
Proceedings of the 2008 Winter Simulation Conference 
S. J. Mason, R. Hill, L. Moench, and O. Rose, eds. 

 
 
 

TRANSPARENT AND ADAPTIVE COMPUTATION-BLOCK CACHING  
FOR AGENT-BASED SIMULATION ON A PDES CORE 

 
 

Yin Xiong, Maria Hybinette and Eileen Kraemer 

Computer Science Department 
University of Georgia 

Athens, GA 30602-7404, USA 
 

 
ABSTRACT 

We present adaptive computation-block caching that 
supports improved performance and is suited for agent-
based simulations.  The approach is illustrated in SASSY 
(Scalable Agents Simulation System).  SASSY leverages a 
Parallel Discrete Event Simulation for performance, but 
provides an agent-based API to the developer.  Agent-
based simulation is suited to computation-block caching 
because relevant calculations completed at each event may 
be relatively heavyweight and may be repeated.  The po-
tential savings of avoiding a computation entirely may off-
set the overhead cost of caching.  The approach is refined 
through the use of statistical methods for choosing which 
computation blocks should be cached or not.  If the rele-
vant computation is trivial, caching is not worth the cost. 
In other cases caching provides a substantial speedup.  
Our mechanism tracks these costs online and adjusts ac-
cordingly. It requires no additional coding but is automati-
cally integrated into applications.  We assess the  perform-
ance of the approach in a benchmark-application. 

1 INTRODUCTION 

Caching the results of expensive and redundant computa-
tions or database retrievals improves application scalability 
and execution time.  The idea of providing caching is not 
new but has been around since the 1960s when it was first 
introduced to  improve the performance of the Model 85, 
part of the System/360 IBM product line.  Typical parallel 
and distributed discrete event simulations (PDES) re-
compute events in time stamp order, without exploiting a 
computational result cache even if events may have been 
processed earlier.  It is thought that for most such simula-
tions events are fine grained (light weight) computations 
and these computations do not offset the overhead of cach-
ing enough to provide an improvement in performance. 
However a growing need exists for simulations that sup-
port agent-based simulation, in which events are coarser-

grained than the events assumed by traditional PDES sys-
tems. 

PDES events typically require less than a millisecond 
(Steinman and Wong 2003, Das et. al. 1994), while agent-
based simulation events can run for tens of milliseconds. 
Agent based simulations of robots (e.g., TeamBots (Balch 
1998) and Player/Stage (Gerkey et. al. 2003)) often assume 
a time step rate of 33 msec as this corresponds to the fre-
quency at which a video camera delivers images.  Further, 
all of the intervening time is typically used to process the 
information and compute a movement command.  How-
ever, these agent-based simulations do not scale well. 

Agents in an agent-based simulation (ABS) normally 
rely on a sense-think-act cycle. Agents sense the environ-
ment, consider what to do, and then act. Tile World, a test 
bed to evaluate reasoning of agents, requires substantial 
time to deliberate (Pollack and Ringuette 1990).  Tile 
World  was proposed in 1990 by Pollack and Ringuette and 
consists of a grid of cells on which various objects, such as 
tile workers, tiles, obstacles and holes, can exist. The tile 
workers (agents) can move up, down, left or right, and 
their objective is to pick up and move tiles so as to fill 
holes. Each hole has an associated  point value that is 
awarded to the agent upon filling the hole. A hole varies in 
size and point value. The agents know how valuable each 
hole is in advance; their overall goal is to get as many 
points as possible. Tile world simulations are dynamic be-
cause the environment changes continually over time. The 
objects appear and disappear at rates pre-determined by pa-
rameters of the simulator.   

(Uhrmacher et. al. 2000) implemented Tile World in 
JAMES, a DEVS based simulation system, and found that 
''thinking time'' required  almost 80% of an agent’s  time 
step, where a time step was close to 1 second.  The sense 
and act components used less than 20% of the total simula-
tion time.  (Lees et. al. 2004)  parameterized thinking time 
and  compared thinking and reactive agents (where reactive 
agents require little or no thinking time as they react di-
rectly to their sensor inputs) in a shared and central envi-
ronment in Tile World. They experimented with a modest 



