
NOTE: This is a preliminary release of an article accepted by the ACM Transac-
tions on Modeling and Computer Simulation. The definitive version is currently in
production at ACM and, when released, will supersede this version.

c©1998 by the Association for Computing Machinery, Inc. Permission to make dig-
ital/hard copy of all or part of this material without fee for personal or classroom
use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its
date appear, and notice is given that copying is by permission of the ACM, Inc. To
copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee. Permissions may be requested from

Publications Dept, ACM Inc.,
1515 Broadway, New York, NY 10036
USA
fax +1 (212) 869-0481, or
permissions@acm.org

Cloning Parallel Simulations

MARIA HYBINETTE

The University of Georgia

and

RICHARD M. FUJIMOTO

Georgia Institute of Technology

We present a cloning mechanism that enables the evaluation of multiple simulated futures. Per-
formance of the mechanism is analyzed and evaluated experimentally on a shared memory mul-
tiprocessor. A running parallel discrete event simulation is dynamically cloned at decision points
to explore different execution paths concurrently. In this way what-if and alternative scenario
analysis can be performed in applications such as gaming or tactical and strategic battle manage-
ment. A construct called virtual logical processes avoids repeating common computations among
clones and improves efficiency. The advantages of cloning are preserved regardless of the number
of clones (or execution paths). Our performance results with a commercial air traffic control sim-
ulation demonstrate that cloning can significantly reduce the time required to compute multiple
alternate futures.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory; I.6.8
[Simulation and Modeling]: Types of Simulation—discrete event ; parallel ; distributed; D.4.1
[Operating Systems]: Process Management—Concurrency ; scheduling ; synchronization; D.1.3
[Programming Techniques]: Concurrent Programming—Distributed programming

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Cloning, multiprocessors, parallel algorithms, parallel simu-
lation, pruning

This work was supported in part by U.S. Army Contract DASG60-95-C-0103 funded by the
Ballistic Missile Defense Organization and managed through the Space and Strategic Defense
Command, a grant from Sun Microsystems and a MITRE Corporation research grant.

Maria Hybinette
Computer Science Department
The University of Georgia
Athens, GA 30602-7404, USA
maria@cs.uga.edu

Richard M. Fujimoto
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280, USA
fujimoto@cc.gatech.edu

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 0000-0000/2002/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. N, M 2002, Pages 1–28.

2 · M. Hybinette and R. M. Fujimoto

A

B
C

A
B

C

L
L

L

L

Faster-than-real-time
simulation

Air-Traffic
Status

Data Base

Live feed: output from real-time
data -- flight-reports, weather

Interactive Simulation
Environment

How To: Minimize delays

Evaluating Alternatives:

Fig. 1. Envisioned system: A faster-than-real-time simulation is integrated in a real-time
interactive environment, enabling what-if evaluation of alternative causes of action.

1. OVERVIEW

Simulation is becoming an important tool for decision makers in time-constrained
environments. High-fidelity simulations demand parallel implementations to sup-
port the decision process at real-time rates. Typical decision making applications
in which parallel simulations can or do play a role include air traffic control, gam-
ing strategy and battle management among others. The goal of this research is to
provide a simulation-based decision aid for managers faced with complex planning
tasks (e.g., real-time air traffic management). To realize effective decision making
we propose a technology called simulation cloning that enables more efficient ex-
ploration of different possible future outcomes based on policy decisions made at
well defined decision points.

The envisioned decision aid includes three components: (1) a situation data
base built from live data feeds that characterizes the current state of the system
under investigation, (2) a faster-than-real-time forecasting simulator and (3) an
interactive environment that interfaces with both the database and the forecasting
tool for what-if evaluation of alternative courses of action. The overall system is
depicted in Figure 1 in the context of an air traffic control application.

A powerful simulation-based decision tool should provide capabilities such as
monitoring and steering. Monitoring provides the ability to query or sample sim-
ulation variables. These variables may be sampled continuously, displayed when a
pre-defined condition is satisfied or presented on demand.

Simulation steering controls the execution of an application, such as pause, ex-
ecution path modification and rollback. Pausing stops the simulation and enables
the analyst to fully investigate the state of the simulation to determine whether to
to create new execution paths or to modify variables of the current execution path.
Execution path modifications change the state of the simulation and are added to
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 3

the simulation at decision points. Rollback is the retraction to an earlier simulated
time and provides for the re-evaluation of old decision points and variables.

