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ABSTRACT 

We recently introduced SASSY, the design for a hybrid 
simulator that provides an agent-based API atop a PDES 
kernel (Hybinette et. al. 2006).  Our hypothesis is that a 
design like SASSY offers the advantages of an agent-based 
paradigm for the application developer, but also provides 
the performance advantages of a PDES kernel.  Since the 
time of our initial publication, most aspects of SASSY's de-
sign have been implemented, and we are now assessing our 
hypotheses e.g., (He and Hybinette 2008).  In this paper we 
investigate performance advantages for a simple agent-
based application on SASSY.  In most cases, agent-based 
simulation environments are configured using a time-step 
approach, where the simulation proceeds in discrete steps.  
In this paper we evaluate the performance of a simple ap-
plication running in a traditional time-step simulation, and 
also its performance when running on SASSY with PDES 
support. 

 

1 INTRODUCTION 

Multi-agent simulation is becoming more prevalent in dif-
ferent areas of research, such as robotics (Balch, T. 1998; 
Gerkey et. al. 2003), social animal studies (Balch, T. et. al.  
2005, Luke et. al. 2005; Minar et. al. 1996), and game 
theoretic research. The Scalable Agent-based Simulation 
System (SASSY) project aims to leverage advances in the 
field of Parallel Discrete Event Simulation (PDES) to 
provide an agent-based API but with the scalable perform-
ance benefits of a PDES kernel. The SASSY architecture 
consists of two layers: a standard PDES kernel and mid-
dleware which provides an agent-based API. 

SASSY’s PDES kernel, based on the Time Warp syn-
chronization algorithm (Hybinette et. al. 2006) has been 
completed. Figure 1 provides an illustration of SASSY’s 
design and implementation. Individual agents are pro-
grammed by the application developer using the standard 
agent-based sense-think-act paradigm.  In order to support 
the agents in a PDES kernel, each agent is provided a 

proxy that “lives” in the PDES Simulation. The proxy 
serves to translate agent activities expressed in the agent-
based API appropriately into discrete events in the PDES 
kernel. An advantage to building the middleware atop a 
standard PDES kernel is that advances in the PDES para-
digm can be transparently applied to speed up agent-based 
simulations.   

 

 
Figure 1: SASSY Architecture. 

 
Our recent work reported in this paper has focused on 

designing and implementing the agent-based middleware, 
along with a simple multi-agent simulation application to 
test its correctness and performance. The agent-based mid-
dleware aims to achieve parallel speedup by exploiting the 
locality usually encountered in agent-based simulations. 
Although in a multi-agent simulation all agents view and 
modify a shared environment, usually the actuating region 
of each agent is small compared to the overall size of the 
environment. The SASSY middleware implements the 
agent environment as a 3D Euclidean space. While the 
agent environment is not fully generalized, assuming the 
environment is Euclidean is not very restrictive and allows 
for better techniques for parallelization. The approach to 
distributed agent-based simulation presented here can eas-
ily be implemented for n-dimensional Euclidean space, al-
though 3-space was chosen for the current implementation.  
 The agent-based paradigm dictates a number of re-
quirements for the PDES kernel, which has driven us to 
add a few more advanced PDES techniques into the 
SASSY kernel. We discuss these additions in the sections 
below.  First we provide some background on PDES simu-
lation systems and other related work. 
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2 BACKGROUND AND RELATED WORK 

Our architecture, previously described in  (Hybinette et. al. 
2006) is designed to leverage the efficiency, speed and 
parallelism available in discrete event simulation (DES) 
systems to support agent-based modeling (ABM).  We use 
a standard parallel discrete event simulation (PDES) ker-
nel paired with middleware to provide an agent-based 
paradigm for the simulation  application developers (e.g., 
like TeamBots (Balch 1998), Swarm (Minar et. al. 1996), 
Mason (Luke et. al. 2005) or Player/Stage (Gerkey et. al. 
2003). 