Xiong, Hybinette and Kraemer 
 

number of agents (up to 64 agents) using a Linux cluster.  
The deliberating agents use an A* planner to generate 
plans of routes to tiles and holes within the tile world. 
Their planner incorporates a 10 ms “deliberation delay” per 
plan.  A* is a classic and frequently used planning algo-
rithm in agent based simulations that finds the least cost 
path between an initial point and a goal. It was proposed by  
(Hart et. al. 1968) in the late sixties.  A* provides an opti-
mal solution plan to the path planning problem but it does 
not provide any performance guarantee. A* overhead 
ranges between 10 ms and 1,000 ms on a 2GHz Pentium 
(Balch 2008).  While there are many extensions to A* 
(e.g., D* uses the initial plan as a baseline to plan new 
paths in dynamic environments instead of recreating the 
path from scratch (Stentz, A. 1994)) and alternate planning 
algorithms, A* remains popular as it is simple to imple-
ment and provides descent performance. 

The thinking step independent of particular planning 
algorithm, as observed by the agent-based simulation com-
munity, ranges from a complex step requiring lengthy 
computation intensive to a reactive step with negligible 
‘thinking time’. Accordingly, the performance of an agent-
based  simulation can be improved significantly by speed-
ing up the thinking process.  We exploit variable thinking 
time and use adaptive caching in which we cache the input 
parameters and the results of lengthy thinking in order to 
avoid re-computation – but avoid caching computations 
where the relevant time is trivial, such as with reactive 
agent that do not think, where caching may not be worth 
the cost.  

An agent’s thinking process may involve several input 
parameters and  possibly depend on a large state space, and 
the probability of encountering exactly the same set of pa-
rameters  and state variables can be low. Thus, caching the 
ultimate result of the whole thinking process may not be 
beneficial as the cache hit rate can be minimal.  Here, our 
approach of  block caching enables breaking the thinking 
process into smaller units that may be more amenable to a 
caching mechanism and less (as a whole) dependent on the 
state space.  

Our caching is flexible and transparent to the user, the 
application developer, as it requires no additional coding or 
recoding. By using a software cache pre-processor, caching 
code is integrated and compiled automatically and trans-
parently with the developer agent applications. Currently 
we run the processor before starting the simulation but in 
theory it can be run dynamically, on-the-fly, while the 
simulation is running. Our motivation is to make caching 
transparent to the user while improving scalability and per-
formance. 
 
2      RELATED WORK 
 
Caching is used in different applications and is integrated 
at different levels into the architecture including software, 

language systems and hardware.  Function caching or 
memoization is a technique suggested by the programming 
language research community to improve the performance 
of functions by avoiding redundant computations. Here, 
function inputs and corresponding results are cached in an-
ticipation of later reuse (Bellman 1957; Michie 1968; Pugh 
1989). 

Function caching is used for incremental computa-
tions, dynamic programming and in many other situations. 
Incremental computations allow for slight variation in 
function input. It makes use of previous results and adjusts 
it to generate new output. Using function caching to obtain 
efficient incremental evaluation is discussed in (Pugh and 
Teitelbaum 1989). Deriving incremental programs and 
caching intermediate results provides a framework for pro-
gram improvement (Liu and Teitelbaum 1995). Memoiza-
tion is available today as part of the Java programming 
language.  

Walsh and Sirer proposed simulation staging, a form 
of function caching, as a way to improve the performance 
of a sequential discrete event simulation in applications 
with a substantial number of redundant computations 
(Walsh and Sirer 2003). Their approach provides signifi-
cant speedup (up to 40x in a network application), but re-
quires extensive structural revision of code at the user ap-
plication level.   

Contrary to our approach, function caching techniques 
do not consider the cost of consulting the cache and are not 
adaptive.  Observe that if the cost of checking the cache 
exceeds the cost of just doing the computation, caching 
will degrade performance. Function caching also relies on 
an assumption of  no side effects (e.g., by variables in the 
state space) and that the function produces only one output. 

The PDES community have proposed different tech-
niques of reusing computations. In cloning (Hybinette and 
Fujimoto 2001) simulations cloned at decision points share 
the same execution path before the decision point and thus 
only perform those computations once; after the decision 
point simulations can further share computations as long as 
the corresponding computations  across the different simu-
lations are not yet influenced by the decision point. Up-
dateable simulation proposed by (Ferenci and Fujimoto 
2002) updates the results of a prior simulation run, called 
the base-line simulation, rather than re-executing a simula-
tion from scratch.  A drawback of this latter approach is 
that one must manage the entire state-space  of the baseline 
simulation.  Both of these mechanisms are appropriate for 
multiple similar simulation runs.  
 Another related approach used in optimistic simulators 
to improve the performance of rollbacks, lazy re-
evaluation, caches the original event in anticipation of it 
being re-used after a rollback and thus avoiding re-
computation (West 1988). Lazy evaluation, however, is 
only beneficial for events on the same execution path. 