Such a tool could be used for example, to determine which of several air traffic
control decisions offers minimal delay. If thunderstorms are approaching a con-
troller may want to evaluate alternative air traffic restrictions to minimize travelers
delays while maintaining safety in the airspace. This can be done by dynamically
cloning (replicating) several faster-than-real-time simulations with different courses
of action. The clones utilize both the current situation and forecasting parameters
such as the start time of the restriction. The clones are inserted as decision points
and each of the new “clones” proceeds in parallel, sharing common computations
to improve performance (sharing a computation means that the computation is
performed once among the clones). For example, the clones will share all computa-
tions before the start time of the restriction. The effect of each policy within each
clone is monitored to determine which policy offers the most effective solution. This
research focuses on the details of the parallel evaluation of multiple alternatives.

Parallel discrete event simulation techniques are used to speed up the execution
of the simulator. The parallel simulator consists of distinct components called logi-
cal processes or LPs. Each LP models some part of the system under investigation
and maintains its own state. For example in an air traffic application each airport
may be modeled by an LP. The logical processes are often mapped to different pro-
cessors and interact by exchanging time-stamped event messages. The simulation
progresses as LPs exchange messages that model changes of the system state at
discrete points in time. In the air traffic application for example, the airports may
interact by sending messages modeling aircraft arrival and departure events.

In order to maintain consistency, events are processed in time-stamp order ac-
cording to a consistency protocol. The two prevailing consistency protocols are
termed conservative and optimistic. The conservative protocol enforces consistency
by each LP processing its events in time stamp order. The optimistic protocol, in
contrast, allows out of order event processing, but provides a mechanism such as
rollback to recover. Our cloning mechanism is applicable to both conservative and
optimistic simulation protocols.

The rest of this paper is organized as follows: Background and related work is
discussed in Section 2. Section 3 introduces dynamic cloning. In Section 4 we
present the virtual logical-process paradigm. This is followed by a discussion of
the cloning mechanism in Section 5. We then describe our implementation of the
cloning mechanism in Section 6. Next, performance measurements are presented
and analyzed. We conclude with a summary and a discussion of future directions.

2. RELATED WORK

Related work in interactive parallel discrete event simulation is described in [Stein-
man 1991] and in [Franks et al. 1997]. In [Steinman 1991] a message type called
an external event enables interaction with the simulator. These events can steer,
sample and query the simulation in progress. The approach of [Franks et al. 1997]
allows for the testing of what-if scenarios provided they are interjected before a
deadline. Alternatives are examined sequentially by using a rollback mechanism
to erase exploration of one path in order to begin exploration of another. In con-

ACM Journal Name, Vol. 1, No. N, M 2002.

4 · M. Hybinette and R. M. Fujimoto

trast to these methods, our algorithm dynamically creates and evaluates multiple
alternatives to allow concurrent exploration of multiple paths. New versions of
an executing simulation can be dynamically cloned to evaluate alternative paths.
Because the cloned simulation proceeds in parallel with the original, an increased
number of alternatives can be evaluated.

Cloning was suggested by [von Neumann 1956] more than 40 years ago to provide
fault-tolerance. Fault-tolerance is ensured by providing identical processes, identical
transactions, duplicate data, or redundant services [Schneider 1990]. Cloning can
also improve throughput by placing process replicas in the proximity of where
a service is needed [Goldberg 1992; Schneider 1990]. Cloning is suggested as a
solution for concurrency control in real-time databases [Bestavros 1994] and to
improve accuracy of simulation results, i.e. to run multiple independent replications
then averaging their results at the end of the runs. For example, in [Heidelberger
1991; Glynn and Heidelberger 1991] research focuses on how to achieve statistical
efficiency of replications spread on different machines. In [Vakili 1992] replications
are synchronized via a shared clock. In this way the same event occurs at the same
time at all replicas.

Cloning is also used in sequential simulations to propagate faults in digital cir-
cuits [Lentz et al. 1999], modeling of flexible manufacturing systems [Davis 1998] or
to fork transactions in simulation languages [Henriksen 1997]. Sequential simulation
languages typically clone dummies (“shadows”) to do time-based waiting [Schriber
and Brunner 1997].

