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1 Introduction

This document describes the Clone-Sim application programmer interface (API), and how to
use it for simulation cloning. Clone-Sim enables on-demand “cloning” of parallel and distributed
discrete event simulations. The package can be used in interactive as well as non-interactive
environments. Both optimistic [Jefferson and Sowizral 1982] and conservative simulators [Bryant
1977; Chandy and Misra 1979] can be supported. Currently, Clone-Sim has been implemented
with Georgia Tech’s Time Warp simulation executive [Das et al. 1994] called GTW, an optimistic
simulator.

Cloning is a mechanism that enables the concurrent evaluation of multiple simulated futures.
The approach has been developed for parallel discrete event simulators, where the simulation
consists of a collection of logical processes (LPs) potentially executing on different processors
[Fujimoto 1990a]. These types of simulators traditionally have two types of primitives: (1) send
and schedule which schedules an event on some logical process (ScheduleEvent) and (2) receive
which processes a scheduled event (ProcessEvent).

A running parallel discrete event simulation is dynamically cloned at decision points to explore
different execution paths concurrently. A decision point is where the states of different versions
of a simulation begin to diverge. A decision point is defined or inserted on a specified logical
process or processes and in this manner enables the exploration of different scenarios. The user
views the whole simulation domain replicated into many different planes where each plane is an
independent version of the simulation executing in parallel with the other cloned versions (See
Figure 1).
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Figure 1: A Parallel Discrete Event Simulation Represented by Logical Processes (LPs) Replicated Twice; the
Upper Left Plane Shows the Original Simulation
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The Clone-Sim implementation avoids the cost of brute-force methods that replicate an entire
simulation. Cloning in Clone-Sim uses an incremental update scheme. In this paradigm each
plane or version of the simulation contains a collection of virtual logical processes. A collection
of virtual logical processes is created each time a simulation is cloned. The difference between
the cloned simulations is in the mapping of virtual logical processes to physical logical processes.
Here, a physical logical process refers to the run-time environment of virtual logical processes.
Each virtual logical process (V) is assigned or mapped to a physical logical process (P). The
idea is that several virtual logical processes can share the same physical logical process thereby



avoiding replication of common computations. But two physical processes cannot be mapped to
the same virtual process. An analog is virtual memory where the same main memory address
can shared by several virtual addresses, but two addresses in main memory cannot be mapped
to the same virtual address. The mapping between virtual and physical processes is updated
as the clones diverge. Resources are re-used as long as possible and only the smaller portions
which cannot be shared are replicated.

To illustrate, the bottom image in Figure 2 shows the mapping between virtual processes and

Figure 2: A Snapshot of a Simulation That Has Been Cloned; the Top Image Shows the Two Virtual Versions
of the Simulation, the Bottom Image Shows the Mapping of the Virtual Processes to Physical Processes A, B
and C

physical logical processes after the simulation is cloned on physical process A. Here the mapping
of the original version of virtual processes stays the same and the computation between clones is
shared. Virtual processes B and C, version one and version two share the same corresponding
physical process; while virtual process A version one and version two maps to different physical
processes.

As the simulation progresses the mapping of virtual processes to physical processes changes,
as new physical processes are created. Message sends and receives are carried out in the physical
layer. In this manner a physical send corresponds to a set of sends in the virtual process layer.
For more details on the incremental update scheme and its performance see [Hybinette and
Fujimoto 1998|.

Clone-Sim achieves efficient cloning by intercepting the communication primitives of a simu-
lator executive. By monitoring the send and receive primitives Clone-Sim can avoid unnecessary
cloning of logical processes (LPs). Likewise, it can determine which logical processes need copies
of messages. The key idea is that the receiving LP can determine whether to clone or forward
by inspecting bits that are piggy-backed by the cloning mechanism on messages.

This manual is organized as follows. The following section describes the design goals of Clone-
Sim. The underlying assumption are discussed in Section 3. Section 4 discusses the software



architecture and the interactions between the software modules. The application programmer
interface of Clone-Sim is described in Sections 5 and 6. The compilation of Clone-Sim and
header file requirements are discussed in Section 7. Section 8 describes illustrates the use of the
cloning primitives by describing an simulation that utilizes cloning written for the Georgia Tech
Time Warp executive. Section 9 contains a reference manual.

