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Abstract—Many agent-based simulation kernels rely on
message passing in their core implementation. As the number
of agents in a simulation increases or as the complexity of their
communication expands the number of messages can increase
exponentially. This is troublesome because the message content
itself may be quite small, while the overhead, including message
headers can dominate bandwidth and processing time. In these
cases message passing becomes a bottleneck to scalability. The
overhead of message exchange may saturate the network and
degrade performance of the simulation. One approach to this
challenge that has been investigated in related networking and
simulation research centers is combining or ”piggy-backing”
multiple small messages together with a consolidated header. In
many applications performance improves as larger, but fewer
messages are sent. However, the pattern of message passing is
different in the case of agent-based simulation (ABS), and this
approach has not yet been explored for ABS systems.

In this work we provide an overview of the design and
implementation of a message piggy-backing approach for
ABS systems using the SASSY platform. SASSY is a hybrid,
large-scale distributed ABS system that provides an agent-based
API on top of a PDES kernel. We provide a comparative
performance evaluation for implementations in SASSY with a
combined RMI and shared memory message passing approach.
We also show performance of our new adaptive message
clustering mechanism that clusters messages when advantageous
and avoids clustering when the overhead of clustering dominates.
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I. INTRODUCTION

Agent-based simulation systems have gained significance
in recent years because they provide a more natural way for
developers to design their simulations than traditional discrete
event simulators. ABS systems are applied in the study
of multi-robot systems, social animal behavior, automobile
traffic, and many other fields. The kernel of an ABS system
implements communication, and a sense-think-act cycle
using message passing. Because message passing is central
to an ABS system, it may also become a bottleneck. The
efficiency of this message passing is the focus of this research.

The topology of communication between agents depends
on the simulation scenario. Some simulations may have

agents with a limited sensing range, for instance ants have
a limited sensing range in comparison to the size of an
entire simulation environment (see Figure 1). In this case, the
communication topology is simplified significantly from the
fully connected case, which is often assumed in simulation
implementations. Our approach is to exploit limitations to
communication observed in real systems, such as limited
sensing range or obstructions in terrain.

Fig. 1. Limited Sensing Range of Ants

As the complexity of ABS scenarios increase, through
more agents or more communication, the number of messages
exchanged may increase exponentially. This may degrade
performance and result in a significant increase in execution
time. Each message sent incurs overhead (e.g. processing
headers, extracting messages from the network, and payload),
and this research investigates methods to reduce the cost of
exchanging messages and reduce redundant information. The
aim of this research is to test the hypothesis that clustering
messages before sending them can reduce the overall
communication cost and improve performance. A clustering
mechanism can improve performance by aggregating multiple
messages into a single, larger message. We investigate factors
that impact the effectiveness and performance of message
clustering to speed up the performance of a distributed ABS
and provide a quantitative analysis. We also propose a new
adaptive scheme that dynamically determines when to utilize
message aggregation and determine the number of messages
clustered. We compare this with non-adaptive clustering and



an unclustered approach.

Our empirical study and adaptive mechanism are
implemented in the Scalable Agent-based Simulation
SYstem (SASSY), a Java based distributed simulation kernel
developed by the Distributed Simulation Lab at the University
of Georgia [1]. SASSY is aimed to leverage advances in
the field of parallel discrete event simulation (PDES) for
agent-based simulations. It uses an optimistic synchronization
protocol and was designed and developed to overcome the
scalability issues that exist in current agent-based frameworks.
Our implementation focuses on the Interest Management
Logical Process (IMLP) mechanism implemented in SASSY
[2]. Each agent in the simulation subscribes to a particular
IMLP using a publish / subscribe protocol. The agents
transmit messages and publish status updates via IMLPs. In
our approach, messages to agents on remote machines are
clustered at a local IMLP, forwarded to a remote IMLP, and
then unclustered and sent to the receiving agent (see Figure 2).

The remainder of this paper is organized as follows: in
the next section, we review related work from the artificial
intelligence and simulation communities. In section III we
present our implementation in detail. In section IV we present
our results, and finally we conclude the paper with a discussion
of future work.

II. RELATED WORK

There has been some work done in the area to reduce
communication costs in both the networking and simulation
community. Our work is inspired by this previous work, but
differs mainly in that it leverages knowledge available from
the application layer and that it is adaptive in both the number
of messages clustered and that it avoids clustering when it is
determined advantageous. Our work is also unique in that it
runs in a distributed agent-based simulation paradigm driven
by a discrete-event simulation executive.

