all of our technical goals during development and 
testing of the prototype system. 
We demonstrated interoperability in the following types 
of federations: 
 
• Two Cougaar societies as federates in an 

asynchronous and a partially asynchronous HLA 1.3 
federation 

• Two Cougaar societies as federates in an HLA 1516 
federation 

• A multi-node Cougaar society as two federates and 
another society as a third federate in an HLA 1516 
federation 

• A Cougaar society and a simple non-Cougaar 
simulation as federates in an HLA 1.3 federation  

• A Cougaar society and a simple non-Cougaar 
simulation as federates in an HLA 1516 federation 

 
We demonstrated the following operations: 
 
• Subscribing a Cougaar federate to specific HLA 

interactions 
• Detecting tasks in one society, transferring the task 

information via HLA interactions, and reconstituting 
the tasks in a second society 

• Synchronizing society time via HLA interactions 
• Interfacing a Cougaar society to the RTI via a single 

ambassador class 
• Subscribing plugins to specific HLA interactions 
• Interfacing a Cougaar society to the RTI via a 

Cougaar service 
• Synchronizing society time via the HLA mechanism 

using conservative synchronization 
 
We learned techniques for creating or modifying Cougaar 
societies to be HLA federates (described in Section 5). 
 
We identified further areas of research as well as 
additional functionality required in a full-scale Cougaar 
HLA federate (described in Section 6). 
 
5 Lessons Learned 

We learned or developed a number of techniques for 
creating or modifying Cougaar societies to be HLA 
federates. 
 
5.1  Interfacing Between Society and HLA RTI 

There exist a number of ways to interface between a 
Cougaar society and an HLA RTI. In our prototype we 
first created a singleton ambassador class that handled the 
communication. We used different ambassador classes for 

different RTIs instead of modifying the same one. This 
simplifies moving back and forth when necessary. 
 
The ambassador class performs interactions between the 
society and federation, including instantiating the RTI’s 
ambassador class, joining the federation execution 
(creating it first if necessary), connecting to interactions 
and objects. It also handles the interactions and object 
attributes from the federation and distributes them to the 
appropriate agent in the society. 
 
We later changed the interface to a Cougaar service, 
which essentially provided the same functionality (by 
wrapping the ambassador class) but in a Cougaar-
compliant manner. In a multi-node Cougaar society, the 
ambassador class is instantiated separately for each node. 
Each node thus becomes a separate federate. If this is not 
desired, the ambassador service would need to be 
modified to create only one federate per society. 
 
5.2  Implementing Time Synchronization 

We implemented conservative time synchronization in 
two different ways. For maximum flexibility, we used a 
servlet-based, user-directed time advancement mechanism 
in our demonstration societies. This allowed us to operate 
with a variety of simulation models. 
 
In phase one of the prototype, we implemented time 
synchronization without HLA time management. In this 
implementation, the high-fidelity logistics society 
advanced its own time directly and advanced time in the 
demand generation society using HLA interactions. When 
the user advanced time in the high-fidelity logistics 
society, it sent a time interaction to the RTI. When the 
demand generation society received the interaction, it 
advanced its time to the specified value. This scheme 
worked because the second society was so small it was 
already ready to advance time when the other society 
requested. We implemented it so we could focus on 
learning about interactions at that point in our 
development cycle. Although it works in special 
situations, it is not appropriate for general-purpose use. 
 
In phases two and three of the prototype, we implemented 
time synchronization with HLA time management. This 
implementation involved performing conservative time 
synchronization using the standard HLA mechanism and 
a modified version of the user-directed Cougaar time 
advancement mechanism. As described earlier, the 
existing Cougaar mechanism for advancing time directly 
advances time when the user requests it. To work with 
HLA, this mechanism must be expanded to obtain 
permission from the RTI before advancing time in the 
society. This augmentation involved implementing the 



ambassador class, adding plugins to handle time, and 
modifying the time advance servlet. 
 
5.3 Details of Time Management Integration 

Time synchronization with HLA time management 
requires close coordination between the two mechanisms. 
 