2 Design Goals

Goals for the Clone-Sim implementation are:
o efficiency,
e transparency and
e simulator independence

Efficiency is in terms of number of alternatives evaluated in a time-constrained period and mem-
ory resource usage. Efficiency is achieved by enabling multiple scenario analysis and allowing
different versions to share computations between themselves. Transparency is with respect to
the simulation application and is accomplished by monitoring pre-existing primitives (send and
receive). Simulator independence refers to the choice of optimistic or conservative synchroniza-
tion. Here, Clone-Sim provides simulator independence with respect to this framework.

3 Assumptions

Clone-Sim is based on the assumption that the simulator executive provides send and schedule
and receive primitives to the simulation application. The relationship between the simulation
executive, the user application and the ScheduleEvent (send and schedule) and ProcessEvent
(receive) primitives are illustrated in Figure 3. Here, the simulation application defines the events
and the simulation executive manages the synchronization. For example if the simulation uses
GTW, the application defines ProcessEvent, tells GT'W when to schedule the event, then GTW
actually makes sure that ProcessEvent is called when appropriate.

Simulation Application
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Figure 3: Clone-Sim Assumptions



Clone-Sim also assumes that the simulation executive provides for dynamic LP creation
including allocation, initialization and copying LPs. It is assumed that one can schedule events
conservatively, i.e. the event can be scheduled with the assumption that it will never roll back,
(this is trivial if the simulation executive is conservative). To summarize, Clone-Sim assumes:

e a send and schedule primitive (ScheduleEvent)
- including capability to schedule an event conservatively,

e a process event primitive (ProcessEvent) and

e a capability to create/copy logical processes

4 The Clone-Sim Application Programmer Interface

A simulation consists of a simulation application (provided by the user) and a simulation execu-
tive that implements the synchronization protocol. The simulation executive provides primitives
that allow simulation programmers to define their own applications. This is a layered system,
with the operating system at the bottom, the simulator executive in the middle and the simula-
tion application at the top (See Figure 4). Clone-Sim consists of two modules: the Interactive-
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Figure 4: Views of Simulations: Traditional Parallel Discrete Event Simulation Is Shown on the Left; The Monitoring
Layer called Interactive-Sim in Relation to the Simulation Executive and the Simulation Application Is Shown on the
Right.

Sim module which is layered between the simulation executive and the application simulation
program and the Clone-DB database that is independent of the synchronization primitive of
the simulation executive. From the point of view of the simulation executive, Interactive-Sim
is a simulator application. In the context of the layered system Interactive-Sim is between the
simulation executive and the user’s application simulation program. Interactive-Sim itself is
decomposed into sub-modules, where each is implemented for a particular simulation executive.
The sub-modules are “pluggable”’in that the appropriate submodule is plugged in for a specified
simulation executive. New sub-modules can be implemented using a specified application inter-
face. The structure, semantics and the functions that need to be implemented in a sub-module
are described in a companion manual [Hybinette and Fujimoto 1999]. The general idea behind
Interactive-Sim is that it is transparent to the simulation program, and also to the programmer
utilizing the cloning primitives.

The key function of Interactive-Sim is to (1) intercept message sends and (2) to process events.
For example, Interactive-Sim needs to know the message send and message receive primitives in



order to intercept the invocation to process events or to forward copies of a message to cloned
LPs. After interception, Interactive-Sim queries Clone-DB to determine message or process
cloning. Interactive-Sim also intercepts functions that control or inquire about the number
of LPs, since cloned simulation has a larger number of LPs than an un-cloned simulation.
Interactive-Sim may require a minor adjustment of the interface between the simulator executive
and its application to accomplish control of LPs, for example in GTW we protected accessibility
to the constant TWnlp that returns the number of logical LPs in the simulation with a function
that returns the same number (int TWGetNumLPs()). Similarly a function is used to set the
constant: TWSetNumLPs () (See [Hybinette and Fujimoto 1999] for details).
The architecture of Clone-Sim is presented in Figure 5.
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Figure 5: Clone-Sim Architecture and Application Programmer Interface

The next section will describe the simulation application programmer interface to the Cloning
functions. These are the primitives that enables a programmer to clone simulations.

5 The Simulation Application

Clone-Sim accounts for the mapping of virtual LPs to physical LPs by assigning identifiers to
each physical LP. There are three types of identifiers:

1. unique
2. global and

3. simulation.