Xiong, Hybinette and Kraemer 
 
We recently developed LP caching  (Chugh and Hybi-

nette 2004) for parallel and distributed simulators. LP 
caching is distinct  from the work presented in this paper, 
block caching.  Both approaches are independent of the 
simulation engine (i.e., it supports both conservative and 
optimistic simulation executives). However, in LP caching 
the middleware exploits the PDES paradigm of logical 
processes (LPs) and messages by intercepting communica-
tions between the simulation application and the simulation 
executive (See left of Figure 1). Here the caching middle-
ware is situated between the simulation kernel and the 
simulation application. When the kernel delivers an event 
to the kernel, the caching software intercepts it. In the case 
of a cache hit, the retrieved resultant state and message or 
messages are passed back to the kernel without the need to 
consult the application code. This scheme, as with our pro-
posed approach,  is also adaptive in the sense that it avoids 
consulting the cache when the computation is negligible. A 
significant between LP caching and block caching is that 
block caching does not rely on a simulation paradigm but 
can be plugged in to a variety of applications and applica-
tion levels (see left of Figure 1 for an example on how it is 
be integrated with a PDES simulation); it is simulation in-
dependent.  Block caching can improve the performance of 
functions or blocks transparently without any need for ap-
plication developer intervention (however a block or chunk 
of code currently requires annotations at the  beginning and 
end of potential block of code with a comment) of both the 
simulation application and simulation executive. Similar to 
(Walsh and Sirer 2003)’s approach (it can split a large 
computation into smaller sub-computations whose inputs 
and result(s) are cached to further improve performance. 

 

 
Figure 1: Caching Approaches: Our earlier approach 

(left) and our proposed approach right. 
 

Our goal of transparency is inspired by JiST, which  
infuses sequential discrete simulation semantics directly 
into the Java Virtual Machine (JVM) to provide a transpar-
ent user programmer interface (Barr et. al. 2004).  In JiST a 
rewriter reprocesses or rewrites simulation application 
class code in order to incorporate embedded simulation 
time operations. The rewriter is a dynamic class loader. It 
intercepts all class load requests and subsequently verifies 
and modifies the requested classes. The program transfor-
mations occur once, at load time, and does not rewrite the 
during execution. Although JiST does not provide caching 
functionality we hope in future work to explore embedding 

our caching middle-ware into the JVM to improve the in-
terface and further transparency.  

We propose computation-block caching, a transparent, 
flexible and adaptive approach to reduce redundant compu-
tations. It is transparent in the sense that no recoding is re-
quired on the part of application programmers. It is flexible 
since it can decomposable large computations into smaller 
and potentially re-order to improve performance.  It is 
adaptive in the sense that the caching mechanism is turned 
on when statistics shows that the benefit of caching ex-
ceeds computation by a pre-specified factor.  In the next 
sections we will discuss the approach, implementation and 
discuss initial performance results. 

3 APPROACH 

We define computation block to mean a chunk of code that 
may be a Java method or a number of lines of code with or 
without invocations of methods. Computation-block cach-
ing is not as rigid as traditional function caching. It allows 
state variables to be involved in caching and the result it 
returns is not limited to returning a single value. Consider 
the following computation block as an example: 
 

   int a; 
   int b; 
   methodA( a, b, c, d );  
   if( c > d )  // c, d: state variables) 
   doSomething( c ); 
   else 
  doSomethingElse( d ); 

 
 For traditional function caching, this chunk of code is 
not easily cacheable because it violates the basic rules for 
function caching, namely, it is not a function, but involves 
multiple functions and state variables. But the simulation 
application may have every reason to want to cache this 
chunk of code. One way for traditional function caching to 
solve the problem is to cache the functions separately, but 
the amount of recoding will be substantial as each function 
will need some recoding in order to make it cacheable. 
Furthermore the functions may write or read from variables 
that are not passed in as parameters (e.g., variables a and 
b). The state variables that affect the  functions need to be 
denoted and their updated values need to be copied back to 
the state variables. 
 Block caching solves the tedious task of recoding by 
utilizing a preprocessor that automates the process by gen-
erating  a new version of the code, on-the-fly, that includes 
calls to the caching middleware. To designate a computa-
tion function as “cacheable”, the application programmer 
provides a method-signature specification in a configura-
tion file. The following is a sample specification for a 
cacheable computation function or method called dummy1 
in the original code:  

 
 



Xiong, Hybinette and Kraemer 
 
   begin:dummy1 
   packageName: app     
   className: JPhold 
   return: length=double, point=int 
   parameters: int a, double b 
   stateVariables: int sex, int age  
   cachingFlag: on 
 end:dummy1 

 
Here “dummy1” is the name for a cacheable function. 

