
Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. Hill, L. Moench, and O. Rose, eds.

QUANTATIVE ASSESSMENT OF AN AGENT-BASED SIMULATION
ON A TIME WARP EXECUTIVE

George Vulov, Tianhao He and Maria Hybinette

Computer Science Department
University of Georgia

Athens, GA 30602-7404, USA

ABSTRACT

We recently introduced SASSY, the design for a hybrid
simulator that provides an agent-based API atop a PDES
kernel (Hybinette et. al. 2006). Our hypothesis is that a
design like SASSY offers the advantages of an agent-based
paradigm for the application developer, but also provides
the performance advantages of a PDES kernel. Since the
time of our initial publication, most aspects of SASSY's de-
sign have been implemented, and we are now assessing our
hypotheses e.g., (He and Hybinette 2008). In this paper we
investigate performance advantages for a simple agent-
based application on SASSY. In most cases, agent-based
simulation environments are configured using a time-step
approach, where the simulation proceeds in discrete steps.
In this paper we evaluate the performance of a simple ap-
plication running in a traditional time-step simulation, and
also its performance when running on SASSY with PDES
support.

1 INTRODUCTION

Multi-agent simulation is becoming more prevalent in dif-
ferent areas of research, such as robotics (Balch, T. 1998;
Gerkey et. al. 2003), social animal studies (Balch, T. et. al.
2005, Luke et. al. 2005; Minar et. al. 1996), and game
theoretic research. The Scalable Agent-based Simulation
System (SASSY) project aims to leverage advances in the
field of Parallel Discrete Event Simulation (PDES) to
provide an agent-based API but with the scalable perform-
ance benefits of a PDES kernel. The SASSY architecture
consists of two layers: a standard PDES kernel and mid-
dleware which provides an agent-based API.

SASSY’s PDES kernel, based on the Time Warp syn-
chronization algorithm (Hybinette et. al. 2006) has been
completed. Figure 1 provides an illustration of SASSY’s
design and implementation. Individual agents are pro-
grammed by the application developer using the standard
agent-based sense-think-act paradigm. In order to support
the agents in a PDES kernel, each agent is provided a

proxy that “lives” in the PDES Simulation. The proxy
serves to translate agent activities expressed in the agent-
based API appropriately into discrete events in the PDES
kernel. An advantage to building the middleware atop a
standard PDES kernel is that advances in the PDES para-
digm can be transparently applied to speed up agent-based
simulations.

Figure 1: SASSY Architecture.

Our recent work reported in this paper has focused on

designing and implementing the agent-based middleware,
along with a simple multi-agent simulation application to
test its correctness and performance. The agent-based mid-
dleware aims to achieve parallel speedup by exploiting the
locality usually encountered in agent-based simulations.
Although in a multi-agent simulation all agents view and
modify a shared environment, usually the actuating region
of each agent is small compared to the overall size of the
environment. The SASSY middleware implements the
agent environment as a 3D Euclidean space. While the
agent environment is not fully generalized, assuming the
environment is Euclidean is not very restrictive and allows
for better techniques for parallelization. The approach to
distributed agent-based simulation presented here can eas-
ily be implemented for n-dimensional Euclidean space, al-
though 3-space was chosen for the current implementation.
 The agent-based paradigm dictates a number of re-
quirements for the PDES kernel, which has driven us to
add a few more advanced PDES techniques into the
SASSY kernel. We discuss these additions in the sections
below. First we provide some background on PDES simu-
lation systems and other related work.

Vulov, He and Hybinette

2 BACKGROUND AND RELATED WORK

Our architecture, previously described in (Hybinette et. al.
2006) is designed to leverage the efficiency, speed and
parallelism available in discrete event simulation (DES)
systems to support agent-based modeling (ABM). We use
a standard parallel discrete event simulation (PDES) ker-
nel paired with middleware to provide an agent-based
paradigm for the simulation application developers (e.g.,
like TeamBots (Balch 1998), Swarm (Minar et. al. 1996),
Mason (Luke et. al. 2005) or Player/Stage (Gerkey et. al.
2003).