The incremental update schemes of process migration algorithms such as [Zayas
1987] are similar in philosophy to our virtual logical process scheme (covered in a
later section). The common goal is to reduce the cost of copying the virtual address
space between clones. The process migration algorithms differ in that only one
active clone is supported while we allow for multiple clones. Our main motivation
is to develop a parallel model that supports an efficient, simple, and effective way
to explore and compare alternate scenarios. This is decidedly different than the
studies reported above.

3. SIMULATION CLONING

Simulation cloning enables the creation of several new copies of a running simula-
tion, each modeling a different course of action. The clones are inserted into the
on-going simulation as decision points and each of the new clones proceeds in paral-
lel. Here, a decision point defines the point in simulation time where the simulation
model is cloned so the original and cloned simulation may execute along different
execution paths.

Simulation cloning improves simulation performance in two ways: First, simula-
tions that are interactively cloned at a decision point are able to share the same
execution path before the decision point, so the computations before the decision
point need only be executed once. Second, after cloning, multiple versions of the
simulation may be able to share a single execution of certain computations that
are common between them (a mechanism for achieving this will be described in
the next section). Additionally, clones can be “pruned,” i.e. deleted, when it is
apparent that the course of action they are evaluating will not be competitive with
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 5

10

10

10

No Restriction

No Restriction

30

10

20

20
30

No Restriction

10

Time

Replicated Execution (different MIT values)

Cloned Execution (different MIT values)

Decision Points

Cloned Execution (10 MIT at different times)

Fig. 2. Simulations that are cloned at a decision point share the same execution path before
cloning. The top image shows the current approach where four independent simulations
are run separately to evaluate alternatives.

respect to others.
These capabilities provide a significant improvement over the traditional paradigm

where several alternative trials of a simulation are completely replicated with each
replication evaluating a single course of action. One disadvantage of this approach
is that it may be difficult to predict ahead of time which alternate courses of ac-
tion or simulation parameter alternatives need to be considered. In our approach
however, one can interactively clone new simulations from a running simulation as
needed.

As an example, consider an air traffic control application where the goal is to
minimize flight delays and aircraft “circling” while meeting the air traffic demand
and safety requirements. Towards this end, air traffic controllers can adjust the
spacing between aircraft, i.e., the miles in trail (MIT) to control the flow of traffic
in the air space. Further, controllers can impose “ground delay” programs to keep
aircraft from taking off rather than have them circle near their destination, which
is both costly and is less safe. Simulation can be used to evaluate the effects of
imposing different MIT restrictions and/or ground delay programs.

Suppose, for example, that congestion is expected to develop at Dulles (IAD)
because of a planned runway closure that afternoon. A controller might consider
reducing the rate of aircraft entering the Dulles airspace. The controller might
wish to consider MIT values: 10, 20 or 30 miles in the traffic corridors near Dulles
to assess their impact on flight delays of inbound aircraft, and the affect of these
changes on the entire national air space. Using replicated trials, the controller
would have to launch four separate simulations, each using a different restriction
imposed that afternoon prior to the runway closure. Then, after analyzing the result
of each simulation the controller would impose the restriction which promises the

ACM Journal Name, Vol. 1, No. N, M 2002.

6 · M. Hybinette and R. M. Fujimoto

least flight delays within the overall system. This scenario is depicted in the top
image of Figure 2 where each horizontal line represents the execution of one of the
replications.

The middle image in Figure 2 illustrates how cloning can be applied to this
scenario. A decision point is set at the time when the restrictions would be imposed.
Rather than repeating the execution of the simulation prior to the decision point
four times, that portion of the computation is only performed once. When the
simulation time of the simulation reaches that of the decision point, three new clones
of the simulation are created, and each completes the execution using different MIT
restrictions. It is clear that this will be much more efficient than the replicated
approach.

The bottom image of Figure 2 shows another scenario where a controller is at-
tempting to determine the proper time at which to enforce a restriction. In this
case the decision points are set at different simulation times corresponding to can-
didate times for imposing the restriction. These two examples show that cloning
may increase the number of alternate simulations that can be run by reducing the
amount of computational resources required.

Another benefit of dynamic cloning is that clones can be created interactively. For
example as soon as the analyst sees something interesting in the ongoing simulation
he may interactively create a new clone, or pause the simulation, rollback and then
create a new clone. In contrast to replicated trials, alternative simulation(s) do not
need to re-run from the beginning and can be spawned as soon as it is realized a
new alternative is viable.