At initialization the ambassador class joins the federation 
execution, gets handles, and sets up interactions. It then 
performs the following operations to set up for time 
synchronization: 
 
• Enable asynchronous delivery of messages 
• Enable time-constrained mode (allows the federate to 

receive time-stamped messages); wait for 
confirmation 

• Enable time-regulating mode (allows the federate to 
generate time-stamped messages) with default 
lookahead and default current time; wait for 
confirmation 

• Request a time advance to the current society time 
 
From that point on, the ambassador class handles 
interactions and time advance requests asynchronously. 
 
The Cougaar society uses a servlet at the top-level agent, 
which allows the user to advance time. In this prototype, 
the user needs to manually confirm that the society has 
reached quiescence before attempting to advance time (in 
a full system this would be automated). For experimental 
purposes, the servlet allows the user to manually drive a 
time-stepped or event-driven style simulation (this also 
would be automated in a full system). 
 
Normally, this directly changes the society time. To work 
with the RTI time synchronization method, this needed to 
be changed by modifying the servlet and adding a plugin 
to the agent. Instead of directly changing the society time, 
the servlet now places a time change request object on the 
Cougaar blackboard for the agent.  
 
The plugin added to the agent subscribes to the time 
change request object. When it appears on the blackboard, 
the plugin reads the time request and calls the ambassador 
service with the time and a pointer to itself. The service 
makes sure that there isn’t a pending request for a time 
change and sends the time advance request to the RTI.  
 
If there is a pending request, the new request gets dropped 
in the prototype. This could be handled differently in a 
full implementation. 
 
If no other messages less than or equal to the new time are 
forthcoming, the RTI grants the time advance to the 
society. If the time advance request is granted, the 

ambassador service calls a callback method on the plugin 
to actually change the time. This design keeps all society 
time interaction in the plugin code and all RTI time 
interaction in the ambassador code. The ambassador class 
knows about the callback method through a simple Java 
Interface, so all society information is hidden from it. 
 
Whenever a time advance request is granted, the 
ambassador class stores the new federation time so that it 
can check whether the next request is successful. The RTI 
delivers messages to the society with times less than or 
equal to the new time, and the society starts handling 
them. If the time advance is not granted, the ambassador 
service does nothing. In this prototype it is up to the user 
to repeat the request. 
 
In this implementation, the user must make time requests 
in both societies using the Cougaar time advance 
mechanism. A time advance in a society was not granted 
until the other society had requested an advance to that 
time or beyond. 
 
5.4  Mapping Agents, Actions, and Objects 

A Cougaar society contains many objects, so mapping 
these objects to HLA actions and objects must be done 
with care to ensure acceptable performance. Data can be 
transferred in HLA via interactions (events) and/or object 
attributes. How these entities map to Cougaar entities is 
heavily dependent on the society design. 
 
In general, Cougaar agents or asset objects would map to 
HLA objects. This mapping should only be set up for 
those agents and objects where information needs to be 
transferred. This could be the case for equipment agents 
(i.e., where an agent is modeling a tank). 
 
Events in Cougaar would map to HLA interactions. 
Again, the mapping should only be made for those events 
where information needs to be transferred throughout the 
federation. 
 
Cougaar objects such as UltraLog tasks could be mapped 
either way. In our prototype, we only needed to know 
when the tasks appeared in the demand generation society 
and what they contained. In this case, it made sense to 
model them as interactions. The information was 
transferred throughout the federation and then the 
interaction disappeared. 
 
In other cases, tasks could be modeled as objects. Tasks 
can exist for an extended period of time and their contents 
can change. If this is important to capture in other 
federates, it would be appropriate to model the tasks as 
objects. 



6 Design Considerations for Full-Size 
Societies 

This section discusses some considerations for designing 
a full-size Cougaar society for integration with an HLA 
federation. 
 
6.1 Society and Federation Organization 

Society and federation organization need to be carefully 
considered when designing a full size Cougaar society 
that is HLA compliant. 
 
One factor to consider is the federate granularity: the level 
of mapping of federates to portions of a Cougaar society. 
The federate granularity should be based on what makes 
sense for the size and organization of the society, as well 
as what makes sense for interoperability with the non-
Cougaar federates. In our demonstration prototypes, each 
Cougaar node mapped to a federate. In a large complex 
society, however, a logical group of agents (covering 
multiple nodes) might logically constitute a single 
federate. For example, this might be a group of agents 
defining the transportation organization or modeling a 
specific combat organization. Single agents could even 
map to individual federates. However, if this design 
causes many of the normal Cougaar mechanisms to be 
bypassed, it might make sense to implement the agents 
differently. 
 