“JPhold” is the name of the Java class containing the 
function. “app” is the name of the Java package that 
“JPhold” belongs to. The passed-in parameters are an 
“int” and a “double”. There are two state variables in-
volved in the computation: “sex” and “age”. The result 
to be cached is the value of variable “length” whose data 
type is “double” and of variable  “point” whose data 
type is “int”. The caching flag for this function is set to 
be “on” for this particular run. 
 For a computation block that is not a Java method, but 
a chunk of code, we require that the application program-
mer mark the beginning and end of the block in their Java 
class code.  Note that this is not “recoding” as the markers 
are Java comments and they do not change the byte gener-
ated code. Taking the above computation block as an ex-
ample (which is a chunk of code rather than a function), 
the modified class code would look like this:  
 

   //beginComputationBlock dummy2 
   int a; 
   int b; 
   methodA(a, b, c, d);  
   if (c > d)//c,d: state variables) 
   doSomething(c); 
   else 
  doSomethingelse(d); 
   //endComputationBlock dummy2 

 
A simulation application can designate multiple 

computation blocks as “cacheable”.  A cacheable computa-
tion block does not need to be cached all the time. The user 
can specify which computation blocks to be cached for a 
certain simulation run by turning on the caching flags in 
the specification file. The caching flags can be set before 
the simulation begins to run and remain unchanged 
throughout the simulation, which is called “hard-caching”. 
The caching flags can also be set on or off during the simu-
lation run according to statistics computed on-the-fly, 
which is called “soft caching”.   

3.1 The Caching Middleware 

Our implementation includes two modules: a preprocessor 
that reads a configuration file and generates code on the fly 
and the cache middleware that manages caching and de-
termines whether to consult the cache or not. Figure 2 de-
picts the interactions between the caching modules and a 
pre-existing PDES simulation executive and its simulation 

application.  The pre-processor first reads a configuration 
file or stream (a stream if it generates code while the simu-
lation is running) then ‘recompiles’ the effected objects 
(red dashed arrows in the Figure denotes the flow of output 
of code to the effected modules). 

 
Figure 2: Workflow of Preprocessing 

 
The regenerated code enables the cache middleware to 
intercept and monitor cacheable function calls (or blocks) 
in both the simulation kernel and the simulation 
application. The cache is consulted  when the overhead of 
the computation time exceeds the caching overhead.  
 To provide user control whether functions or blocks 
are cached – a caching flag can set be set an unset on  a per 
block basis. A block’s flag can be changed at any time, be-
fore the application runs or while it is running. The state of 
the flag (on or off) is set in the configuration stream. A 
Statistic Manager (part of the cache middleware) keep 
track of cache and computational overhead to determine 
the threshold when to consult the cache or not.  When the 
Statistic Manager determines it is worthwhile to consult the 
cache and it is a hit it returns the cached results. In the case 
of a cache miss, the cacheable computation block is carried 
out and the result is cached for later reuse. 
 We implemented the cache middleware to  run both in  
distributed mode across several machines or on a single 
machine. Both version can build multiple caches on a sin-
gle machine. 
 The cache is implemented as a Java HashTable and 
indexed by the combination of package name, class name, 
computation name, passed-in parameters and the names of 
state variables involved in the computation. The result of 
the computation is stored with the index as a key-value pair 
in the hash table.  Our caching middleware can be used 
with both conservative and optimistic simulation kernels 
(or any application). It can also be used with both ABS 
simulation and non-ABS simulations. No changes to the 
underlying kernel are required. No changes to the simula-
tion application are required.   
 