The use of PDES for agent-based modeling is a rela-
tively new idea that has been used to support research in 
soccer, biological systems and general purpose agent-based 
models (see for instance (Uhrmacher 2001), (Logan and 
Theodoropoulos 2001), and (Riley and Riley 2003)).  
However, we believe there  are several aspects of our ap-
proach that contribute  to a novel high-performance design.  
In particular, we use a “standard” PDES kernel, and we 
provide a “standard” agent-based model view.  Because we 
use a standard PDES kernel we are able to easily leverage 
existing and future performance technologies such as op-
timistic protocols, distributed execution and advanced effi-
cient Global Virtual Time calculations. Accordingly we 
make the simulation application developer's job easier -- 
she can more directly map her problem to the simulator 
without having to know the details of PDES. 
 Most research utilizing agent-based simulation centers 
on  modeling autonomous agents (e.g., robots or automo-
biles) moving  about a 2- or 3- dimensional environment.  
These agents rely on a sense-think-act cycle where they 
sense information about the local environment, think about 
the information  in the context of their own behavioral 
state, then act in the environment.  From the point of view 
of a simulation kernel, these activities correspond to read-
ing state, processing it, and writing new state.  A key chal-
lenge concerns maintaining a consistent environmental 
state that  agents can sense (read) and act upon (write). 
 Logan and Theodoropoulos provide a comprehensive 
and readable description of this problem in (Logan and 
Theodoropoulos 2001).   Their solution centers on Envi-
ronmental LPs (ELPs) in which environmental state is  
managed and distributed.  However their experimental re-
sults only include 1 central environmental LP with 64 
agents (Lees et. al. 2007). Our approach is somewhat dif-
ferent, in that state is maintained by the agents and objects 
in the environment directly to provide an intuitive API for 
the ABM programmer. Also, our experiments include runs 
with 3,000 or more interacting agents and 400 IMLPs. 
Our interest management LPs (IMLPs)  facilitate a publish-
subscribe protocol between the agents themselves. This is 

similar to High Level Architecture (HLA) (Dahman et. al. 
1997) interest manager approaches that use conservative 
clocks (e.g. Tacic and Fujimoto's work reported in (Tacic 
and Fujimoto 1998) and Wang, Turner and Wang's work in 
(Wang et. al. 2003)). Tacic and Fujimoto's work focuses on 
reducing network traffic in a simulation using a conserva-
tive protocol (HLA) while Wang, Turner and Wang de-
scribes how to integrate agents using different interest 
management schemes into an HLA-based distributed simu-
lation. 
 In SPADES and Player/Stage the agents are distrib-
uted and run as separate processes that connect to a single 
threaded simulation engine (Riley and Riley 2003; Gerkey 
et. al. 2003). Because these other simulation systems util-
ize a central resource (the simulation server) they are not 
able to scale well on a distributed computer platform.  
However, SASSY uses a standard PDES kernel and is able 
to leverage the corresponding benefits. Our SASSY kernel 
supports the optimistic synchronization paradigm which is 
one of the standard synchronization protocols used in 
PDES (Jefferson and Sowizral 1985; Fujimoto 1990). Per-
formance improvements for Optimistic PDES systems cen-
ter on reducing the cost of  rollbacks and scalability on dis-
tributed computing platforms. Among the various 
performance enhancements available to PDES systems, 
SASSY leverages distribution of multiple processors, func-
tion caching, and lazy cancellation and re-evaluation.  
 Our approach leverages lazy cancellation, a technique 
used in optimistic simulators to improve the performance 
of rollbacks. Lazy cancellation delays secondary rollbacks 
and  caches the results of the original rollback in anticipa-
tion of reusing the results and thus avoiding re-
computation (Gafni 1988).  We now present our algorithm. 

 

3 APPROACH 

3.1  Exploiting Spatial Locality in a Distributed 
Environment 

As described in (Hybinette et. al. 2006), each agent is rep-
resented by a proxy logical process (LP), which maintains 
an up-to-date version of the environment currently visible 
to the agent.  For efficiency and scalability the SASSY 
middleware leverages the domain decomposition method 
by dividing the environment in a number of 3D rectangular 
regions, each of which is managed by an Interest Manager 
Logical Process (IMLP). The IMLP implements a sub-
scribe/publish system for the proxy LPs to ensure that all 
agents have a consistent view of the shared environment. 

It should be noted that the distribution of the global 
state amongst IMLPs is completely transparent to the 
multi-agent application. Indeed, the granularity of the dis-
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tribution of the global environment can be controlled with 
a parameter loaded at runtime. Developers of agent-based 
simulations can adjust the size of the IMLP regions to suit 
the needs of the particular application. Ideally, the size of a 
region controlled by an IMLP should be roughly equal to 
the area that an agent can directly modify. 