The use of PDES for agent-based modeling is a rela-
tively new idea that has been used to support research in
soccer, biological systems and general purpose agent-based
models (see for instance (Uhrmacher 2001), (Logan and
Theodoropoulos 2001), and (Riley and Riley 2003)).
However, we believe there are several aspects of our ap-
proach that contribute to a novel high-performance design.
In particular, we use a “standard” PDES kernel, and we
provide a “standard” agent-based model view. Because we
use a standard PDES kernel we are able to easily leverage
existing and future performance technologies such as op-
timistic protocols, distributed execution and advanced effi-
cient Global Virtual Time calculations. Accordingly we
make the simulation application developer's job easier --
she can more directly map her problem to the simulator
without having to know the details of PDES.
 Most research utilizing agent-based simulation centers
on modeling autonomous agents (e.g., robots or automo-
biles) moving about a 2- or 3- dimensional environment.
These agents rely on a sense-think-act cycle where they
sense information about the local environment, think about
the information in the context of their own behavioral
state, then act in the environment. From the point of view
of a simulation kernel, these activities correspond to read-
ing state, processing it, and writing new state. A key chal-
lenge concerns maintaining a consistent environmental
state that agents can sense (read) and act upon (write).
 Logan and Theodoropoulos provide a comprehensive
and readable description of this problem in (Logan and
Theodoropoulos 2001). Their solution centers on Envi-
ronmental LPs (ELPs) in which environmental state is
managed and distributed. However their experimental re-
sults only include 1 central environmental LP with 64
agents (Lees et. al. 2007). Our approach is somewhat dif-
ferent, in that state is maintained by the agents and objects
in the environment directly to provide an intuitive API for
the ABM programmer. Also, our experiments include runs
with 3,000 or more interacting agents and 400 IMLPs.
Our interest management LPs (IMLPs) facilitate a publish-
subscribe protocol between the agents themselves. This is

similar to High Level Architecture (HLA) (Dahman et. al.
1997) interest manager approaches that use conservative
clocks (e.g. Tacic and Fujimoto's work reported in (Tacic
and Fujimoto 1998) and Wang, Turner and Wang's work in
(Wang et. al. 2003)). Tacic and Fujimoto's work focuses on
reducing network traffic in a simulation using a conserva-
tive protocol (HLA) while Wang, Turner and Wang de-
scribes how to integrate agents using different interest
management schemes into an HLA-based distributed simu-
lation.
 In SPADES and Player/Stage the agents are distrib-
uted and run as separate processes that connect to a single
threaded simulation engine (Riley and Riley 2003; Gerkey
et. al. 2003). Because these other simulation systems util-
ize a central resource (the simulation server) they are not
able to scale well on a distributed computer platform.
However, SASSY uses a standard PDES kernel and is able
to leverage the corresponding benefits. Our SASSY kernel
supports the optimistic synchronization paradigm which is
one of the standard synchronization protocols used in
PDES (Jefferson and Sowizral 1985; Fujimoto 1990). Per-
formance improvements for Optimistic PDES systems cen-
ter on reducing the cost of rollbacks and scalability on dis-
tributed computing platforms. Among the various
performance enhancements available to PDES systems,
SASSY leverages distribution of multiple processors, func-
tion caching, and lazy cancellation and re-evaluation.
 Our approach leverages lazy cancellation, a technique
used in optimistic simulators to improve the performance
of rollbacks. Lazy cancellation delays secondary rollbacks
and caches the results of the original rollback in anticipa-
tion of reusing the results and thus avoiding re-
computation (Gafni 1988). We now present our algorithm.

3 APPROACH

3.1 Exploiting Spatial Locality in a Distributed
Environment

As described in (Hybinette et. al. 2006), each agent is rep-
resented by a proxy logical process (LP), which maintains
an up-to-date version of the environment currently visible
to the agent. For efficiency and scalability the SASSY
middleware leverages the domain decomposition method
by dividing the environment in a number of 3D rectangular
regions, each of which is managed by an Interest Manager
Logical Process (IMLP). The IMLP implements a sub-
scribe/publish system for the proxy LPs to ensure that all
agents have a consistent view of the shared environment.

It should be noted that the distribution of the global
state amongst IMLPs is completely transparent to the
multi-agent application. Indeed, the granularity of the dis-

Vulov, He and Hybinette

tribution of the global environment can be controlled with
a parameter loaded at runtime. Developers of agent-based
simulations can adjust the size of the IMLP regions to suit
the needs of the particular application. Ideally, the size of a
region controlled by an IMLP should be roughly equal to
the area that an agent can directly modify.