The unique identifier (UID_LP) distinguishes physical logical processes. In addition each physical
logical process is assigned to a global identifier (GID_LP), the same global identifier may be shared
by multiple physical logical processes. The GID_LP corresponds to the original physical ID (before
cloning) of the LP at time O (if this physical logical process is cloned the GID_LP may corresponds
to multiple physical processes). Finally each version of a simulation (a version consists of a set
of virtual LPs or a plane in Figure 1) is associated to a simulation identifier (Clone_ID). These
identifiers can be accessed by specified functions that are described below.



There are currently six functions available to the simulation application. These are primitive
functions, more complex cloning scenarios can be composed by these primitives. Each of these
will be discussed below in detail. The API functions are:

void CloneSim InitAppl( int argc, char ** argv )

void CloneSim CloseAppl( void )

int CloneSim Create( int UID_LP, double current_sim_time )

int CloneSim Delete( int clone, double start, double end, CSFunc_p trig )
int CloneSim GetCloneID( int LP )

int CloneSim GID( void )

int CloneSim UID( void )

The utility of these functions depends on the state of the simulation. The state of the simulator
is viewed as moving through three phases: initialization, execution of the simulation, and wrap-
up. The initialization phase determines the initial number of logical processes, the mapping
between processes and processors, and specifies event handlers. The simulation phase calls and
schedulers event handlers specified for LPs. The wrap-up phase is where the simulation phase
is complete and before the application terminates. Each of these phases are described in more
detail below.

5.1 The Initialization Phase

The implementation assumes that the simulation executive allows the user application to set
up the mapping. The mapping is thus exposed and allows Clone-Sim to manipulate the map-
ping. This is important, because Clone-Sim will exploit this ability and maintain the mapping
transparently from the simulation application.

In order to initialize Clone-Sim, void CloneSim InitAppl() is called at the end of the ini-
tialization phase. The function has two arguments: argc and argv that specify command line
parameters that are passed to Clone-Sim. The main function of command line arguments is
to specify the maximum number of clones that can be instantiated simultaneously. Details on
these parameters are discussed in Section 6. Initializing Clone-Sim sets up data structures that:
(1) control the mapping between logical processes and processors, (2) provide buffer space to
cloned physical logical processes via a process buffer pool of LPs and (3) determine message or
process cloning or determine child, sibling, parent relationships between cloned simulations.

In the current implementation, the mapping between logical processes and processors is
assumed to be static after the initialization phase, however an extension is planned to allow the
mapping to be dynamic and allow for automatic load-balancing. Also the maximum number
of clones that can be instantiated simultaneously is specified during the initialization phase,
currently this is specified via a command-line parameter (command-line parameters are defined
in Section 6). An example initialization is shown below:

void InitializationPhase( int argc, char *xargv )
{

/* code initialization is defined here */

/* call initialization procedure for the cloning library */
CloneSim_InitAppl( argc, argv );
}



5.2 The Simulation Phase

During the simulation phase, cloning allows for the insertion and deletion of decision points via
the cloning primitives CloneSim_Create() and CloneSim Delete(). This can be implemented
interactively or non-interactively by the simulation programmer. The event that causes cloning
must be a conservative event (guaranteed to never rollback). If the decision point occurs on a
set of LPs then a conservative event must be scheduled at the same simulation time by each of
the LPs defined in the set of the same decision point.

The prototype of the function that allows for the insertion of a decision point is defined
below:

int CloneSim Create( int UID_LP, double current_sim_time )

The call returns an identification number of the newly cloned simulation, so that one can refer
to the clone when deleting or pruning it. A negative number is returned upon error. The result
is the instantiation of a new simulation. This represents the location in the execution path
where the state of the newly created version start to diverge from the version that called it. As
the function is called one new physical logical process is created. Any assignment to variables
or calls to functions within this conservative event after the call to CloneSim_Create() only
effect the original clone. Assignment or calls to functions within the conservative event before
CloneSim _Create() effect both versions of the simulation: the newly created clone and the
original clone.

The argument UID_LP is the unique identifier of the LP, and can be accessed via the call
CloneSim_UID(). The argument current_sim_time is the simulation time of the event that calls
the primitive. An example use of this function is included below:

void A_Conservative_Event( arguments )
{
int unique_LP_identifier;
int clone_identifier;

/* simulator dependent code here */
/* effects both original LP and instantiated LP below */

/* access the unique logical process identifier of callee */
unique_LP_identifier = CloneSim_UID();

/* instantiates a new clone, a new logical process is created */
clone_identifier
= CloneSim_Create( unique_LP_identifier, current_sim_time );

/* code here only effects caller LP of original simulation  */
/* the new LP created via the Clone_SimCreate is un-effected */