3.2 The Preprocessor 
 
Existing caching schemes are not suitable for our purposes 
because they usually require substantial recoding in order 
to use the caching facilities. By “recoding” we mean 
manually modifying the code of the cacheable functions, 



Xiong, Hybinette and Kraemer 
 

such as adding, deleting or rewriting lines of code. There-
fore, such caching schemes involve “hard coding” which 
can be error-prone and time consuming. For cacheable 
functions, the recoding is usually on a function-by-function 
basis, i.e., for each cacheable function, the application pro-
grammer needs to do some recoding in order to make that 
function cacheable. For example, in (Chugh 2004), a 
cacheable function needs at least 4 lines of recoding.  For 
LP caching, however, a 4-line recoding may not be too 
much as it caches one cacheable function per LP. But for 
computation-block caching, LP events be decomposed and 
into multiple computation blocks to be “cacheable” (note 
that decomposing a function may also relieve chunks of 
code (or functions) to be dependent on less state variables 
and each other if reordering is advantageous). If each com-
putation block needs 4 lines of recoding to make it cache-
able, the amount of recoding necessary may make the task 
intimidating and time consuming. 
 The preprocessor in block caching completely relieves 
the application programmer of recoding in order to make a 
computation block cacheable. As Figure 2 shows, the Pre-
processor reads the configuration file and involved applica-
tion Java files to generate a new version of the application 
Java files, inserting caching-specific code that checks 
whether the caching flag is on and accesses the cache if 
necessary. Also Cache  middleware is updated accordingly. 
There is no need to invoke the Preprocessor for each simu-
lation run. It is invoked only when the specification for the 
cacheable computations is modified.  
 The time for preprocessing is decided by a few pa-
rameters: the number of cacheable computation blocks, the 
number of class files, and the length of class files. The 
Preprocessor scans the configuration file to find which ap-
plication Java files are involved in caching, then reads the 
files one by one and inserts caching-specific code at the 
right places.  
 
3.3 The Statistics Manager 
 
A feature of our method is that it allows both “hard cach-
ing” and “soft caching” options (recall that soft caching 
enables adaptive caching).  The Statistics Managers man-
ages soft and hard caching.  The Statistics Manager is 
composed of two sub-managers. One sub-manager  com-
putes the average caching overhead and the cost for each 
cacheable computation block on the target computer sys-
tem. Users run this sub-manager on their system and then 
compare the computation cost with the caching overhead to 
decide whether the “caching” flag should be turned on, and 
if on, what threshold value should be selected. The other 
sub-manager gathers information about the parameters, 
state variables and length of the computation as the simula-
tion runs. It then decides whether the caching flag should 
be turned on or off for a certain cacheable computation. If 
the benefit of caching surpasses a certain threshold speci-

fied by the user beforehand, or generated on-the-fly, cach-
ing will be turned on, otherwise, it will be turned off. 

4 PERFORMANCE 

Caching efficiency depends on at least three factors: cost 
of a cacheable computation, number of such computations, 
and the caching overhead. In general,  we expect better 
performance from caching as the cost of computation in-
creases and as the cost of cache consultation decreases.  
There are a few other issues to consider as well. At initiali-
zation time, the cache is empty – and therefore not at all 
effective. However, as the cache “warms” up, the perform-
ance improves. Accordingly, longer simulations are more 
likely to benefit from caching. The size of the cache is also 
important because for a given cache size, the number of 
key-value pairs stored is inversely proportional to the size 
of the cache. When the number of key-value pairs exceeds 
the cache size, either some of them will be cleared from the 
cache, or the cache size has to be increased, which means 
allocation of new memory space and a large amount of 
copying. 
 In our experiment, quantitative results were obtained 
using JPHold, a Java version of the PHold application (Fu-
jimoto, 2001). JPHold provides a synthetic workload using 
a fixed message population. Upon receiving a message, the 
LP schedules a new event whose destination LP is drawn 
from a uniform distribution ranging from 0 to one less than 
the number of LPs, which means that each LP is equally 
likely to be the destination of a message.  
 We tested our caching scheme on SASSY, an optimis-
tic PDES simulation executive implemented in Java (Hy-
binette  et. al. 2006) running of UNIX Workstations (pri-
marily SUN Ultra workstations) connected via 
Ethernet/Fast Ethernet to SUN Microsystems. Three types 
of experiments were performed: 1) Experiments as proof of 
concept of the basic caching technique; 2) Experiments to 
evaluate the role that pre-run statistics play in aiding deci-
sion making; and 3) Experiments to study the benefit of 
adaptive caching using statistics computed on-the fly.  
 Each of our experimental runs is defined by a set of 
parameters: the number of PEs (simulation schedulers), the 
number of Logical Processes (LPs, an LP is logically a se-
quential simulation ‘process’ scheduled by a PE), the mes-
sage population, total events to be processed, the initial 
cache size, the load factor of the hash table, the computa-
tion granularity and more. For our experiments reported 
here, we used 10 machines that ran 40 PEs with a total of 
1000 LPs evenly distributed over the 40 PEs. As worksta-
tions may have external loads and processes (not necessar-
ily related to our simulation runs) while we ran our ex-
periments we averaged the run time over all LPs to get the 
“mean time per event” which is then used in the speedup 
computation. For each setting, we ran the simulation 10 
times and used the mean time in our reported results. 