In the networking research community, Roy Friedman
and Robbert van Renesse [3] compared the throughput and
latency of two protocols (Tomfc and Dysfc) with and without
message clustering. Their technique involved buffering the
application messages for a short period of time and then
sending them as a single packed message. Their study showed
that message clustering improved both latency and throughput
by two orders of magnitude. This improved performance was
attributed to the fact that packing reduces the total number
of bytes sent by replacing multiple packet headers with a
single header for the clustered packet. This also causes less
contention for network hardware, and fewer interrupts to
handle messages.

Message aggregation techniques have also been proposed
for sensor networks [4]. With the Application Independent
Data Aggregation (AIDA) approach, He et al. made decisions
based on the lower network layers instead of the application

layer. Their approach has shown promising results for
simulation. Other adaptive message aggregation protocols
for sensor networks include RAP [5] and SPEED [6].
These protocols use the neighborhood (node) information like
network congestion and traffic to make an informed decision
about message routing and aggregation. SPIN [7] makes
adaptive decisions to participate in data aggregation based on
the cost of communication.

Other related techniques focus on aggregating data instead
of messages. One of these techniques, Center at the Nearest
Source (CNS) aggregates data at the source nearest to
the destination [8]. In Shortest Path Trees (SPT), data
is propagated along the shortest path from source to the
destination and aggregated at common intermediate hops
along the way.

Clustering of messages for agent-based systems in PDES
is a relatively new concept. Takahashi and Mizuta addressed
the message transmission costs in a large and complex
agent-based simulation system on a large multi-node super
computer, BlueGene, by clustering heavily communicating
agents on the same node so that these agents can communicate
via shared memory instead of remote message passing [9].
They essentially used a load-balancing approach to reduce
communication costs. Their research shows promising
performance results for 2 and 4 remote nodes connected
via gigabit Ethernet. Our approach differs by using message
clustering instead of load balancing to reduce communication
costs. We leverage shared memory to communicate with
agents that reside on the same node, and plan to incorporate
load balancing in the future to further improve performance. A
similar protocol in the networking community that promotes
local communication is LEACH [10], a high-layer protocol
that provides clustering and local processing to aggregate
sensor data to reduce global communication.

Agents in our application use a publish and subscribe
protocol between agents and Interest Managers (IMLPs). Each
IMLP manages a subset of agents depending on where the
agents reside in the environment [2]. Lees et al proposed a
related approach where the world state was maintained by a
tree of special logical processes known as Communication LPs
(CLPs). The state of the environment is shared amongst these
CLPs and any reads and writes to the environment state are
facilitated by these processes. CLPs perform load balancing
by swapping state variables when it is advantageous to reduce
the total cost of access [11]. These researchers later studied
rollback reduction by analyzing access patterns to CLPs. Since
only certain accesses (e.g. premature reads) actually need to
be rolled back, altering the Time Warp algorithm to take this
into account reduces the total number of rollbacks (and thus
the computation time) in a Multi Agent Simulation [12]. We
intend to study these methods to reduce rollbacks in SASSY
and further improve the performance of clustering.



Fig. 2. Left: Agent Communication Across Grid Zones - Right: IMLP Message Clustering Approach
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Fig. 3. SASSY Message Types - New Types are in Bold

III. APPROACH

To evaluate the effect of various message-clustering pa-
rameters on performance, we implement our own message-
clustering scheme in SASSY and evaluate the scheme ex-
perimentally. In SASSY, agents are represented by a logical
process (LP). These LPs maintain the most updated version of
the environment visible to the agent. The SASSY middleware
decomposes the sample space into a grid of cells to improve
efficiency and scalability. An Interest Management Logical
Process (IMLP) manages a cell or set of cells in the gridded
environment. The IMLP implements a publish/subscribe sys-
tem for LPs to ensure that all agents have a consistent view of
their environment, unlike other agent-based systems that use a
centralized global view of the environment for all agents [13],
[14]. Every agent is mapped to at least one IMLP. We leverage
this concept to implement our message-clustering algorithm,
which is based on adding a few new message types into the
existing SASSY system.
SASSY agents currently send five types of messages:

subscribe, unsubscribe, enter, leave, and update. Subscribe
messages allow LPs to monitor all messages that are
published to a given IMLP. Similarly, the agent can send an
unsubscribe message to stop receiving updates from a given
IMLP. An enter message notifies the IMLP that an agent will
be modifying the grid region that the IMLP manages. This
may be something as simple as the agent moving through
the region. Like an unsubscribe message, leave messages
are sent by agents to inform an IMLP to stop listening for
the given agent’s updates. Once an agent enters an IMLPs