Proxy LPs can send five basic types of messages to an 
IMLP: 

 
1. SUBSCRIBE 
2. UNSUBSCRIBE 
3. ENTER 
4. LEAVE 
5. UPDATE 
 
A SUBSCRIBE message lets the proxy LP monitor 

updates in a certain region without committing any 
changes to the region. The IMLP sends a description of the 
current region state back to the new subscriber. The 
SUBSCRIBE message is not relayed to other agents cur-
rently in the region, since the observing agent cannot influ-
ence their actions. Correspondingly, UNSUBSCRIBE 
message removes an observing agent and is not relayed. 

An ENTER message notifies the IMLP that the agent 
is going to be modifying the managed region. A modifica-
tion of the environment can be something as simple as the 
agent moving its body into the region. An ENTER message 
is relayed to all other agents subscribed to the region, since 
the new entry could potentially influence their behavior. 
Similarly, a LEAVE message indicates that the proxy LP 
will not be committing any more changes to the region and 
is also relayed to all other subscribers. 

Finally, the UPDATE message is used by proxy LPs 
to notify other agents’ proxy LPs of changes in the observ-
able environment. An UPDATE message is relayed by the 
IMLP to all subscribers. The IMLP also processes the mes-
sage, maintaining an up-to-date local copy of the observ-
able environment in the region. 

3.2  Optimizing Relayed Communication of the 
Shared Environment 

An implementation of the above design yields IMLPs that 
do little but relay messages between proxy LPs; it may be 
faster to let proxy LPs communicate environmental up-
dates directly to each other using a peer-to-peer mechanism 
(He and Hybinette 2008). However, the relay mechanism 
can be improved to enable IMLPs to act as a buffer be-
tween agents at different simulation times. As an example, 
consider a fast-processing agent, F, which passes through a 
region and sends UPDATE messages. Some physical time 
later, a slower-processing agent, S, subscribes to the re-
gion. This is depicted in Figure 2. The ‘region’ is light and 
agent F is in the region at time steps 2, 3, 4 and 5 at a wall 

clock time before S.  S enters the region at simulated time 
2. 

 
Figure 2: Example of an agent F entering a light color re-

gion and an agent S entering the same region. 
 
 

 In a peer-to-peer communication schema, S’s 
SUBSCRIBE message would roll back F’s time and force 
F to re-process its movements through the region (note a 
rollback of F may include F cancelling messages it sent to 
other subscribers).   This is illustrated in the lower image in 
Figure 3, here S’s message at simulated time stamp 2 rolls 
back F’s messages with later time stamps. 
  

 
Figure 3: Message Progression as a  slow-processing agent 

enters a region where another agent has passed 
 
 On the other hand, if S subscribes to the IMLP, the 
IMLP should be able to replay F’s UPDATE messages to S 
without rolling back F (and in turn possibly cancelling 
message updates to other subscribers). This scenario is il-
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lustrated in the top image of Figure 3. Here the IMLP for-
wards the buffered messages with time stamps later than 
S’s subscription message. Note this avoids rolling back and 
cancelling messages to other subscribers. 

Though we would like the IMLP to act as a buffer be-
tween agents of different speeds, recall that the middleware 
runs on a standard optimistic PDES kernel. Thus, a roll-
back of the IMLP could force it to transmit anti-messages, 
causing all agents that have previously passed through the 
region to be rolled back. In other words, a slow-processing 
agent could force all faster agents to “come back” to a re-
gion just by observing it. To achieve the desired property 
that slow agents can observe regions without affecting the 
rate of computation there, we implement a well-established 
optimistic technique: lazy cancellation. 

When a logical process is rolled back with lazy cancel-
lation, its anti-messages are not sent out immediately 
(Gafni 1988). Rather, the logical process is left to coast 
back to the pre-rollback time. If during the coasting phase 
it sends the same messages as before, there was no need to 
send the anti-messages in the first place. Anti-messages are 
sent out only if the LP does not regenerate the same mes-
sages as before. 
 When an IMLP receives a SUBSCRIBE request from 
the past, it rolls back to that time. When coasting forward, 
it re-sends (or reflects) all UPDATE messages. However, a 
subscriber cannot modify the state of the environment, so 
all reflected updates would be the same as the ones sent be-
fore the rollback. Thus, if lazy cancellation were applied to 
rollbacks of IMLPs, late agents subscribing to a region 
would not cause rollbacks of other agents in the region. 
This can be a big performance boost since rolling back an 
IMLP is relatively inexpensive, while rolling back an agent 
can cause it to re-compute think-sense-act cycles taking 
10ms to 1000ms each (Balch 2008: Riley and Riley 2003; 
Lees et. al. 2007). 