Computational resources can be even more efficiently utilized if unproductive
simulation clones are dynamically pruned. A controller may realize that some
Miles-In-Trail (MIT) restrictions will not lead to desirable outcomes long before
the simulation completes. In this case the cloned simulation can be simply ter-
minated prior to completion, releasing the resources it was using for use by other
clones.

4. VIRTUAL LOGICAL PROCESSES

As previously mentioned, simulation cloning avoids the cost of simulating multiple
futures by sharing common computations (i.e. computation that is common to
more than one clone need be performed only once). In the previous section we
illustrated how clones share computations before the branching point by defining
decision points. In this section we introduce the construct virtual logical processes,
that enables sharing of computations after the decision point.

Cloning can be implemented by simply replicating the entire simulation at each
decision point. For large simulations, consisting of thousands or millions of LPs,
this approach may be wasteful, especially when the differences among the clones are
confined to only a few LPs. In this case, as the simulation progresses, many com-
putations and messages in the different clones will be the same. It would clearly be
desirable to perform these duplicate computations only once. For example, consider
a decision point introducing an MIT restriction near Dulles. The new restriction
will initially only affect the air space in the Washington, D.C. area. Simulation
computations corresponding to more distant airports, e.g. Los Angeles, will be
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 7

Virtual Layer

Physical Layer
No Restriction Restriction No Restriction Restriction

Fig. 3. An air traffic control simulation is divided into two layers: A physical layer and a
virtual layer. The incremental update scheme allows sharing of computational resources
until interaction.

the same in the different clones until the effects of the MIT restrictions at Dulles
propagate across the national airspace. Thus the computations corresponding to
LPs representing airports in the Los Angeles area need only be performed once,
and their results can be shared among the different clones.

Our approach to avoiding duplicate computations is to replicate the state space
of the simulation incrementally (i.e. LPs can be replicated incrementally) rather
than all at once. To explain this approach, we use concepts analogous to those
used in virtual memory systems. Each simulation clone is referred to as a version
of the simulation, and consist of a set of virtual logical processes that communicate
by exchanging virtual messages. As implied by their name, virtual LPs and mes-
sages do not have an actual, physical realization. Instead, each virtual LP maps
to (exactly) one physical logical process that does have a physical realization in the
parallel simulation system. Similarly, each virtual message maps to a single phys-
ical message. Common computations among two or more clones can be shared by
mapping virtual LPs among the different clones to a single physical LP that per-
forms the actual (shared) computation. Similarly, virtual messages among different
clones can be mapped to a single physical message to avoid duplication.

When a new version (clone) of the simulation is created, the entire set of vir-
tual logical processes making up the version is replicated. Replicating a virtual
LP requires very little computation, however, because one need only update a few
internal data structures. One need only replicate the physical LPs that are different
in the two clones. Replicating a physical LP requires replication of the state vari-
ables included in the LP. Virtual LPs that are identical in the two clones map to
the same physical LP, while those that are different in the clones map to different
physical LPs.

To illustrate these concepts, again consider an air traffic control simulation. Sup-
pose there are 3 aircraft approaching Dulles (IAD) airport. This scenario is depicted
on the left of Figure 3. The tower represents the control center at the Dulles air-
port. The virtual LPs are depicted in the section of the diagram labeled the virtual
layer, and the physical LPs are in the area labeled the physical layer. Initially (the
leftmost diagram in Figure 3) there is a single version of the simulation, and each

ACM Journal Name, Vol. 1, No. N, M 2002.

8 · M. Hybinette and R. M. Fujimoto

virtual logical process maps to a single physical logical process.
Suppose a clone of the simulation is created halfway through the execution that

introduces a new MIT restriction at Dulles. The original version of the simulation
does not include this change. This is shown in the middle image of Figure 3. There
are now two versions of the simulation in the virtual layer. Notice that there are
two physical LPs modeling the tower. One simulates actions at the tower with the
new restrictions and the other represents the original tower with no new restriction.
The virtual logical processes modeling the tower at Dulles are mapped to different
physical logical processes. The simulation models of the three aircraft are identical
in both versions (for now) because they are not yet affected by the restriction, so
they share the same physical simulation. The two virtual logical processes for each
aircraft are mapped to the same physical logical process. In this way, common
computations among the two versions need only be performed once.