Proxy LPs can send five basic types of messages to an
IMLP:

1. SUBSCRIBE
2. UNSUBSCRIBE
3. ENTER
4. LEAVE
5. UPDATE

A SUBSCRIBE message lets the proxy LP monitor

updates in a certain region without committing any
changes to the region. The IMLP sends a description of the
current region state back to the new subscriber. The
SUBSCRIBE message is not relayed to other agents cur-
rently in the region, since the observing agent cannot influ-
ence their actions. Correspondingly, UNSUBSCRIBE
message removes an observing agent and is not relayed.

An ENTER message notifies the IMLP that the agent
is going to be modifying the managed region. A modifica-
tion of the environment can be something as simple as the
agent moving its body into the region. An ENTER message
is relayed to all other agents subscribed to the region, since
the new entry could potentially influence their behavior.
Similarly, a LEAVE message indicates that the proxy LP
will not be committing any more changes to the region and
is also relayed to all other subscribers.

Finally, the UPDATE message is used by proxy LPs
to notify other agents’ proxy LPs of changes in the observ-
able environment. An UPDATE message is relayed by the
IMLP to all subscribers. The IMLP also processes the mes-
sage, maintaining an up-to-date local copy of the observ-
able environment in the region.

3.2 Optimizing Relayed Communication of the
Shared Environment

An implementation of the above design yields IMLPs that
do little but relay messages between proxy LPs; it may be
faster to let proxy LPs communicate environmental up-
dates directly to each other using a peer-to-peer mechanism
(He and Hybinette 2008). However, the relay mechanism
can be improved to enable IMLPs to act as a buffer be-
tween agents at different simulation times. As an example,
consider a fast-processing agent, F, which passes through a
region and sends UPDATE messages. Some physical time
later, a slower-processing agent, S, subscribes to the re-
gion. This is depicted in Figure 2. The ‘region’ is light and
agent F is in the region at time steps 2, 3, 4 and 5 at a wall

clock time before S. S enters the region at simulated time
2.

Figure 2: Example of an agent F entering a light color re-

gion and an agent S entering the same region.

 In a peer-to-peer communication schema, S’s
SUBSCRIBE message would roll back F’s time and force
F to re-process its movements through the region (note a
rollback of F may include F cancelling messages it sent to
other subscribers). This is illustrated in the lower image in
Figure 3, here S’s message at simulated time stamp 2 rolls
back F’s messages with later time stamps.

Figure 3: Message Progression as a slow-processing agent

enters a region where another agent has passed

 On the other hand, if S subscribes to the IMLP, the
IMLP should be able to replay F’s UPDATE messages to S
without rolling back F (and in turn possibly cancelling
message updates to other subscribers). This scenario is il-

Vulov, He and Hybinette

lustrated in the top image of Figure 3. Here the IMLP for-
wards the buffered messages with time stamps later than
S’s subscription message. Note this avoids rolling back and
cancelling messages to other subscribers.

Though we would like the IMLP to act as a buffer be-
tween agents of different speeds, recall that the middleware
runs on a standard optimistic PDES kernel. Thus, a roll-
back of the IMLP could force it to transmit anti-messages,
causing all agents that have previously passed through the
region to be rolled back. In other words, a slow-processing
agent could force all faster agents to “come back” to a re-
gion just by observing it. To achieve the desired property
that slow agents can observe regions without affecting the
rate of computation there, we implement a well-established
optimistic technique: lazy cancellation.

When a logical process is rolled back with lazy cancel-
lation, its anti-messages are not sent out immediately
(Gafni 1988). Rather, the logical process is left to coast
back to the pre-rollback time. If during the coasting phase
it sends the same messages as before, there was no need to
send the anti-messages in the first place. Anti-messages are
sent out only if the LP does not regenerate the same mes-
sages as before.
 When an IMLP receives a SUBSCRIBE request from
the past, it rolls back to that time. When coasting forward,
it re-sends (or reflects) all UPDATE messages. However, a
subscriber cannot modify the state of the environment, so
all reflected updates would be the same as the ones sent be-
fore the rollback. Thus, if lazy cancellation were applied to
rollbacks of IMLPs, late agents subscribing to a region
would not cause rollbacks of other agents in the region.
This can be a big performance boost since rolling back an
IMLP is relatively inexpensive, while rolling back an agent
can cause it to re-compute think-sense-act cycles taking
10ms to 1000ms each (Balch 2008: Riley and Riley 2003;
Lees et. al. 2007).