 

3.3  Implementing Selective Lazy Cancellation in 
Java 

When an LP rolls back to a virtual time, the messages it 
sent before that virtual time have to be cancelled. Lazy 
cancellation waits until the LP processes back to its origi-
nal time and only cancels the anti-messages that were not 
re-generated. This is normally implemented by storing all 
the rolled back outgoing messages. As the LP sends new 
messages, every new message is compared bitwise to the 
rolled back messages. If there is a match, then both new 
and old messages are discarded. However, the SASSY 
PDES kernel is implemented in Java, where direct memory 
access for bitwise comparisons is not allowed. 

In order to implement lazy cancellation in Java, some 
method must be devised so that the kernel can compare the 

contents of two messages and decide if they are the same. 
One option is to force all PDES messages to implement 
Java’s Comparable interface, which would ensure that all 
messages have an explicit comparison method.  Unfortu-
nately, this approach would obligate the PDES application 
developer to write a new method for every type of message 
being used. Moreover, a programming error by the applica-
tion programmer can compromise the correctness of the 
PDES kernel. The SASSY PDES kernel resolves this issue 
by leveraging the serialization feature of Java. Once a mes-
sage is serialized, it is available for bitwise comparison. 
The kernel already  uses serialization to transfer messages 
over the network; so using serialized messages for lazy 
cancellation did not add additional overhead. 

The SASSY kernel contains an additional option in its 
PDES API: turning on lazy cancellation for some LPs and 
not others. Thus, the agent middleware can enable lazy 
cancellation only for interest manager LPs, where its bene-
fits are known. In the future we plan to modify the kernel 
to allow PDES applications to apply lazy cancellation on  a 
per-message basis. There exist many situations in which 
the PDES application can judge the benefits of lazy cancel-
lation and provide a hint to the kernel. For example, a mes-
sage that simply requests information from an LP (i.e. a 
query) can be marked for lazy cancellation. Note that the 
correctness of the simulation would not depend on the lazy 
cancellation hints; they are simply a performance im-
provement. 

3.4  Event-driven Implementation of the Agent 
Interface 

Multi-agent simulations typically progress by evaluating a 
sense-think-act cycle for every agent in the simulation. 
Agent-based robot simulators usually assume a fixed time 
period between the incoming sense events; for example, a 
33 msec time step could be imposed by the frequency of 
the video sensors (TeamBots (Balch 1998) and 
Player/Stage (Gerkey et. al. 2003)). The SASSY middle-
ware relates the PDES virtual time to the agent’s simulated 
time through a constant multiplier, Δ. Hence, in a SASSY 
agent-based simulation, time flows in discrete intervals of 
time Δ. Each agent can specify how many intervals pass 
between the invocations of its sense-think-act cycle. For 
example, consider a simulation with two robot types: type 
A senses every 50 msec and the type B senses every 10 
msec. The SASSY middleware would be configured with 
Δ = 10 msec. Robot type A would receive a sense callback 
every five time intervals, while type B would receive a 
callback every time interval. 
 The agent’s sense callbacks are implemented by its 
proxy LP. In addition to sending messages destined for the 
IMLP (described previously), each proxy LP schedules a 
SENSE message to itself.  Each time a proxy LP processes 
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a SENSE event, it schedules its next SENSE event. The 
simulation time advancement of the SENSE event depends 
on the agent’s processing rate. If an agent’s time pro-
gresses in 20 msec intervals and Δ = 10 msec, then the 
timestamps of its SENSE events would increase by two 
each time. Note that due to the event-driven nature of the 
PDES architecture, there is no performance punishment for 
using a lower discrete time step than an agent’s processing 
time. There are no “slots” wasted by having an agent proc-
ess once every ten time intervals rather than every interval. 
Taking a SASSY agent simulation and halving Δ would 
result in doubling of the timestamps of all the underlying 
PDES messages; such a simulation would perform no more 
computations than the original. 