Common message send and receive computations are also shared among clones.
In general, when a physical LP (e.g. the aircraft LPs in Figure 3) sends a message,
this corresponds to a set of message sends in the virtual layer. In the example
(Figure 3), a message sent from the physical logical process corresponding to the
top aircraft to the physical logical process corresponding to the bottom aircraft
results in two virtual messages sent from their corresponding virtual logical pro-
cesses; one message sent for each version of the simulation. This illustrates how the
virtual/physical abstraction allows common communication among different clones
to be shared.

To continue with our example, suppose the topmost aircraft calls the tower. In
the simulation, this corresponds to a message send from an aircraft LP to the tower
LP. The same communication occurs in the original execution as well as the clone.
Both versions of the sender of the message (the airplane) are represented by the
same physical process but there are two distinct physical processes representing the
receiver (the tower). Thus, two copies of the message must be sent, one to each
physical LP. To handle this situation, the cloning mechanism must duplicate, or
clone the message.

Our cloning mechanism increases efficiency by delaying the cloning of physical
LPs until it is absolutely necessary. As an example, eventually, as the aircraft draw
closer to Dulles, the restriction impacts the aircraft. At that time, the physical layer
clones the physical LP corresponding to the delayed aircraft. This is illustrated in
the rightmost image of Figure 3. There are now two versions of the aircraft in the
physical layer and two versions of the aircraft in the virtual layer. Each copy of the
aircraft in the virtual layer maps to one version in the physical layer. Note that
remaining aircraft in the virtual layer continue to share the same physical LPs in
the physical layer.

5. THE CLONING MECHANISM

As mentioned earlier, LPs can only affect other LPs in a parallel simulation by
exchanging messages. Thus, the reception of a message is the point at which a
logical process must consider message forwarding and process cloning.

Message sends and receives are implemented in the physical layer. The cloning
mechanism first determines which physical LPs should receive the message. Next it
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 9

PA
1PC

1

V1
AVC

1

PB
1

VB
1

Fig. 4. A snapshot of a simulation consisting of three logical processes before the instan-
tiation of a clone; the mapping of the virtual processes to physical processes A, B and
C.

considers whether the generation, or cloning, of a new physical process is required.
Whether a message is forwarded or a process is created depends on the set of virtual
processes mapped to the sending physical process and on the set of virtual processes
mapped to the receiving physical process.

Two data structures (represented as sets) are utilized by the cloning mechanism to
determine where a message is delivered, and whether additional cloning is necessary:

—VSendSet: the version numbers of the virtual processes mapped to the sending
physical LP; and

—VRcvSet: the version numbers of the virtual processes mapped to the receiving
physical LP.

The sender piggy-backs additional bits to the message so that the receiver can
construct VSendSet. Before examining this process in more detail, we introduce
the notation that will be used.

5.1 Notation

The original simulation is referred to as version 1 (the version number is incremented
for each clone that is created). V denotes a virtual logical process and P denotes
a physical logical process. V i

A is virtual logical process A version i. Similarly, P i
A

refers to version i of physical logical process A. It can be shown that the version
number of a physical logical process is the same as the lowest version of the virtual
logical processes mapped to that physical LP.

A cloned simulation passes through three distinct phases: (1) before cloning (2)
diffusion (before the simulation is fully replicated) and (3) fully replicated. Before a
simulation is cloned there is one set of V s and one set of P s. At this stage V 1

j maps
to P 1

j for all j. As an example, consider a simulation composed of three logical
processes (before cloning):
− V 1

A → P 1
A

− V 1
B → P 1

B
− V 1

C → P 1
C

Where → means “maps to.” This scenario is illustrated in Figure 4. The virtual
logical processes are at the top and the physical logical processes are at the bottom
of the figure.

ACM Journal Name, Vol. 1, No. N, M 2002.

10 · M. Hybinette and R. M. Fujimoto

PB
1

VB
1

VB
2

PA
2

PA
1

VC
1

V2
C

PC
1

A
2V

V1
A

Fig. 5. A snapshot of a simulation that has been cloned; the mapping of the virtual
processes to physical processes A, B and C.

5.2 Decision Point

A simulation is cloned at a decision point. The decision point defines when and
how the new version differs from the original version. The semantics of inserting a
decision point (creating a new simulation) are (1) to define the set of virtual logical
processes (referred to as the clone set) that immediately differ in the new version
compared to the original and (2) to define how the LPs in the clone set of the new
version differ from the original version. The clone set is denoted CloneSeti, where
i refers to the new cloned version. All virtual logical processes in a CloneSet must
belong to the same version (i.e. the decision point cannot span multiple versions).