3.3 Implementing Selective Lazy Cancellation in
Java

When an LP rolls back to a virtual time, the messages it
sent before that virtual time have to be cancelled. Lazy
cancellation waits until the LP processes back to its origi-
nal time and only cancels the anti-messages that were not
re-generated. This is normally implemented by storing all
the rolled back outgoing messages. As the LP sends new
messages, every new message is compared bitwise to the
rolled back messages. If there is a match, then both new
and old messages are discarded. However, the SASSY
PDES kernel is implemented in Java, where direct memory
access for bitwise comparisons is not allowed.

In order to implement lazy cancellation in Java, some
method must be devised so that the kernel can compare the

contents of two messages and decide if they are the same.
One option is to force all PDES messages to implement
Java’s Comparable interface, which would ensure that all
messages have an explicit comparison method. Unfortu-
nately, this approach would obligate the PDES application
developer to write a new method for every type of message
being used. Moreover, a programming error by the applica-
tion programmer can compromise the correctness of the
PDES kernel. The SASSY PDES kernel resolves this issue
by leveraging the serialization feature of Java. Once a mes-
sage is serialized, it is available for bitwise comparison.
The kernel already uses serialization to transfer messages
over the network; so using serialized messages for lazy
cancellation did not add additional overhead.

The SASSY kernel contains an additional option in its
PDES API: turning on lazy cancellation for some LPs and
not others. Thus, the agent middleware can enable lazy
cancellation only for interest manager LPs, where its bene-
fits are known. In the future we plan to modify the kernel
to allow PDES applications to apply lazy cancellation on a
per-message basis. There exist many situations in which
the PDES application can judge the benefits of lazy cancel-
lation and provide a hint to the kernel. For example, a mes-
sage that simply requests information from an LP (i.e. a
query) can be marked for lazy cancellation. Note that the
correctness of the simulation would not depend on the lazy
cancellation hints; they are simply a performance im-
provement.

3.4 Event-driven Implementation of the Agent
Interface

Multi-agent simulations typically progress by evaluating a
sense-think-act cycle for every agent in the simulation.
Agent-based robot simulators usually assume a fixed time
period between the incoming sense events; for example, a
33 msec time step could be imposed by the frequency of
the video sensors (TeamBots (Balch 1998) and
Player/Stage (Gerkey et. al. 2003)). The SASSY middle-
ware relates the PDES virtual time to the agent’s simulated
time through a constant multiplier, Δ. Hence, in a SASSY
agent-based simulation, time flows in discrete intervals of
time Δ. Each agent can specify how many intervals pass
between the invocations of its sense-think-act cycle. For
example, consider a simulation with two robot types: type
A senses every 50 msec and the type B senses every 10
msec. The SASSY middleware would be configured with
Δ = 10 msec. Robot type A would receive a sense callback
every five time intervals, while type B would receive a
callback every time interval.
 The agent’s sense callbacks are implemented by its
proxy LP. In addition to sending messages destined for the
IMLP (described previously), each proxy LP schedules a
SENSE message to itself. Each time a proxy LP processes

Vulov, He and Hybinette

a SENSE event, it schedules its next SENSE event. The
simulation time advancement of the SENSE event depends
on the agent’s processing rate. If an agent’s time pro-
gresses in 20 msec intervals and Δ = 10 msec, then the
timestamps of its SENSE events would increase by two
each time. Note that due to the event-driven nature of the
PDES architecture, there is no performance punishment for
using a lower discrete time step than an agent’s processing
time. There are no “slots” wasted by having an agent proc-
ess once every ten time intervals rather than every interval.
Taking a SASSY agent simulation and halving Δ would
result in doubling of the timestamps of all the underlying
PDES messages; such a simulation would perform no more
computations than the original.