3.5  Ensuring Correctness and Repeatability of 
Simultaneous Messages 

Implementing the agent-based paradigm on a PDES simu-
lator invariably induces PDES messages with simultaneous 
timestamps. If the SASSY middleware is hosting 100 
agents, each thinking every time interval, there will be 100 
simultaneous SENSE events for every virtual time. In a se-
rial time-stepped simulator, the agents would always take 
turns moving in a fixed predictable order. Therefore, the 
SASSY middleware must have a way to specify the order 
in which SENSE events are processed. 
 Consider two agents, A and B, moving about in the 
same IMLP region. Both proxy LPs have scheduled their 
next SENSE event with timestamp 20. In order to provide 
consistent result SASSY’s middleware selects a determi-
nistic ordering of the agents.  If the ordering calls for an 
agent A to process before agent B, agent A’s SENSE event 
runs first. Agent A may then modify the environment, 
sending an UPDATE message to the IMLP. The IMLP 
then reflects the UPDATE message to Agent B. To ensure 
correct behavior, Agent B has to be notified of A’s modifi-
cations to the environment before its SENSE event, which 
is scheduled with timestamp 20. This example illustrates 
that messages sent by proxy LPs to the IMLP and mes-
sages relayed from the IMLP must both be 0-lookahead 
events. 
 The SASSY agent-based middleware thus produces 
both simultaneous events and a number of 0-lookahead 
events for each discrete time interval simulated. The dis-
crete event simulation community has long recognized that 
improper handling of simultaneous events can lead to in-
correct behavior (Fujimoto 2000) or inconsistent results 
(Wieland 1997). SASSY’s PDES kernel implements a 
tiered tie-breaking approach described in (Fujimoto 2000). 
To ensure 0-lookahead messages are executed in their de-
pendency order, every 0-lookahead message includes some 
identifying information about its ancestor messages. If two 
PDES messages have the same time stamp and are inde-

pendent, then the correct ordering depends on the simula-
tion model. Therefore the SASSY kernel allows for an ap-
plication-supplied Comparator object that orders 
independent simultaneous events. Finally, if the PDES ap-
plication does not break the tie, the kernel uses extra LP 
fields (Fujimoto 2000) to deterministically schedule an 
event first, for the purpose of repeatability. 
 The kernel measures described ensure that simultane-
ous events are processed in such a way that the PDES 
simulation progresses and is repeatable. In addition, the 
SASSY middleware installs its own tie-breaker to maintain 
the correctness of the agent-based simulation. Messages 
received by an IMLP are processed by the agent’s move-
ment order. For instance, if two agents send an UPDATE 
message to the IMLP with the same time stamp, the agent 
which processes first will have their UPDATE message 
applied first. Messages from the same proxy LP to an 
IMLP are processed in the order { LEAVE, 
UNSUBSCRIBE, SUBSCRIBE, ENTER, UPDATE }. 
This ordering ensures that an agent is properly subscribed 
and registered with a region before sending any updates to 
the region. When an agent’s proxy LP encounters simulta-
neous messages, it processes the reflected messages of ear-
lier agents before its SENSE event and messages of later-
moving agents after its SENSE event. Messages reflected 
from the same agent are processed in the order { LEAVE, 
ENTER, UPDATE } to ensure consistency of the shared 
environment. 

It must be noted that even though the SASSY middle-
ware maintains a notion of the order in which agents proc-
ess, it is simply to present a deterministic world view 
which is consistent with serial time-stepped simulation. 
Distributed agents  freely process out of the specified order 
when their actuating regions do not overlap. The SASSY 
tie-breaking system is also easily extensible to provide a 
certain level of fairness to the simulation. If there are n 
agents in the simulation, there are n! possible orders in 
which they can process. The tie-breaker can be modified to 
enforce a different processing order for each simulation 
time. For example, three agents could process in the order 
1 2 3 the first time step, then in the order 2 3 1 in the sec-
ond time step, then in the order  3 1 2, etc. Therefore in ad-
dition to offer performance advantages over a serial time-
stepped simulator, SASSY has the potential to offer more 
modeling flexibility. 

