A Survey of Implementations of Java-Based Distributed Computing Systems

Glenn Matthews

May 1, 2006

Introduction

In recent years, computationally intensive computing has increasingly moved away from “everything-in-one-box” supercomputer approaches in favor of distributed “grid computing” approaches based on networks or clusters of smaller, cheaper computers. This shift brings with it a number of issues of software design and implementation to make efficient use of the computational resources that are available in such a network.

These issues include cross-platform portability (since these clusters may be based on a heterogeneous network of computers such as an office LAN), communication between computers (since shared-memory approaches are generally not feasible), robustness (since the network may be unreliable), and adaptability (since the distributed software may be in competition with other software running on the same computers).

Since its public introduction in 1995, the Java programming language has been under investigation by researchers as a possible candidate for the implementation of distributed computing systems, because it has built-in functionality that appears potentially useful, including easy portability, communication methods including Java Remote Method Invocation (RMI), and others.

The remainder of this paper examines a number of published accounts of such Java software implementations in hopes of deriving any insights as to the relevance of these language features to distributed systems and to future work in this area.
Design and Implementation

System Startup

Automatic instantiation of the software on multiple machines is common in software designed to be run on a dedicated cluster. There is no particular Java functionality to make this easier; it is typically accomplished through remote login features such as rsh and ssh in combination with a network file system or a previous manual installation of the software on each machine (Haumacher).

Manual instantiation, more common on multi-purpose networks, requires user execution of some startup process on each machine to join the system. It is important that this process be quick and easy, since it may be repeated on many computers and (if used on a network of personal workstations) may be performed by an inexpert user (Keane 2004). One Java-specific method that has been used is structuring the software as a Java applet that can easily be launched via a web browser (Capello 1997). While this approach is novel and undoubtedly simple to launch, the authors admit that it poses numerous technical difficulties down the line due to the limitations of applets, including lack of access to a local file system and inability to open network connections to other applets. Therefore, this approach does not appear generally worthwhile.

Network Change and Failure

In a dedicated cluster, it can be reasonably assumed that all participating computers will be available from system startup time to completion, and some Java distributed systems are designed around this simplifying assumption (Haumacher).

For a more robust design (which is all but mandatory for software running on a multipurpose network), the system must be able to cope with computers joining and leaving the system as time passes, as well as the possibility of network failures (perhaps as simple as a computer being abruptly switched off by its owner). This robustness is most easily implemented if the system follows a client-server design; in such a system, the server is the only significant point of failure, as it can cache all work assigned to the clients. If a client fails, the work can be reassigned to a different client, and when new clients join, work can be readily assigned to them. This is by no means a Java-specific design, but it seems to be the most commonly followed one in Java-based systems, probably because it is much simpler to implement than peer-to-peer designs (Capello 1997, Keane 2004).

Communication

The most commonly used communication methods in Java-based systems, at least at the research level, are Java remote method invocation (RMI) (Ferscha 1997, Preiss 1999, Keane 2004, Haumacher), and custom communication protocols built on top of HTTP or TCP/IP (Capello 1997, Nicol 1998).

RMI is Java-only, which lets it use Java-specific functionality, but may be a problem if the system needs to interact with code written in other languages. There is a newer version, RMI-IIOP (Sun), which is interoperable with the cross-platform Common Object Request Broker Architecture (CORBA), but for the Java-only systems discussed here, this is unnecessary, and none of these systems make use of it.

Because RMI structures all communication as method calls, it can be resource-intensive to transfer large blocks of data between two computers, as the data must be loaded in full into the memory of both computers at some point rather than being transferred as a continuous stream of data that mostly remains on disk. Some systems work around this by switching to an alternate communication method (such as basic TCP/IP sockets) in such situations (Keane 2004).

One unique feature of Java RMI is that it allows fully-functional Java objects to be passed between computers; even if the receiving computer has not previously had a copy of the code for the incoming object, it can invoke that object’s methods nonetheless. This is primarily useful for multipurpose systems, for example, a simulation system might define a standard interface for simulation components, and any class of simulation that implements that interface can be sent out to each computer and run on the fly without needing to provide compiled code to those machines in advance. Some multipurpose Java systems build on top of RMI to make use of its specialized features while hiding its complexity from the user who wishes to implement an application on top of the system (Haumacher, Keane 2004).

Other systems use custom communication protocols for various reasons; the applet-based system mentioned earlier uses a communication protocol built on top of TCP and HTTP, though once again, this seems to have been done in response to limitations of applets rather than as an attempt at efficient design (Capello 1997). Another uses TCP sockets for all communication; although no justification is given for this design decision, the authors note that sockets are easy to use in Java (Nicol 1998).

Scalability

One concern in drawing conclusions from research is whether the approaches used scale up to real-world problems, as many of the papers discussed here only provide results for very small networks, in some cases as small as four processors (Ferscha 1997). The two most promising are (Keane 2004), which shows near-linear speedup for system sizes from 5 to 60 processors, and, interestingly, the applet-based system (Capello 1997) which also gives near-linear speedup for up to 64 processors, although the author notes that it runs two-thirds the speed of an equivalent implementation in C.

Comments and Conclusions

Though there has been much interest in using Java to implement distributed computing systems, particularly in the early years of Java in the late 1990s, much of the published information on such systems seems to have covered work that was little more than mere proof-of-concept, though there have been a few standouts (Capello 1997, Keane 2004). Therefore, these past works should be taken as guidelines as to possible avenues for future research instead of hard-and-fast rules as to the “best” designs for Java distributed systems.

The following patterns are clear and worth noting: most Java systems mentioned use Java RMI for communication, follow a client-server design, and are instantiated through standard manual or automatic methods rather than Java-specific methods such as applets. These may not necessarily be the most efficient implementations available, but their frequency suggests that they are perhaps the simplest and most straightforward to implement.

References

Keane, T.M. A General-Purpose Heterogeneous Distributed Computing System, M.Sc. Thesis, Department of Computer Science, National University of Ireland, Maynooth, 2004.

Haumacher, B. JavaParty Setup, http://www.ipd.uka.de/JavaParty/setup.html, retrieved April 29, 2006.

Capello, P., Christiansen, B.O., Ionescu, M.F., Neary, M.O., Schauser, K.E., and Wu, D. JAVELIN: Internet-Based Parallel Computing Using Java, ACM Workshop on Java for Science and Engineering Computation, Las Vegas, 1997.

Preiss, B.R., and Wan, K.W.C. The Parsimony Project: A Distributed Simulation Testbed in Java, Proceedings of the 1999 International Conference on Web-Based Modeling and Simulation, 1999.

Ferscha, A., and Richter, M. Java based conservative distributed simulation, Proceedings of the 1997 Winter Simulation Conference, 1997.

Nicol, D., Johnson, M., Yoshimura, A., and Goldsby, M. IDES: A java-based distributed simulation engine, Proceedings of the MASCOTS, 1998.

Sun Microsystems, Inc. Java RMI over IIOP, http://java.sun.com/products/rmi-iiop/, retrieved April 30, 2006.