3.5 Ensuring Correctness and Repeatability of
Simultaneous Messages

Implementing the agent-based paradigm on a PDES simu-
lator invariably induces PDES messages with simultaneous
timestamps. If the SASSY middleware is hosting 100
agents, each thinking every time interval, there will be 100
simultaneous SENSE events for every virtual time. In a se-
rial time-stepped simulator, the agents would always take
turns moving in a fixed predictable order. Therefore, the
SASSY middleware must have a way to specify the order
in which SENSE events are processed.
 Consider two agents, A and B, moving about in the
same IMLP region. Both proxy LPs have scheduled their
next SENSE event with timestamp 20. In order to provide
consistent result SASSY’s middleware selects a determi-
nistic ordering of the agents. If the ordering calls for an
agent A to process before agent B, agent A’s SENSE event
runs first. Agent A may then modify the environment,
sending an UPDATE message to the IMLP. The IMLP
then reflects the UPDATE message to Agent B. To ensure
correct behavior, Agent B has to be notified of A’s modifi-
cations to the environment before its SENSE event, which
is scheduled with timestamp 20. This example illustrates
that messages sent by proxy LPs to the IMLP and mes-
sages relayed from the IMLP must both be 0-lookahead
events.
 The SASSY agent-based middleware thus produces
both simultaneous events and a number of 0-lookahead
events for each discrete time interval simulated. The dis-
crete event simulation community has long recognized that
improper handling of simultaneous events can lead to in-
correct behavior (Fujimoto 2000) or inconsistent results
(Wieland 1997). SASSY’s PDES kernel implements a
tiered tie-breaking approach described in (Fujimoto 2000).
To ensure 0-lookahead messages are executed in their de-
pendency order, every 0-lookahead message includes some
identifying information about its ancestor messages. If two
PDES messages have the same time stamp and are inde-

pendent, then the correct ordering depends on the simula-
tion model. Therefore the SASSY kernel allows for an ap-
plication-supplied Comparator object that orders
independent simultaneous events. Finally, if the PDES ap-
plication does not break the tie, the kernel uses extra LP
fields (Fujimoto 2000) to deterministically schedule an
event first, for the purpose of repeatability.
 The kernel measures described ensure that simultane-
ous events are processed in such a way that the PDES
simulation progresses and is repeatable. In addition, the
SASSY middleware installs its own tie-breaker to maintain
the correctness of the agent-based simulation. Messages
received by an IMLP are processed by the agent’s move-
ment order. For instance, if two agents send an UPDATE
message to the IMLP with the same time stamp, the agent
which processes first will have their UPDATE message
applied first. Messages from the same proxy LP to an
IMLP are processed in the order { LEAVE,
UNSUBSCRIBE, SUBSCRIBE, ENTER, UPDATE }.
This ordering ensures that an agent is properly subscribed
and registered with a region before sending any updates to
the region. When an agent’s proxy LP encounters simulta-
neous messages, it processes the reflected messages of ear-
lier agents before its SENSE event and messages of later-
moving agents after its SENSE event. Messages reflected
from the same agent are processed in the order { LEAVE,
ENTER, UPDATE } to ensure consistency of the shared
environment.

It must be noted that even though the SASSY middle-
ware maintains a notion of the order in which agents proc-
ess, it is simply to present a deterministic world view
which is consistent with serial time-stepped simulation.
Distributed agents freely process out of the specified order
when their actuating regions do not overlap. The SASSY
tie-breaking system is also easily extensible to provide a
certain level of fairness to the simulation. If there are n
agents in the simulation, there are n! possible orders in
which they can process. The tie-breaker can be modified to
enforce a different processing order for each simulation
time. For example, three agents could process in the order
1 2 3 the first time step, then in the order 2 3 1 in the sec-
ond time step, then in the order 3 1 2, etc. Therefore in ad-
dition to offer performance advantages over a serial time-
stepped simulator, SASSY has the potential to offer more
modeling flexibility.

4 PERFORMANCE

4.1 The Agent-based Application

The multi-agent simulation used for performance testing
consists of a number of bouncing balls. Each ball is an in-

Vulov, He and Hybinette

dependent agent with a body of a certain radius (which is
configurable). The ball’s actuating region consists of the
immediate space that its body occupies, because the only
change that a ball can make to the environment is moving
throughout it. A ball’s sensing region is of configurable ra-
dius, but it must be at least as large as its body. Each ball
also has a color attribute, which it updates based on the
number of other balls it detects in its sensing region. When
two balls detect a collision, they bounce off of each other
by exchanging their velocities.