grid space, it will send update messages that need to be
relayed by the IMLP to all subscribing agents. To implement
our message clustering mechanism, we added three new
message types to SASSY (see Figure 3). Ping messages
are sent amongst agents. The current IMLP that an agent is
publishing information to will receive these ping messages
and potentially cluster them. Clustered messages are created
using a hash map to associate the destination LP with the
message. This helps IMLPs route unclustered messages to
the proper destination agents. Messages are clustered based
on the destination agent’s IMLP and then transmitted as one
large cluster message. Once an IMLP receives a cluster
message, it will uncluster the large message and forward
the individual messages to the agents subscribed to it using
an uncluster message. Agents will typically reside on the
same machine as their IMLP, so this transfer can usually be
done using shared memory instead of remote messaging. In
previous work, Vulov, He and Hybinette showed that relaying
messages through IMLPs showed better performance than
sending messages directly between agents [15].

In this work we assume that agents generally multicast
messages to a subset of agents in their environment
instead of broadcasting to all agents. This is also true in
biological systems such as ants which only communicate
within their sensor range. The agents located in a cell at
a particular instant will send messages only to agents in
nearby cells. This ensures the message transmission is limited
to multicast. To evaluate whether clustering messages in
this environment is advantageous, we implemented two
algorithms: fixed clustering and adaptive clustering. We
compared these algorithms against a non-clustering approach.
In the following subsections we will discuss these approaches.

A. Fixed Clustering

In the fixed clustering scheme a fixed number of messages
(of variable payload size) are combined and then sent. There
is also a configurable delay parameter that will cluster any
buffered messages after a given period of time even if the
cluster amount threshold has not been reached. This ensures



that all messages are delivered in a reasonable amount of time.
This algorithm always clusters without taking parameters
such as message size and network traffic into account. This
behavior is depicted in Figure 4.

We observed that under some scenarios, clustering added
a significant overhead. This overhead is addressed by our
adaptive clustering mechanism that avoids clustering when it
is not advantageous.

B. Adaptive Clustering

To avoid clustering overhead when advantageous, we
propose an algorithm that adapts to the network traffic within
the SASSY kernel. This is similar in spirit to the approach
taken in AIDA [4] for sensor networks. Here the aim is to
add an adaptive behavior that clusters when advantageous
and avoids clustering otherwise.

To implement adaptive clustering we implemented message
queues between the application layer and the SASSY kernel.
All messages sent to the IMLP to be routed to respective
agents must pass through this message queue. Our adaptive
scheme monitors this message queue to ensure that it contains
at least one message waiting to be processed by the kernel.
If so, it infers that the network traffic is high and performs
clustering. However, in scenarios where we observe an empty
message queue, the kernel will transmit messages in their
original form without aggregation. This approach gave us
an adaptive clustering mechanism based on internal network
traffic. When this approach was compared with fixed clustering
we found that for equal threshold and end-to-end delay values
the adaptive approach performed much better than the fixed
one.

IV. RESULTS

We performed four experiments to show the benefits of
clustering in an agent-based simulation system. We first
determined that sending fewer, larger messages is more
efficient than lots of small messages. Based on these results,
we developed a clustering approach and tested it against
the unclustered approach by altering the number of agents
in the simulation and the message payload sizes. In our
final experiment, we tested the performance of the adaptive
clustering mechanism over fixed clustering. All experiments
were conducted in a distributed environment with 10 IMLPs,
10 PEs, 50 - 500 agents and message payload sizes ranging
from 1 - 8000 bytes. Tests were executed on dual-core 2.6
GHz workstations with 4GB of RAM and networked with
gigabit Ethernet. The results of our experiments are detailed
in the following subsections.

A. Message Clustering

Our first experiment was conducted to assess the impact on
communication overhead resulting from sending large packets
as opposed to several smaller packets. This experiment

was conducted using 10 IMLPs spread across 10 PEs with
500 agents. To understand the message clustering impact
we selected values that depend on payload size. The size
of message payloads was fixed, and the experiment was
repeated four times sending a variable number of fixed-size
messages each run. In these runs, the total payload was
fixed and split into multiple smaller messages. The results
are shown in Figure 5. The experiment was repeated with
four different message sizes from 1KB to 8KB. As expected,
for each message size it was much faster to send a single
packed message instead of multiple smaller messages. This
demonstrated that clustering could potentially improve run
times in agent-based simulations.