}

In addition to creating clones, Clone-Sim provides a mechanism to eliminate simulations that
are not needed. This is done by installing a “trigger”. The primitive which installs the trigger
is: CloneSim Delete(). The function can be called interactively or non-interactively. The
prototype is:



int CloneSim Delete( int clone, double start double end, CSFunc_p trigger )

The trigger is a condition defined by the argument trigger that is sampled within the simulation
period specified by the arguments: start, end. The installation of the trigger only effects the
logical process that installs the trigger and only the simulation whose version is given by the
first argument: clone. So if all versions in the simulation need to be monitored the trigger needs
to be installed for each version. If trigger is NULL the version that calls CloneSim Delete() is
pruned un-conditionally.

Currently, the pruning function only provides un-conditional pruning, conditional pruning is
only available in an un-released version of Clone-Sim.

void Some_Event( arguments )
{

/* possibly some simulator dependent code here */

if( some condition )
{
/* prune if the simulation time of the callee is within the */
/* simulation period [0.00, END_TIME] x*/
CloneSim_Delete( cloneID, 0.00, END_TIME, NULL );
+

/* possibly some simulator dependent code here */

}

5.3 The Wrap-up Phase

When the simulation completes CloneSim_Close( void ) should be called to clean up data
structures and compute statistics. It should be called after the simulation code has completed
and before terminating the program. The prototype is defined below:

int CloneSim Close( void )

6 Command Line Parameters

The main purpose of the command line arguments is to set the maximum number of clones
that can be instantiated simultaneously. The command line allows the programmer to set
this parameter either implicitly by specifying the cloning activation time of each clone or
directly by specifying the maximum number of clones. Cloning activation time is the earliest
time (in simulated time) a clone can be scheduled.

The switch that sets the activation time is: -c. The switch is set for each clone that may be
instantiated during the simulation. An example command line to enable the instantiation of a
second clone at time 10 and a third at 20 is (the first clone is the initial simulation):

a.out -c¢ 10 -c 20
When this option is used Clone-Sim parses the arguments and stores the times in a user-accessible
array. Since clones may only be triggered from user code it is up to the application to monitor
the simulation time and trigger clones appropriately.



The switch that sets the the maximum number of clones directly is: -V (where V is for
versions). An example example command line that enables 10 simultaneously clones is:

a.out -V 2
Interactive-Sim initializes two data structures during command line processing:

e CloneSim CLONETIME an array of doubles, and
e CloneSim NumClones an integer.

Each element in CloneSim CLONETIME corresponds to the activation time for a particular version
that is instantiated, here index 0, refers to the first instantiated version, index 1 to the second
instantiated version and so on. CloneSim_NumClones limits the number of clones that are
instantiated, and is set directly by the switch -V or indirectly by the number of times the switch
-c is set on the command line. If activation time is not set on the command line via the -c
switch, then the activation time of each clone is set to the length of the simulation. For the
a.out examples above CloneSim_NumClones is set to 2. The maximum number of clones in this
case is three, where two clones are instantiated during the simulation.

The implementation cloning can set statically or dynamically. One way to implement dy-
namic cloning is to initially set the cloning time for each clone to the value that corresponds to
the length of the simulation. To push the activation time for a particular version to an earlier
time, its value can then be manipulated while the simulation is running. In the current release
of Clone-Sim both CloneSim NumClones and CloneSim CLONETIME are accessible to the simu-
lation programmer, in a later release however they will only be accessible via specified function
primitives.

7 Compiling and using Clone-Sim

In order to utilize cloning the application needs to link with Clone-Sim via the flag -1CloneSim.
The math library is also required, and is linked with the -lm flag. The Clone-Sim interface
is defined in the header file: cs_api.h and must be included in each file that uses cloning
primitives.

8 An Example

Clone-Sim consists of two modules: Clone-DB and Interactive-Sim. Clone-DB is independent of
the synchronization mechanism of the simulator executive. A sub-module in Interactive-Sim in
contrast must address the particulars of a simulator executive. There is a separate sub-module
for each simulation executive supported. However, the programmer interface between Clone-Sim
and the simulation application that is to be cloned is the same between all different simulation
executives. Here, in this manual we assume that the sub-module has been implemented.