As described, the Ball agents are simply reactive; there
is very little computation involved in deciding what to do
at each time step. We would like to evaluate the perform-
ance of SASSY with deliberative agents, for instance
agents running A* at every time step as in (Lees et. al.
2007). To simulate similar processes, every Ball agent
also incorporates a random deliberative delay, which varies
in a flat distribution between the minimum delay and the
maximum delay. An important property of the simulation
model chosen is that an agent’s behavior (color) is influ-
enced by its observations in its entire sensing region; com-
putation can be rolled back by any update in the sensing
region.

4.2 Distributed Performance of SASSY’s
Middleware

In our first performance tests, we chose to test the scalabil-
ity of SASSY, with regard to the number of agents and the
number of machines SASSY runs on. The simulation envi-
ronment had dimensions 1000x1000x1, distributed among
100 IMLPs. Each ball agent had a radius of 10, with equal
sensing and actuating regions. The deliberation time for an
agent was on average 300 msec, varying uniformly from
250 to 350 msec.

Furthermore, we compared the performance of
SASSY to the performance of a time-stepped serial simula-
tor programmed specifically for our agent setup. All tests
were executed on a group of Sun workstations, networked
together with a gigabit Ethernet switch. Each workstation
had a dual-core AMD Opteron running at 2.6 GHz with 4
GB of RAM.

Figure 4: Execution time with Growing Number of Agents

Figure 4 illustrates he performance of SASSY as the

number of agents increases and also as the number of PEs
changes. When executing on only one Processing Element
(PE), the overhead of the SASSY middleware and the
PDES kernel makes the SASSY simulation slightly slower
than the hand-coded time-stepped simulator (Figure 4).
Fortunately, the overhead is very slight; it is a small price
to pay for the ability to seamlessly distribute the simulation
across multiple machines. SASSY can be run on 2, 4, 6,
and 8 machines simply by changing a configuration pa-
rameter and starting the specified number of clients. It of-
fers a substantial speedup over the serial simulation with-
out requiring additional effort from the multi-agent
modeler.

Figure 5: Distributed Execution Speedup

(100 Agents, 300 msec deliberation)

 Figure 5 shows how the speedup of SASSY when run-
ning the simulation with 100 agents on up to eight ma-
chines. Communication overhead is the major factor that
prevents SASSY from accomplishing a theoretical maxi-
mum speedup of 8x. One might argue that the agents’ high
(300 msec) deliberation times and the low number of
agents are masking a rather significant communication

Vulov, He and Hybinette

overhead. For this reason, we ran the same simulation de-
scribed above with 3000 agents, each of which had a very
short deliberation time.

Figure 6: Distributed Execution Speedup

(3000 Agents, 5 msec deliberation)

 The speedup growth in Figure 6 is clearly less linear
than the speedup growth in Figure 5; nevertheless, SASSY
still achieves a 6.2x speedup when executing with 8 PEs.
Increasing the number of agents by 30-fold did not signifi-
cantly slow down the simulation executive and decreasing
the agents’ thinking times did not reveal any unusual
communication overhead.

4.3 Performance with Agents with Varying
Sensing Distances

In our discussion of relayed vs. direct communication, we
noted that relayed communication with lazy cancellation
can offer substantial performance benefits when agents ob-
serve a region without modifying it. This situation quite
common; for example a robot can have a video camera
with a wide view but have rather short actuators.

To test our hypothesis, we executed a series of simula-
tions in which all factors were kept constant except for the
sensing distance of the ball agents. The environment size
was 1000x1000x1, managed by 400 IMLPs each covering
a 50x50x1 region. The 100 agents had an average thinking
time of 50 msec, varying uniformly from 0 msec to 100
msec. All tests were in distributed mode, using four ma-
chines.

In the first simulation setup, all UPDATE messages
were transferred directly agent-to-agent without being re-
layed through an IMLP. In the second setup, an IMLP was
used to relay environment updates, but no lazy cancellation
was used. In the final configuration, IMLPs were used to
relay UPDATE messages and lazy cancellation was en-
abled for IMLPs.