Xiong, Hybinette and Kraemer 
 

4.1 Basic Caching Experiments: Speedup  

We evaluated speedup by running the same program with a 
certain setting for both cache-on and cache-off options.  
That is, for each run, we controlled for all parameters ex-
cept the cache-on/cache-off  parameter.   No overhead is 
introduced in the cache-off condition. 
 Figure 3 shows the speedup of cache-on vs. cache-off 
by computation granularity. We defined granularity ac-
cording to the caching overhead and computation cost on 
our system. The lowest line represents the speedup for 
computations with fine granularity, which had a mean 
processing time of 1.689 ms; the middle line represents the 
speedup for computations with mid granularity, which had 
a mean processing time of 6.498 ms; and the top line repre-
sents the speedup for computations with coarse granularity 
and a mean processing time of 16.053 ms.  
 From Figure 3 we can see that the speedup is domi-
nated by computation granularity and number of total 
events processed. Coarse granularity computation resulted 
in the greatest speedup. For the same granularity, the 
longer the computation runs, the greater speedup we would 
gain by turning cache on,  until the cache hit rate ap-
proaches 100%, at which point the speedup curve flattens 
out. 
 

 
           Figure 3: Speedup by Computation Granularity 

 
4.2 Pre-run Statistics Computation 
 
To get an idea of the overhead of caching the Statistics 
Manager to collected and computed statistics about the 
cache overhead and the cost of the cacheable computations 
on our workstations using a benchmark application. The 
benchmark uses a Fibonacci computation to measure the 
caching overhead. The Fibonacci sequence has some quali-
ties that suit measuring the overhead. First,  it needs only 1 
parameter so we can easily control the range of this pa-
rameter which, in turn, controls the cache hit rate; second, 
the time needed for the recursive computation of Fibonacci 

covers a wide spectrum of time lengths, so we can generate 
workload of all kinds of granularities with the Fibonacci 
function; and third, it is easy to implement. Of-course the 
caching overhead varies depending on the application but a 
Fibonacci benchmark provides a reasonable ballpark esti-
mate. 
 The mean computation time for different values of the 
input parameter k by running Fibonacci on a certain k 100 
times and then computing and recording the average time. 
Table 1 shows a few lines from the statistics we gathered 
about running Fibonacci on our system: 

 
Table 1: Computation Costs 

 

k result mean 
Cumulative 

mean 
20 6765 0.16 0.025 
30 832040 19.31 1,689 
31 1346269 31.31 2.644 
35 9227465 214.9 16.05 
40 1.02E+08 2379.3 155.7 

 
 In the above table, k is the input parameter for the Fi-
bonacci function. The “result” column contains the result 
for the Fibonacci function with input  k. The “mean” col-
umn shows the mean cost for computing Fibonacci num-
bers with a certain k. The last column contains the cumula-
tive mean, which is the mean for the computation costs of 
Fibonacci sequence with parameters from 1 to k, namely, 
the mean of Fibonacci(1) + Fibonacci(2) + … + Fibo-
nacci(k).  The Fibonacci benchmark indicated that it is 
worthwhile to cache a function (or block) on SASSY when 
the granularity of computation is at least 1.5 ms (this is for 
10 machines and the test environment described earlier). 
 
4.3 Adaptive Caching Experiment: Hard Caching 
 
With the pre-computed statistics presented in the previous 
section, we know that any computation with a granularity 
greater than 1.5 ms is a potential candidate for our caching 
scheme, i.e., turning on cache will potentially enhance per-
formance. As a test, we selected a computation block 
which has a computation granularity of 2.64 ms. We des-
ignated it “cacheable” and turned on the caching flag for 
this computation block.  
 Figure 4 shows the speedup of cache-on over cache-
off for this computation block.  
 