Fig. 5. For each size, a single message ran faster than multiple smaller
messages (lower is better)

B. Varying Numbers of Agents

In our next experiment, we began to explore a clustered
approach. Experiments were run on 10 machines (one PE
per machine). We varied the number of agents in the system
and each agent sent 50 messages that were randomly sized
between 1 and 1000 bytes. After sending each message,
agents would wait a random amount of time up to 10ms to
simulate computation. Quantitative results for this experiment
are shown in Figure 6. The X-axis shows the number of agents
and the Y-axis shows the execution time in milliseconds.
Each data point represents the average execution time over
five runs. The clustered approach was initially faster than
the unclustered approach, but as the number of agents in
the system increase, the two approaches converge. We ran an
additional trial with 1000 agents and found that the unclustered
approach performed better. We believed this to be a result of
the increased rollbacks caused by too many agents assigned to
each Interest Manager. We repeated this trial with 100 IMLPs
instead of 10. With a lower agent-to-IMLP ratio, the clustered
approach performed with a speedup of 1.8 over the unclustered
one.

C. Varying Message Size

The next experiment was to highlight scenarios when the
message clustering approach may not be advantageous and to



private void PING(Message msg)
{

numClustered++;
destination = imlpFor(msg.getAPPid());

if(buffer.containsKey(destination)) {
buffer.get(destination).add(msg.getMyMessage());

}
else {

buffer.put(destination, addMessage(msg.getMyMessage()));
}

if(numClustered > threshold || currentLocalTime > maxClusterTime) {
for(String destination : buffer.getKeys()) {

sendMessage(buffer.get(destination), destination);
}
resetBufferAndClusterTime();

}
}

Fig. 4. Fixed Clustering Approach

Fig. 6. Runtime vs. Number of Agents on 10 IMLPs (lower is better)

give us insight into how to parameterize adaptive clustering.
To study this we ran multiple iterations of fixed clustering
with message sizes between 20 and 500 bytes. We measured
many small incremental changes in message size to observe
the impact of message clustering with smaller messages and
note the threshold value at which clustering starts to impact
the system performance. This experiment was conducted on 10
PEs, 10 IMLPs and 500 agents. The results of this experiment
are shown in Figure 7. We observed that message size does not
have a significant impact on execution time in either method.
As you can see, each method takes approximately the same
amount of time independent of message size. This shows that
the number of messages sent, and the number of agents in the
system have a greater impact on execution time than message
size.

Fig. 7. Runtime vs. Message Size (lower is better)

D. Adaptive vs. Fixed Clustering

Our final experiment was conducted to test our adaptive
clustering approach. There are a number of factors that impact
the performance of message transmission including message
size and processing time, latency, bandwidth and external work
loads. To test the adaptive clustering approach we focused on
number of agents. We varied payload from 1 - 1000 bytes,
and number of agents from 50 - 500. The experiment was
distributed over 10 PEs with 10 IMLPs. Once again the results
in Figure 8 represent the average of 5 runs. Adaptive clustering
showed much more speedup than fixed clustering. The adap-
tive clustering approach takes into account the internal traffic
that depends on the processing time of the SASSY kernel and
also the time taken to copy messages between network and
local storage. Clustering is performed when the queue that



holds unprocessed messages contains unsent messages. Hence
we observe that for the same amount of delay, performing
clustering of messages was not always helpful compared to
the adaptive approach.

Fig. 8. Speedup of Adaptive and Fixed Clustering vs Unclustered Approach
(higher is better)

V. CONCLUSIONS AND FUTURE WORK

In this work we have shown that message clustering,
or ”piggybacking,” can improve performance in large
scale distributed agent-based simulation. We demonstrated
the benefit of message clustering in a PDES system. We
evaluated traditional messaging as well as fixed and adaptive
clustering approaches by implementing them in SASSY, a
Java agent-based PDES system. Our results indicate that
the decision to cluster should depend on message payload
size and number of agents in the system. Fixed clustering
may not always be beneficial, like when the agent LP to
IMLP ratio is high, and the overhead of clustering and
unclustering messages dominates. The adaptive clustering
approach monitors the system to determine when clustering
will be beneficial. This approach always outperforms both
the unclustered approach and fixed clustering approaches.

This research restricts agents to a single processing element
(PE). To achieve a more realistic agent-based scenario, we
would like the agents to be able to migrate across PE nodes
dynamically. This would allow us to investigate communica-
tion patterns for complex, realistic agent-based systems such
as colonies of ants or bees. Movement across nodes would
also help us distribute the load of the simulation system by
aggregating highly interactive agents onto a single node so that
they could communicate via shared memory instead of sockets.
This would help us investigate the effect of external factors
like load balancing on our adaptive clustering technique.
Our clustering approach was always tested with a threshold

of one time step. If an Interest Manager received any mes-
sages that were at least one time step ahead of local time,
the clustered messages would immediately be sent and new

clusters started. In the future we will explore the effect of
longer threshold times on rollbacks and execution time.
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