 

4 PERFORMANCE 

4.1  The Agent-based Application 

The multi-agent simulation used for performance testing 
consists of a number of bouncing balls. Each ball is an in-
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dependent agent with a body of a certain radius (which is 
configurable). The ball’s actuating region consists of the 
immediate space that its body occupies, because the only 
change that a ball can make to the environment is moving 
throughout it. A ball’s sensing region is of configurable ra-
dius, but it must be at least as large as its body. Each ball 
also has a color attribute, which it updates based on the 
number of other balls it detects in its sensing region. When 
two balls detect a collision, they bounce off of each other 
by exchanging their velocities. 

As described, the Ball agents are simply reactive; there 
is very little computation involved in deciding what to do 
at each time step. We would like to evaluate the perform-
ance of SASSY with deliberative agents, for instance 
agents running A* at every time step as in (Lees et. al. 
2007).  To simulate similar processes, every Ball agent 
also incorporates a random deliberative delay, which varies 
in a flat distribution between the minimum delay and the 
maximum delay. An important property of the simulation 
model chosen is that an agent’s behavior (color) is influ-
enced by its observations in its entire sensing region; com-
putation can be rolled back by any update in the sensing 
region. 

4.2  Distributed Performance of SASSY’s 
Middleware 

In our first performance tests, we chose to test the scalabil-
ity of SASSY, with regard to the number of agents and the 
number of machines SASSY runs on. The simulation envi-
ronment had dimensions 1000x1000x1, distributed among 
100 IMLPs. Each ball agent had a radius of 10, with equal 
sensing and actuating regions. The deliberation time for an 
agent was on average 300 msec, varying uniformly from 
250 to 350 msec. 

Furthermore, we compared the performance of 
SASSY to the performance of a time-stepped serial simula-
tor programmed specifically for  our agent setup. All tests 
were executed on a group of Sun workstations, networked 
together with a gigabit Ethernet switch. Each workstation 
had a dual-core AMD Opteron running at 2.6 GHz with 4 
GB of RAM. 

 

 
Figure 4: Execution time with Growing Number of Agents 

 
Figure 4 illustrates he performance of SASSY as the 

number of agents increases and also as the number of PEs 
changes.  When executing on only one Processing Element 
(PE), the overhead of the SASSY middleware and the 
PDES kernel makes the SASSY simulation slightly slower 
than the hand-coded time-stepped simulator (Figure 4). 
Fortunately, the overhead is very slight; it is a small price 
to pay for the ability to seamlessly distribute the simulation 
across multiple machines. SASSY  can be run on 2, 4, 6, 
and 8 machines simply by changing a configuration pa-
rameter and starting the specified number of clients. It of-
fers a substantial speedup over the serial simulation with-
out requiring additional effort from the multi-agent 
modeler. 

 

 
Figure 5: Distributed Execution Speedup  

(100 Agents, 300 msec deliberation) 
 

 Figure 5 shows how the speedup of SASSY when run-
ning the simulation with 100 agents on up to eight ma-
chines. Communication overhead is the major factor that 
prevents SASSY from accomplishing a theoretical maxi-
mum speedup of 8x. One might argue that the agents’ high 
(300 msec) deliberation times and the low number of 
agents are masking a rather significant communication 
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overhead. For this reason, we ran the same simulation de-
scribed above with 3000 agents, each of which had a very 
short deliberation time. 
 

 
Figure 6: Distributed Execution Speedup  

(3000 Agents, 5 msec deliberation) 
 
 The speedup growth in Figure 6 is clearly less linear 
than the speedup growth in Figure 5; nevertheless, SASSY 
still achieves a 6.2x speedup when executing with 8 PEs. 
Increasing the number of agents by 30-fold did not signifi-
cantly slow down the simulation executive and decreasing 
the agents’ thinking times did not reveal any unusual 
communication overhead. 

4.3  Performance with Agents with Varying 
Sensing Distances 

In our discussion of relayed vs. direct communication, we 
noted that relayed communication with lazy cancellation 
can offer substantial performance benefits when agents ob-
serve a region without modifying it. This situation quite 
common; for example a robot can have a video camera 
with a wide view but have rather short actuators. 

To test our hypothesis, we executed a series of simula-
tions in which all factors were kept constant except for the 
sensing distance of the ball agents. The environment size 
was 1000x1000x1, managed by 400 IMLPs each covering 
a 50x50x1 region. The 100 agents had an average thinking 
time of 50 msec, varying uniformly from 0 msec to 100 
msec. All tests were in distributed mode, using four ma-
chines. 