When the simulation is cloned, a new complete set of virtual processes are created.
One set represents the original simulation and the other represents the new version.
Cloning also creates a new set of physical logical processes; one physical logical
process is created for each virtual logical process in the CloneSet. The state of these
new physical logical processes differ from the original according to the definition of
the new version of the simulation.

Immediately after the clone is created, V 1
j maps to P 1

j for all j, V 2
k maps to P 2

k

for all k that are part of the clone set, and V 2
l maps to P 1

l for all other virtual
LPs. Figure 5 shows the mapping between virtual and physical logical processes
immediately after the simulation is cloned where the clone set consists of a single
virtual LP, V 1

A. The mapping between virtual and physical processes for the new
version of the simulation is as follows:
− V 2

A → P 2
A

− V 2
B → P 1

B
− V 2

C → P 1
C

Because V 1
A is in the clone set and it maps to P 1

A, P 1
A is cloned to create P 2

A. For
virtual processes B and C, versions 1 and 2, share the same corresponding physical
process.

5.3 Computational Sharing

Simulation computation and message sends and receives are carried out in the
physical layer. A physical message send may correspond to a set of sends in the
virtual layer. In the example (Figure 6), a message sent from physical process B
to physical process C implements two virtual message sends from V 1

B and V 2
B to

V 1
C and V 2

C respectively. Similarly, simulation computations in P 1
B implement the

ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 11

PC
PB

1 1

VB
1

VB
2

PB
1

V2

V1
V1

2V

P 1

V1

C
2V

C

C

C

B

B

C

Fig. 6. Transparent send and receive between virtual logical processes.

PA
1PB

1

VB
1

VB
2

PB
1

P 2
A

PA
1

V1
A

A
2V VB

2

PA
2

VB
1

A
2

VA
1

V

Fig. 7. Cloning a message.

computations performed by V 1
B and V 2

B. In this way common computations among
clones are only performed once.

5.4 Message Cloning

We have already seen that cloned versions start to diverge immediately after the
clone set has been defined. As cloned versions of a parallel simulation progress,
physical processes may need to be cloned or messages originating from an un-
cloned physical process may need to be forwarded (cloned). This section examines
the process of determining whether or not a message must be cloned.

A message is cloned when the same physical sender is shared among two or more
virtual senders, but the virtual receivers do not share the same physical receiver.
To continue the above example, consider the case where process B now sends a
message to process A (See Figure 7). Because both versions of the sender of the
message are represented by the same physical process but there are two different
physical processes representing the receiver, two copies of the message must be sent,
one to each physical receiver. The physical receiver determines this by inspecting
VSendSet and VRcvSet.

In the example, when P 1
B sends a message to P 1

A, VSendSet={1, 2}, since V 1
B and

V 2
B map to the sender P 1

B, and VRcvSet={1}, since only V 1
A maps to P 1

A. Each
virtual process in the send set should have a corresponding virtual receiver. If the
receiving physical process does not have a corresponding virtual receiver in the
receive set then a copy of the message is forwarded to the appropriate physical
logical process. In the example (See Figure 7), since version 2 is in the send set but
not in the receive set, P 1

A forwards the message to P 2
A.

The algorithm that determines which versions of the physical LP are to receive
a cloned copy of the message is outlined below:

(1) get VSendSet from message
ACM Journal Name, Vol. 1, No. N, M 2002.

12 · M. Hybinette and R. M. Fujimoto

PB
1

VA
1

VA
2

V1
B

B
2V

PA
2

PA
1

VA
1

VA
2

V1
B

B
2V

PB
1PA

1

PB
2PA

2

Fig. 8. Creation of a physical logical process (Case 1).

P 2
B

PA
2 PB

2

PB
1

VA
1

VA
2

V1
B

B
2V

PA
2

PA
1

VA
1

VA
2

V1
B

B
2V

PB
PA

1 1

Fig. 9. Creation of a physical logical process (Case 2).

(2) get VRcvSet from local state
(3) forwardSet = VSendSet ∩ VRcvSet

5.5 Process Cloning

A physical logical process is cloned if (1) there is a virtual logical process in the
receive set that should not be influenced by the incoming message or if (2) the
destination address of the message is a physical logical process that has not yet
been created.