To illustrate the utility of Clone-Sim we will describe how cloning can be utilized for an
application written for GTW using the cloning primitives. The same primitives may be used
for other simulation executives, including simulator that utilizes a conservative synchronization
mechanism. We assume that the reader has previous experience with writing applications for
a simulator such as GTW, and we will provide high-level details as needed. Events in GTW
is scheduled by specifying the destination LP and the time stamp increment. FEach LP is
instantiated by an event.



The GTW application that will be used for illustrative purposes is called P-Hold. P-Hold pro-
vides synthetic workloads using a fixed message population. The P-Hold simulations described
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Figure 6: A Parallel Discrete Event Simulation Represented by Logical Processes (LPs) Replicated Twice (Where
Each Plane Consists of a Set of LPs); the Upper Left Plane Shows the Original Simulation. (Only LP 0 is Shown
In Each Version of the Simulation)

here will use a message population of 256 (message_population) and 1024 logical processes
(number _lps) for the length of the simulation (END_TIME) is set to 100 simulated seconds
(for more details on P-Hold see [Fujimoto 1990b]). The message population is set by having
each LP send message_population/number_lps messages during the initialization phase of
the simulation (when simulated time is 0 for each of the logical LPs). For this application assume
we want to instantiate two clones each from logical process 0: one clone is to be instantiated at
simulated time 10 and the other at simulated time 20. A way to view this topology is shown in
Figure 6, here LP 0 is physically cloned from the original simulation once at simulated time 10
and a second time at simulated time 20.

A GTW program consists of 3 phases: initialization, simulation and wrap-up. In addition a
GTW program must define the structures for the state vectors of its logical processes and the
message format to schedule events. In the below structure of the state space and each of the 3
phases of P-Hold is described.

GTW allows the user to specify the data types which give the executive an idea how to
maintain the state space. Example data types include read-only, incremental and automatic.
Figure 7 defines the state vectors and the message format for P-Hold events. The variables
preceded by the prefix cs_ are used to control cloning. There are two variables defined in the
state space used for this purpose: cs_CloneCount and cs_cloned. cs_CloneCount is used to
control the number of clones that are instantiated and cs_cloned is used to control the LP that
instantiates the clone (in this example LP 0 will instantiate all clones). The message format
in this case is simple and contains a single integer that counts the number of times a message
“bounces” between LPs. An LP is instantiated by an event and a new event is scheduled by
sending a message with a specified location LP and time, so in P-Hold each event corresponds
to “a flow of messages”, and the originator of the message flow can always be found by back-
tracking from the receivers to senders up to simulated time 0.

The first phase of GTW is initialization. The initialization phase in GTW is defined by two
procedures: TWInitAppl() and IProc(). TWInitAppl() defines global initialization and sets a
number of things such as number of logical processes, event handlers, allocates the state space
for the logical processes and so on. IProc() initializes the state of the LP and sends the initial
messages to get the simulation started. The IProc() procedure always executes at simulated
time zero. The specifics of TWInitAppl() and IProc() for the example are described in turn
below.

The code TWInitAppl() for P-Hold is shown in Figure 8. In this example the simulation is
homogeneous: each logical process defines the same initializing (IPHoldLP()), event handling
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(PHoldLP()) and finishing procedures FPHo1dLP(). The LPs differ in having different random
seeds (See the line that sets Seeds[i] in Figure 8). To initialize cloning CloneSim_InitAppl() is
called at the end of TWInitAppl(). This enable Interactive-Sim to intercept the event handlers,
and manipulate the format of messages.

CloneSim_InitAppl() takes two arguments: argv and argc. In the P-Hold example we set
the cloning activation time! to 10 for the first clone and 20 for the second clone. This can
be accomplished by passing: “-c 10 -c¢ 20” via the above arguments. A GTW application
sets several simulation parameters on the command line. Typically, number of processors and
simulation time is set on the command line. In our example the command line to run P-Hold
for 100 simulation seconds (set by the -t switch) using 4 processors (set by the -p switch)
is:

phold -p 4 -t 100 -A
GTW uses the -A switch to allow command lines arguments to be passed to the TWInitAppl ()
procedure. All arguments following this flag are passed to the initialization procedure via argc
and argv. This is shown above for illustrative purposes and the switch is not required if no
arguments follow —A. In the example, the same arguments are sent to CloneSim InitAppl() as
in TWInitAppl(). An example P-Hold command line that enables the instantiation of a second
clone at time 10 and a third at 20 (the first clone is the original simulation) is:

phold -p 4 -t 100 -A -c 10 -c 20

In the second part of the initialization phase GTW initializes the state space via the handler
IProc() (set to IPHoldLP() in the example). IProc() can be viewed as an event at simulated
time zero. PHoldLP() is shown in Figure 8. Here, TPHoldLP() sets the state vectors, specifies
the state space that is automatically check-pointed and initializes the state variables. The state
variable cs_CloneCount is set to 0, to indicate that currently the LP has not instantiated a clone
and the state variable cs_cloned is set to 0 to enable cloning. To start the simulation each LP
schedules MsgPop/number _lps messages, where the time stamp increment of each message is
picked from a exponential distribution between 0 and 1; and the destination is picked from a
uniform distribution consisting of all participating LPs.