In the first simulation setup, all UPDATE messages 
were transferred directly agent-to-agent without being re-
layed through an IMLP. In the second setup, an IMLP was 
used to relay environment updates, but no lazy cancellation 
was used. In the final configuration, IMLPs were used to 
relay UPDATE messages and lazy cancellation was en-
abled for IMLPs. 

 

 
Figure 7: Execution Performance with  

Increasing Agent Sensing Distance 
 
 

 
Figure 8: Number of Events Rolled Back with 

Increasing Agent Sensing Distance 
 

 Figures 7 and 8 describe results from the same execu-
tions of the simulation. When the agents have a relatively 
short sensing region relative to their actuating region, di-
rect communication of updates between agent LPs is the 
fastest. The lower performance of relay communication is 
due to communication overhead; there are roughly twice as 
many messages sent when in relay mode. Even so, relay 
communication with lazy cancellation is not significantly 
slower than direct communication. 
 As agents’ sensing distances increase, performance of 
direct communication quickly degrades, for the reasons de-
scribed in section 3.2. Without lazy cancellation agents can 
slow down computation in a region just by observing it. 
Note that the area that agents observe grows quadratically 
with their sensing radius; correspondingly the performance 
of  the communication methods without lazy cancellation 
worsens quadratically. With IMLPs and lazy cancellation, 
agents can only affect the computation in their actuating 
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region; therefore performance remains relatively good as 
the agents’ sensing radii are increased. 
 It is interesting to point out that when the sens-
ing/actuating ratio is 7, direct communication actually rolls 
back fewer events than relay with lazy cancellation, but 
overall performance is worse. The discrepancy occurs 
since lazy cancellation prevents IMLP rollbacks from 
propagating to agent rollbacks, while all direct communi-
cation rollbacks are agent rollbacks. Rolling back an 
agent’s SENSE event and re-processing it can cost 50 ms 
or more (the agent’s deliberation time), while rolling back 
and re-processing IMLP messages is very quick. 
 

5 SUMMARY AND FUTURE WORK 

The SASSY architecture has three distinct components: the 
PDES kernel, the agent-based middleware, and the agent 
testing application. We have demonstrated the feasibility 
and scalability of the SASSY design in several ways; how-
ever, there are a number of extensions we would like to ex-
amine in the future. 

The SASSY PDES kernel can be modified as previ-
ously described to apply lazy cancellation on a per-
message basis. The agent-based middleware should then 
attach lazy cancellation hints to message types in such a 
way as to maximize performance. The SASSY PDES ker-
nel should also continue to incorporate techniques devel-
oped by the optimistic PDES community to speed up the 
performance of agent-based simulations. One potential 
candidate is using infrequent state saving, which would 
lower a simulation’s memory usage by increasing the 
length of its rollbacks.  
 For efficiency we must consider serialization of LP-to-
LP messages and the way those messages are transported 
across the network. The  SASSY kernel API allows LPs to 
send Java objects to each other, which must be serialized 
somehow for network transfer. Currently, Java’s built-in 
serialization is used, but perhaps a more restrictive custom 
serialization scheme will offer higher performance. For 
message transport, SASSY currently uses Java’s Remote 
Method Invocation (RMI) mechanism. In the future we 
plan to replace this with our custom protocol implemented 
directly over TCP, achieving higher message throughput, 
lower latency, and lower CPU usage. 

The SASSY agent-based middleware can be made 
both more flexible and faster. As mentioned before, some 
fairness can be introduced in the simulation by rotating the 
order in which agents move. Also, in the current work the 
regions assigned to IMLPs are sized uniformly. However, 
it may be useful for the regions to vary in size, perhaps be-
cause certain regions may be expected to contain only a 
few agents (See Figure 9). The agent-based modeling API 

provided by the middleware can also be improved, ac-
commodating additional use cases. 
 
 

 
 

Figure 9: Current IMLP Regions vs.  
More Flexible IMLP Regions 

 
For the testing application, in future work we plan to 

develop more comprehensive and realistic agent-based 
tests cases. One agent-based simulation will contain actu-
ally deliberative agents, perhaps ones running an A* search 
at every step.  Another direction would be to explore the 
performance of simulations with purely reactive agents, 
such as ones found in some social animal studies. 
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