 



Xiong, Hybinette and Kraemer 
 

 
 

Figure 4: Speedup: Hard Caching 
 

4.4 Adaptive Caching Experiments: Soft Caching 
 

Relying on pre-computed statistics is appealing because it 
is easy to use and the performance enhancement is guaran-
teed if the computation granularity can be accurately com-
puted beforehand. For simple computations, especially 
those driven by random numbers, if we know the distribu-
tion of the random numbers, we can use our Statistics 
Manager to obtain computation granularities in advance. 
But for computations that involve parameters whose distri-
butions are unknown beforehand, it is hard to compute sta-
tistics for their computation granularities without running 
the simulation.  
 Our Statistics Manager continuously collects statistics 
while the simulation is running –- so it is not necessary to 
provide pre-computed statistics. It computes (and re-
computes) statistics on-the-fly and makes decisions as to 
whether the cache should be turned on or off for a certain 
cacheable computation, according to the statistics and a 
threshold (pre-computed or not). 
 To test the on-the-fly decision making effectiveness of 
the Statistics Manager, we modified the previously-
mentioned computation block to involve one state variable 
in its computation. The state variable is “energy” which in-
dicates how much energy the agent possesses, which helps 
the agent to decide whether the task is worth taking up. If 
“energy” is lower than a predefined threshold, the agent 
gives up the task until a later time when its “energy” is re-
gained. We then ran the testing program with cache-off , 
“hard caching” and “soft caching” options. With “soft 
caching”, the Statistics Manager starts by gathering infor-
mation about the cost of the computations and frequency of 
cache reference. After some time, it accumulates enough 
information to approximate the cost for the passed-in pa-
rameters and the state variable. When it sees those parame-
ters and the state variable, it first finds out the approximate 
cost and compares the cost with the pre-computed cache 

overhead. If the cost is greater than the threshold, it turns 
cache on. If the cost is less than the threshold, it turns the 
cache off. 
 Figure 5 shows the speedup of “hard caching” vs. 
“soft caching”. The blue (lower)  line  represents the speed 
up gained over cache-off by “hard caching”, i.e. cache is 
turned on at the very beginning of the simulation (and does 
not change). The pink (top) line represents “soft caching”, 
i.e., the cache is turned off for fine-granularity computa-
tions and on for coarse-granularity computations. 

 
 

Figure 5: Hard Caching vs. Soft Caching  over Cache-off 
 
“Hard caching” and “soft caching” have their own fa-

vorite cases where one performs better than the other. For 
those computation blocks that mainly rely on input pa-
rameters whose distribution can be decided in advance, 
“hard caching” is more advantageous because  by the help 
of the Statistics Manager we can easily find out its compu-
tation cost. But for computation blocks that involve pa-
rameters whose distribution relies on run-time situation, 
“soft caching” would be more advantageous because the 
Statistics Manager will “learn” from the changing situa-
tion.   

 
5 CONCLUSIONS AND FUTURE WORK 

 
We designed and implemented computation-block caching, 
a new caching scheme,  and experimentally proved its mer-
its in applicability and performance.  
 The proposed caching mechanism handles both side 
effects (or dependencies of state variables) and the return 
of multiple results. The computation blocks are not limited 
to functions (or methods). It does not require recoding ei-
ther on the application level or on the kernel level. We de-
signed and developed a preprocessor that reads the applica-
tion-provided specifications and generates a cacheable 
version for each specified computation block. The specifi-
cation for cacheable computation blocks can be modified 



Xiong, Hybinette and Kraemer 
 

any time as needed. The preprocessor is invoked only 
when modifications are made to the specifications. 
 Further the caching scheme is adaptive in the sense 
that cache can be turned on and off for each individual 
cacheable computation block according to statistics gath-
ered before hand or on-the-fly. We provided a Statistics 
Manger to facilitate both hard caching and soft caching.  
 We experimentally proved that caching performance is 
dominated by computation granularity while also affected 
by many other factors including cache hit rate and length 
of simulation, all of which can be manipulated to improve 
performance.  
 We have tested our caching scheme on the JPHold and 
Fibonacci benchmark programs. Our next step is to test our 
caching scheme on standard ABS simulation applications 
such as Tile World and soccer simulations. 

REFERENCES 

Balch, T. 1998. Behavioral diversity in learning robot-
teams. Ph. D. thesis, College of Computing, Georgia 
Institute of Technology. 

Balch, T. 2008. Personal Communication, College of 
Computing, Georgia Institute of Technology. 