After the application is initialized the simulation phase starts and the event handlers are
called. The event handlers are specified in TWInitAppl(), and here all event handlers are set
to PHo1dLP (). The code for the event handler is shown in Figure 8. The procedure records the
timestamp of the message that was just received and increments a counter indicating the number
of messages received. The procedure determines cloning by evaluating (1) the activation time
and the (2) identity of the logical process calling the procedure. The simulation clones LP 0
twice: once when LP 0 progresses beyond simulated time 10 and a second time when LP 0 after
simulated time 20. The state variable AVars.cs_cloned is used to prevent undesirable clones.
Children of logical process 0 are prevented to propagate further clones. A clone is instantiated
by a conservative event that is defined by the procedure ClonePHoldLP() and is scheduled at
simulated time TWNow() — resulting in a time stamp increment of zero, the first argument of
TWGetMsg(). In this example, cloning is always instantiated by logical process 0. However, the
primitives allows it to be instantiated by any logical process, even a logical process that has
already been cloned.

The code for the event (ClonePHoldLP()) that instantiates cloning is shown in Figure 8.
This event is scheduled conservatively from an event handler. In this case the event handler

Lthe cloning activation time is the earliest time a clone can be activated and is set by the switch -c (see Section 6 for more
details).
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for the original clone of logical process 0, schedules the cloning event (the cloning event must
be a conservative event to prevent rollbacks). During the conservative event the state variable
SV->AVars.cloned serves to control the capability to clone further clones. If it is set to 0 then
further cloning is allowed, if it is set to 1, cloning is disabled. The cloning event scheduled
from PHold () prevents new clones from further cloning and preserves the right to the caller (the
parent). The logical process that instantiates a simulation maintains the identification number
of the clone it last instantiated, and its own identification number. Similarly, logical process
that is cloned (the child) maintains the parent identification number, and its own identification
number. This is also where the versions of the cloned simulations differ.

Before the simulation terminates Clone-Sim collects cloning statistics, and clears data struc-
tures. This is accomplish by calling CloneSim_CloseAppl () from the GTW function: WrapUp_Appl().
This code is shown in Figure 12. GTW wraps up applications by calling FProc for each logical
process and then after finishing calling each finishing procedure for each LP it calls WrapUp_Appl
once. The code for FPHoldLP is shown in Figure 13 and is an empty procedure.

12



#include "gtw.h"
#include <stdio.h>
#include <malloc.h>

/* remember timestamp on last MSZ messages */
#define MSZ 10

/* read only variables in state vector */
/* automatically check-pointed variables for LP */
struct MyAutoVars

{

TWSeed Seeds; /* seeds for random number generator */
int cs_CloneCount; /* number of clones instantiated */

int cs_cloned; /* controls who instantiated cloning */
int cs_parent;

int cs_child;

I

/* incrementally check-pointed variables for LP */
struct MyIncVars

{

TWTime LastTS[MSZ]; /* remember last MSZ timestamps */
int Count; /* number of messages received */
s

struct MyLPState
{
struct MyAutoVars AVars;
struct MyIncVars ISVars;
s

struct MyMsgData

{ /* Message data */
int counter;

};

Figure 7: Data structures that define state vectors and messages for P-Hold
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void TWInitAppl( int argc, char *xargv )
{

int number_lps, i, message_population;

number_lps = 256;
message_population = 1024;

/* specify number of LPs */
TWSetNumLPs ( number_lps );

for( i = 0; i < TWGetNumLPs(); i++ )
{
/* LP to PE mapping: map round robin */
TWLP[i] .Map = i % TWGetNumGlobalPEs();

/* set handlers: initialization, event and wrap-up functions */
TWLP[i].IProc = (FuncPtr2) IPHoldLP;

TWLP[i].Proc (FuncPtr) PHoldLP;

TWLP[i] .FProc (FuncPtr2) FPHoldLP;