If a federation contains multiple Cougaar societies, a 
factor to consider is society design. Specifically, which 
agents are present in each society? There are two ways to 
organize the Cougaar societies. In our prototype we used 
a functional split where the same (or subset of the) agents 
had different functions. This allows the entire simulation 
organization to be modeled in a single society, with 
various organizational functions handled within the 
society or by other simulations in the federation. 
 
Another way to design the societies is with an 
organizational split. Each society would contain different 
agents in logical groupings. For example, one society 
could contain the combat organization agents while a 
second society could contain the transportation 
organization agents. In this case, a society could be 
replaced by another federate if it better modeled the 
organization. 
 
6.2 Time Synchronization 

The time advance mechanism in our demonstration 
prototype requires manual operation for experimental 
purposes. In a full operational society, this mechanism 
would need to be automated. The time advance requests 

would be triggered automatically, either according to a 
regular time schedule or driven by an appropriate event or 
events. The mechanism would also need a check to ensure 
that the society had reached quiescence before requesting 
a time advance. 
 
An important point to keep in mind is that Cougaar 
society time is always advancing at wallclock time, even 
though its HLA logical time is still that of its last time 
advancement grant. The time step in these federations 
needs to be large enough so that the society time advances 
an insignificant amount between these time steps. 
 
6.3 Adaptive Society Design 

There are enhancements that can be made to a society to 
allow it to operate more flexibly in the presence of a 
federation. 
 
The prototype HLA ambassador class hardcodes the HLA 
interactions and objects to which it subscribes, along with 
their attributes. The problem with this is that when we 
want to use a new interaction or when an interaction 
definition in the FOM file changes, we need to modify 
this class. 
 
A better way to do this would be to hardcode nothing in 
the ambassador class. Each plugin would register with the 
ambassador class and tell it which interactions and objects 
it was interested in. The ambassador class would then 
dynamically subscribe to the requested interactions, read 
the FOM file to get the attributes for each interaction, and 
then dynamically get the attribute handles.  
 
In addition, instead of hardcoding knowledge of objects 
throughout the federation, it could use object discovery to 
match up objects in federates with those in the society. 
Cougaar incorporates a sophisticated service discovery 
mechanism; object discovery could leverage it. 
 
6.4 Operation Independent of Federation 

For more flexibility and survivability, a society can be 
designed to operate whether or a not a federation is 
present, and whether or not the appropriate federates are 
present. For example, the society could be designed to 
contain various default plugins that perform default 
simulation operations. However, if a federation with more 
advanced simulation elements was present, these would 
be preferable to use. The society could check for the 
presence of federates that perform these functions; if not 
found, it would use the default plugins. 
 
Another approach would be to use the Cougaar Message 
Transport Service (MTS) and create an HLA-specific link 
protocol. This approach would be appropriate in an 



environment where a society may or may not be a 
member of a federation and where it has a number of 
other communication channels at its disposal. MTS would 
then select the appropriate communication method based 
on availability and prioritization of channels. This could 
also allow interoperation with simulations that exist 
outside of both the Cougaar society and the HLA 
federation. 
 
7 Conclusion 

We have described how a Cougaar-based agent society 
modeling a small logistics supply network was integrated 
as a federate in V1.3 and 1516 HLA federations. 
Although distributed agent-based architectures can 
themselves be used as a means of interoperating with 
other simulations, it can be more useful to integrate them 
into a standard simulation interoperability architecture 
such as HLA, leveraging the benefits of both 
architectures. Our work established how to interface the 
society and the HLA RTI; how to synchronize society 
time with HLA RTI time; and how to map agents, objects, 
and actions in the society to HLA objects and interactions. 
We also examined considerations for integrating a full-
size Cougaar society with an HLA federation. The lessons 
learned in this demonstration integration effort can be 
applied to large-scale efforts, such as integrating large 
Cougaar-based logistics simulations with combat 
simulations such as OneSAF. Such integrated simulations 
would provide greater effectiveness than combat-only 
simulations. 
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