Figure 7: Execution Performance with

Increasing Agent Sensing Distance

Figure 8: Number of Events Rolled Back with

Increasing Agent Sensing Distance

 Figures 7 and 8 describe results from the same execu-
tions of the simulation. When the agents have a relatively
short sensing region relative to their actuating region, di-
rect communication of updates between agent LPs is the
fastest. The lower performance of relay communication is
due to communication overhead; there are roughly twice as
many messages sent when in relay mode. Even so, relay
communication with lazy cancellation is not significantly
slower than direct communication.
 As agents’ sensing distances increase, performance of
direct communication quickly degrades, for the reasons de-
scribed in section 3.2. Without lazy cancellation agents can
slow down computation in a region just by observing it.
Note that the area that agents observe grows quadratically
with their sensing radius; correspondingly the performance
of the communication methods without lazy cancellation
worsens quadratically. With IMLPs and lazy cancellation,
agents can only affect the computation in their actuating

Vulov, He and Hybinette

region; therefore performance remains relatively good as
the agents’ sensing radii are increased.
 It is interesting to point out that when the sens-
ing/actuating ratio is 7, direct communication actually rolls
back fewer events than relay with lazy cancellation, but
overall performance is worse. The discrepancy occurs
since lazy cancellation prevents IMLP rollbacks from
propagating to agent rollbacks, while all direct communi-
cation rollbacks are agent rollbacks. Rolling back an
agent’s SENSE event and re-processing it can cost 50 ms
or more (the agent’s deliberation time), while rolling back
and re-processing IMLP messages is very quick.

5 SUMMARY AND FUTURE WORK

The SASSY architecture has three distinct components: the
PDES kernel, the agent-based middleware, and the agent
testing application. We have demonstrated the feasibility
and scalability of the SASSY design in several ways; how-
ever, there are a number of extensions we would like to ex-
amine in the future.

The SASSY PDES kernel can be modified as previ-
ously described to apply lazy cancellation on a per-
message basis. The agent-based middleware should then
attach lazy cancellation hints to message types in such a
way as to maximize performance. The SASSY PDES ker-
nel should also continue to incorporate techniques devel-
oped by the optimistic PDES community to speed up the
performance of agent-based simulations. One potential
candidate is using infrequent state saving, which would
lower a simulation’s memory usage by increasing the
length of its rollbacks.
 For efficiency we must consider serialization of LP-to-
LP messages and the way those messages are transported
across the network. The SASSY kernel API allows LPs to
send Java objects to each other, which must be serialized
somehow for network transfer. Currently, Java’s built-in
serialization is used, but perhaps a more restrictive custom
serialization scheme will offer higher performance. For
message transport, SASSY currently uses Java’s Remote
Method Invocation (RMI) mechanism. In the future we
plan to replace this with our custom protocol implemented
directly over TCP, achieving higher message throughput,
lower latency, and lower CPU usage.

The SASSY agent-based middleware can be made
both more flexible and faster. As mentioned before, some
fairness can be introduced in the simulation by rotating the
order in which agents move. Also, in the current work the
regions assigned to IMLPs are sized uniformly. However,
it may be useful for the regions to vary in size, perhaps be-
cause certain regions may be expected to contain only a
few agents (See Figure 9). The agent-based modeling API

provided by the middleware can also be improved, ac-
commodating additional use cases.

Figure 9: Current IMLP Regions vs.
More Flexible IMLP Regions

For the testing application, in future work we plan to

develop more comprehensive and realistic agent-based
tests cases. One agent-based simulation will contain actu-
ally deliberative agents, perhaps ones running an A* search
at every step. Another direction would be to explore the
performance of simulations with purely reactive agents,
such as ones found in some social animal studies.

REFERENCES

Balch, T. 1998. Behavioral diversity in learning robot-
teams. Ph. D. thesis, College of Computing, Georgia
Institute of Technology.

Balch, T. 2005. How Multirobot Systems Research Will
Accelerate Our Understanding of Social Animal Be-
havior. In Proceedings IEEE. Volume 94; Numb 7:
1445-1463.

Balch, T. 2008. Personal Communication, College of
Computing, Georgia Institute of Technology.

Dahman, J. S., R. Fujimoto and R. M. Weatherly. 1997.
The department of defense High Level Architecture. In
Proceedings of the 1997 Winter Simulation Confer-
ence (WSC-1997), 142-149.

Fujimoto, R. M. 1990. October. Parallel discrete event
Simulation. Communication of the ACM 33 (10):30-
53.