Barr, R., J. Zygmunt , R. R. Haas. 2004. JiST: Embedding 
Simulation Time into a Virtual Machine. Proceedings 
of EuroSim Congress on Modeling and Simulation 
September 2004. 

Chugh A. and M. Hybinette. 2004. Towards Adaptive 
Caching for Parallel and Discrete Event Simulation. 
Proceedings of Winter Simulation Conference 2004: 
336-343. 

Ferenci, S., R. M. Fujimoto, M. H. Ammar, K. Perumalla 
and G.R. Riley. 2002. Updateable Simulation of 
Communication Networks. In Proceedings of the 
Workshop on Parallel and Distributed Simulation 
:107-114. 

Fujimoto, R. M. 1990. Performance of Time Warp under 
synthetic workloads. Proceedings of the SCS Multi-
conference on Distributed Simulation Volume 22: 23–
28. 

Gerkey, B., R.T. Vaughan, and A. Howard, 2003. The-
Player/Stage project: Tools for multi-robot and dis-
tributed sensor systems. Proceedings of the Interna-
tional Conference on Advanced Robotics, 317–323. 
Coimbra, Portugal. 

Hybinette, M., E. Kraemer, Y. Xiong, G. Matthews and J. 
Ahmed. 2006. SASSY: A Design for a Scalable 
Agent-based Simulation System Using a Distributed 
Discrete Event Infrastructure. Proceedings of the 38th 
conference on Winter simulation.  

Lees, M. 2002. A history of the Tileworld agent testbed. 
Computer Science Technical Report No. NOTTCS-
WP-2002-1. http://www.cs.nott.ac.uk/WP/2002/2002-
1.pdf [accessed March 29, 2008] 

Lees, M., B. Logan, T. Oguara, and G. Theodoropoulos 
(2004). "HLA_AGENT: Distributed Simulation of 
Agent-Based Systems with HLA." Proceedings of the 
International Conference on Computational Science 
(ICCS'04) (pp. 907-915). 

Liu, Y. and T. Teitelbaum. 1995. Caching Intermediate 
Results for Program Improvement. ACM SIGPLAN 
Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (La Jolla, CA, June 
1995), 190–201.  

Logan, B., Theodoropoulos, G. 2001. The Distributed 
Simulation of Agent-Based Systems. IEEE Proceed-
ings Journal, Special Issue on Agent-Oriented Soft-
ware Approaches in Distributed Modeling and Simu-
lation, February 2001.  

Hart, P. E., Nilsson, N. J.; Raphael, B. 1968. "A Formal 
Basis for the Heuristic Determination of Minimum 
Cost Paths". IEEE Transactions on Systems Science 
and Cybernetics SSC4 (2): pp. 100–107. 

Pollack, M. E., and M. Ringuette. 1990. Introducing the 
Tileworld: Experimentally Evaluating Agent Architec-
tures.  Proceedings of the Eighth National Conference 
on Artificial Intelligence, AAAI Press, pp. 183-189. 

Pugh, W. 1988. An improved replacement strategy for 
function caching. Proceedings of the 1988 ACM Con-
ference on Lisp and Functional Programming July 
1988: 269–276.  

Pugh, W. and T. Teitelbaum. 1989. Incremental computa-
tion via function caching. Conference Record of the 
Sixteenth Annual ACM Symposium on Principles of 
Programming Languages (Austin, Texas, Jan. 11–13, 
1989), 315–328.  

Steinman, J. S. and J. W. Wong. 2003. The SPEEDES per-
sistence framework and the standard simulation archi-
tecture. Parallel and Distributed Simulation, 2003 
Proceedings. Volume 10-13 (June 2003): 11 – 20. 

Stentz, A. 1994. Optimal and efficient path planning for 
partially-known environments. In IEEE International 
Conference on Robotics and Automation. 

Uhrmacher, A. M., P. Tyschler and D. Tyschler. 2000. 
Modeling and simulation of mobile agents. Future 
Generation Computer Systems 17 (2): 107–118. 

Walsh, K. and E. G. Sirer. 2003. Staged simulation for im-
proving scale and performance of wireless network 
simulations. Proceedings of Winter Simulation Con-
ference, 2003. Volume 7-10: 667 – 675.



Proceedings of the 2008 Winter Simulation Conference 
S. J. Mason, R. Hill, L. Moench, and O. Rose, eds. 

 
 