TWLP[i] .IncrSave = TRUE;

/* set and allocate LP state */

TWLP[i] .State = TWMalloc( sizeof (struct MyLPState) );
TWLP[i] .LPStateSize = sizeof (struct MyLPState);
TWLP[i] .CopySize = sizeof (struct MyAutoVars);

}

/* get initial random number generator seeds */
for( i = 0; i < TWGetNumLPs(); i++ )
TWRandInit( &(Seeds[i]), 0 );

/* set memory mapping */
for( i = 0; i < TWnpe ; i++ )
{
for( j = 0; j < TWnpe; j++ )
{
if( i != TWnpe || j '= i)
TWMemMap [i] [j]1 = 1;
if(i==3)
TWMemMap [i][j] = 1;
TWMemMap [i] [j]

1]
=

}

/* set message size */
TWMsgSize = sizeof( struct MyMsgData );

/* call initialization procedure for the cloning library */
CloneSim_InitAppl( argc, argv );
X

Figure 8: TWInitAppl() for P-Hold that uses cloning
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void IPHoldLP( LPState xSV, int MyPE )

{

struct MylMsgData *TWMsg;

int i,

TWTime ts;
TWEachSeed_t sl, s2;

int rcv_lp, dst_lp;

struct LPState * CurState;
CurState = GState[MyPE].CurState;

TWMe () ;

myLP =
= (struct MyLPState *) TWLP[TWMe()].State;

SV

/* specify variables to be automatically check-pointed */
TWAutoCheck( (char*)&(SV->AVars), sizeof (struct MyAutoVars) );

TWRandGetSeeds( &(Seeds[TWMe()]1), &s1, &s2 );
TWRandSetSeeds( &(SV->AVars.Seeds), sl1, s2 );

/* initialize state variables */
if ( CurState->IncrSave )
{
SV->ISVars.Count = 0;
for( i = 0; 1 < MSZ; i++ )
{
SV->ISVars.LastTS[i] = 0.0;
}

SV->AVars.Count = 0;
SV->AVars.CloneCount = 0;
SV->AVars.cloned = 0;

for( rcv_1lp = TWMe(); rcv_lp < MsgPop; rcv_lp += TWGetNumLPs() )
{
ts = TWRandExponential( &(SV->AVars.Seeds), 1.0 );
dst_lp = TWRandInteger( &(SV->AVars.Seeds), 0, TWGetNumLPs()-1 );
TWGetMsg( ts, dst, sizeof(struct MyMsgData) );
TWMsg->counter = 1;
TWSend () ;
}

Figure 9: Procedure that initializes each LP for P-Hold
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void PHoldLP( struct MyLPState *SV, struct MyMsgData *M, int MyPE )
{

struct MyMsgData *TWMsg;
struct LPState * CurState;
TWTime ts;

int dst;

double time_now;
MyState = &GState[MyPE];
CurState = GState[MyPE].CurState;

myLP = TWMe();
time_now = TWNow();

if ( CurState->IncrSave )

{
TWCheckTWTime (& (SV->ISVars.LastTS[SV->ISVars.Count % MSZ]));

SV->ISVars.LastTS[SV->AVars.Count % MSZ] = TWNow();

TWCheck (&(SV->ISVars.Count)) ;
SV->ISVars.Count++;

}
SV->AVars.Count++;

/* determine cloning scheduling */
if( (TWMe() == 0) && (SV->AVars.cloned == 0) )
if ( CloneSim_CLONETIME[SV->AVars.CloneCount] > 0.0 )
{
if ( ((SV->AVars.CloneCount) < CloneSim_NumClones )
&% (CloneSim_CLONETIME[SV->AVars.CloneCount] < TWNow()) )

{
SV->AVars.CloneCount++;
TWGetMsg( 0, TWMe(), sizeof(struct MyMsgData) );
TWBlockingIOSend( (IOFuncPtr) ClonePHoldLP );
}
}
}

/* schedule a new event */
ts = TWRandExponential (&(SV->AVars.Seeds), 1.0);
dst = TWRandInteger (&(SV->AVars.Seeds), 0, (TWGetNumLPs())-1);

TWGetMsg( ts, dst, sizeof (struct MyMsgData) );
TWMsg->counter = M->counter + 1;

TWSend () ;
}

Figure 10: Event handler procedure for P-Hold that may instantiate a clone
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void ClonePHoldLP( struct MyLPState *SV, struct MyMsgData *M, int MyPE )
{

struct PEState xMyState;
struct LPState *CurState;
MyState = &GState[MyPE];