Fujimoto, R. M. 2000. Parallel and distributed Simulation
Systems. 1 st. John Wiley & Sons.

Gafni A. 1988. Rollback mechanism for optimistic distrib-
uted simulation systems. In Proceedings of the SCS
Multiconference on Distributed Simulation. 19:61-67.

Gerkey, B., R.T. Vaughan, and A. Howard, 2003. The
Player/Stage project: Tools for multi-robot and dis-
tributed sensor systems. In Proceedings of the Interna-

Vulov, He and Hybinette

tional Conference on Advanced Robotics, 317–323.
Coimbra, Portugal.

Haumacher B and M Philippsen 1999. More Efficient Ob-
ject Serialization. In Proceedings of the International
Workshop on Java for Parallel and Distributed Com-
puting of Lecture Notes in Computer Science Volume
1586, pages 718-732.

Hybinette, M., E. Kraemer, Y. Xiong, G. Matthews and J.
Ahmed. 2006. SASSY: A Design for a Scalable
Agent-based Simulation System Using a Distributed
Discrete Event Infrastructure. In Proceedings of the
38th Winter Simulation Conference (WSC-2006), 926-
933.

Jefferson, D.R., H. Sowizral. 1985. Fast concurrent simula-
tion using the Time Warp mechanism. In Distributed
Simulation 1985, Volume 15 of Simulation Council
Proceedings, 63-69. Society for Computer Simulation
(SCS).

Lees, M., B. Logan, and G. Theodoropoulos (2007). Dis-
tributed simulation of agent-based systems with HLA.
ACM Transactions on Modeling and Computer Simu-
lation. Volume 17:11.

Lees, M., B. Logan, T. Oguara, and G. Theodoropoulos
(2004). "HLA_AGENT: Distributed Simulation of
Agent-Based Systems with HLA." Proceedings of the
International Conference on Computational Science
(ICCS'04) (pp. 907-915).

Logan, B., Theodoropoulos, G. 2001. The Distributed
Simulation of Agent-Based Systems. IEEE Proceed-
ings Journal, Special Issue on Agent-Oriented Soft-
ware Approaches in Distributed Modeling and Simu-
lation, February 2001.

Luke S., L. Cioffi-Revilla, K Panait, K. Sullivan and G.
Balan 2005. MASON: A multiagent simulation envi-
ronment. SIMULATION, 81:517-527.

Minar N., R. Burkhart, C. Langton and M. Askenazi. 1996.
A toolkit for building multi-agent simulations. Santa
Fe Institute.

Pollack, M. E., and M. Ringuette. 1990. Introducing the
Tileworld: Experimentally Evaluating Agent Architec-
tures. Proceedings of the Eighth National Conference
on Artificial Intelligence, AAAI Press, pp. 183-189.

Riley, P. F., G. F. Riley. 2003, December. SPADES – a
distribution management in distributed simulations. In
Proceedings of 2003 Winter Simulation Conference
(WSC-2003), 817-825.

Steinman, J. S. and J. W. Wong. 2003. The SPEEDES per-
sistence framework and the standard simulation archi-
tecture. Parallel and Distributed Simulation, 2003
Proceedings. Volume 10-13 (June 2003): 11 – 20.

Taboada, G.L. C. Teijeiro, J. Tourino, 2007. High Per-
formance Java Remote Method Invocation for Parallel
Computing on Clusters. In 12th IEEE Symposium on

Computers and Communications (ISCC-2007): 233-
239.

Tacic, I., and R. Fujimoto. 1998. Synchronized data distri-
bution management in distributed simulations. In Pro-
ceedings of the 12th Workshop on Parallel and Distrib-
uted Simulation (PADS-1998). 108-115.

Uhrmacher, A. M., P. Tyschler and D. Tyschler. 2000.
Modeling and simulation of mobile agents. Future
Generation Computer Systems 17 (2): 107–118.

Wang, L. S. J. Turner and F. Wang. 2003. Interest man-
agement in agent-based distributed simulations. In
Proceedings of the Seventh IEEE International Sym-
posium on Distributed Simulation and Real-Time Ap-
plications (DS-RT 2003), 20-29.

Wieland, F., 1997. The threshold of event simultaneity. In
Proceedings of the 11th Workshop on Parallel and Dis-
tributed Simulation (PADS-1997). 108-115. 56-59.