CurState = GState[MyPE].CurState;

/* access the unique logical process identifier of callee */
uid = CloneSim_UID();

/* disable this current clone and child clone to propagate */
SV->AVars.cloned = 1;

/* instantiates a new clone, a new logical process is created */
clone_identifier = CloneSim_Create( uid, TWNow() );

/* code here only effects caller LP of original simulation  */
/* the new LP created via the Clone_SimCreate is un-effected */

/* enable clone 0 to propagate more clones */

SV->AVars.cloned = 0;
}

Figure 11: Conservative event procedure for P-Hold that instantiates a clone

void WrapUp_Appl( void )
{
CloneSim_CloseAppl();
}

Figure 12: Wrap-Up procedure for P-Hold

void FPHoldLP( struct MyLPState * SV, int MyPE )
{
}

Figure 13: Finishing procedure for P-Hold
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9 Reference Manual: Simulation Application

Details of the cloning functions available to the simulation application are described in below:

void CloneSim InitAppl( int arge, char **argv )

- This procedure initializes the Clone-DB and sets up an LP buffer pool that is later
used when a simulation is cloned. The addressing and handling of the LP buffer pool
are transparent to the simulation application programmer.

- A list of arguments can be passed to Clone-Sim via the parameter: argv_appl. The
number of arguments are given by the parameter argc_appl. The main-purpose of
the command line arguments is to set the maximum number of clones that can be
instantiated simultaneously. The command line allows the programmer to set this
parameter either implicitly by specifying the cloning activation time of each clone
(via the —c switch) or directly by specifying the maximum number of clones (via the
-V switch). Cloning activation time is the earliest time (in simulated time) a clone can
be scheduled.

- This procedure must be called at the end of the initialization phase before initializing
each logical process.

void CloneSim_CloseAppl( void )

- This procedure clears data structures and collects cloning statistics.
- This procedure must be called when the simulation phase is complete and before the
application terminates.

int CloneSim_Create( int UID_LP, double current_sim_time )

- This function creates a new simulation and clones an LP. It returns an identifica-
tion number of the newly cloned simulation, so that one can refer to the clone when
deleting or pruning it. A negative number is returned upon error. The invocation of
Clone_Create can be viewed as the insertion of a decision point.

- The argument UID_LP is the unique identifier of the callee LP, and can be accessed via
the call CloneSim UID(). The argument current_sim_time is the simulation time of LP
that calls the primitive.

- The event that calls this function must be a conservative event (A conservative event
is an event that is guaranteed to never rollback). The argument: current_sim time
must be the same as the simulation time of the callee (the conservative event).

- If the a the decision points need to effect multiple LPs then each LP must schedule a
conservative event that calls CloneSim_Create() where the argument: current_sim time
is equivalent. In this special case one version of the simulation is created and each of
LPs that calls CloneSim_Create() is cloned.

- Within this event, the cloned and original simulation are similar up to the invocation
of this function, all statements after the invocation are only applied to the original
simulation.

int CloneSim Delete( int clonelD, double start, double end, CSFunc_p func)

- This procedure prunes the cloned simulation identified cloneID. The pruning can de-
pend on a trigger specified by a condition function func() and time period when to
sample the condition specified by the argument: func, (func must return an integer).

- clonelD is a unique number specifying the clone that is pruned, the time period when
the trigger func is affected is specified by the arguments start and end. The trigger
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is specified by the argument: func, and (func must return an integer).

- func is a user defined function determining if a clone should be pruned. The clone
is pruned if func returns 1. A trigger of NULL is equivalent to a return of TRUE
and then the version of the simulation that calls CloneSim_Delete() is pruned un-
conditionally.

- Currently, the pruning function only provides un-conditional pruning, conditional prun-
ing is only available in an un-released version of Clone-Sim.

CloneSim_GetCloneID( void )
- This function returns the ClonelD of the clone that invokes it.
CloneSim_GID( void )

- This function returns the corresponding logical process number of the original simula-
tion (the first single un-cloned simulation). For example, if the simulation originally
consisted of 2 logical processes numbered 0 and 1, then later, the simulation is cloned,
all logical processes of the cloned simulation corresponding to logical process 0 and
logical process 0 return a 0 when called from an event processed on logical process 0.

CloneSim UID( void )

- This function returns a unique identification number of the logical process that invokes

it.
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