Consider our running example of three logical processes. P 1
B clones itself after

receiving a message from P 1
A (See Figure 8), since version 2 in the receive set

should not be influenced by a message that is coming from a simulation that has
been cloned (P 1

A has cloned P 2
A). This corresponds to the sending of a physical

message from P 1
A to P 1

B . Because V 2
B should not receive the message, version 2 of

the virtual receiver should be prevented from being influenced by this message.
To implement this the process is cloned before the event is processed so that

the state of the physical process is not influenced by the incoming message. The
new “version 2” of physical process B is prevented from the misconception that A
processed the message. In this scenario the send set is {1} because the set contains
version 1 of virtual senders mapped to physical process P 1

A. The receive set is {1, 2}
since both version 1 and version 2 map to the physical receiver P 1

B.
Cloning occurs when the physical receiver maps to a virtual version not included

in the virtual send set. Note that this case also includes the sending of a message
to a receiver that has not yet been cloned (i.e. it is sent from a version number
that is higher than the physical receiver). This case is illustrated in Figure 9). P 2

A
sends a message to P 2

B , but P 2
B does not exist. So, P 2

B is cloned from the process
that contains the virtual logical processes mapped to the receiver (i.e. P 1

B).
Timely cloning of logical processes prevents receivers from being influenced by

ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 13

messages from versions not contained in the receive set. This is achieved by phys-
ically cloning processes and changing the mapping between virtual and physical
processes. The physical logical process that receives the message computes a set
called VPsMoveToClone to determine if it needs to be cloned. This set contains
the virtual logical processes that should be prevented from being affected by the
message. If the set is non-empty a new physical logical process is cloned. The new
physical process is assigned the same version number as the lowest virtual LP in
VPsMoveToClone and these virtual LPs are moved to the new cloned process. To
accommodate the second case of cloning a set called VPsRequested is defined. This
set points to the virtual LPs that should be influenced by the message. If the ver-
sion number of the physical receiver is not in this set, then these LPs are assigned
to the VPsMoveToClone set. The algorithm used to determine process cloning is
listed below:

(1) get VSendSet from message
(2) get VRcvSet from local state
(3) VPsUnaffected = VSendSet∩ VRcvSet
(4) VPsMoveToClone = VPsUnaffected
(5) VPsRequested = VSendSet∩ VRcvSet
(6) if (! (PhysicalReceiver∩ VPsRequested)) then

VPsMoveToClone = VPsRequested

(7) if (VPsMoveToClone<> ∅) then
Cloned Physical LP ← lowest(VPsMoveToClone)

5.6 The Four Cases of Cloning

To summarize, when a physical LP receives a message four outcomes are possible.
The LP must be prepared to handle each of these four cases based on the mapping
of the sender and receiver before receiving the message:
• Computational Sharing: The same physical sender and receiver are shared

between virtual logical processes (e.g. Figure 6, virtual processes V 1
B and V 2

B
both map to P 1

B and both V 1
C and V 2

C maps to P 1
C). No message or process

cloning is required.
• Message Cloning: The same physical sender is shared between virtual senders

but the virtual receivers do not share the same physical receiver (e.g. Figure 7,
V 1

B and V 2
B both map to the sender P 1

B, but V 1
A and V 2

A map to different
physical processes). The message must be replicated and sent to both physical
destinations.

• Process Cloning: The physical receiver maps to a virtual version that is not
mapped by the sender (e.g. Figure 8, virtual receiver V 2

B that is mapped to
physical receiver P 1

B should not see the message from virtual sender V 2
A). Note

that this case also includes the sending of a message to a receiver that has
not yet been cloned. The physical process that does not have a corresponding
virtual sender must be cloned.

• Replicated: Virtual logical processes are independent of each other and do
not share physical logical processes. No process or message cloning is required.

ACM Journal Name, Vol. 1, No. N, M 2002.

14 · M. Hybinette and R. M. Fujimoto

LP

LP LP

LP
LPLP

LP

LP LP

LP
LPLP

Simulation Executive

Simulation Executive Clone!DBInteractive!Sim

Simulation ApplicationSimulation Application

Parallel or Distributed Computer Hardware

Fig. 10. Views of simulations: Traditional parallel discrete event simulation is shown on
the left; the monitoring layer called interactive-sim in relation to the simulation executive
and the simulation application is shown on the right.

Before proceeding to the discussion on the performance of the cloning algorithm we
discuss how cloning is implemented.

6. CLONING IMPLEMENTATION

We define a simulation as being composed of a simulation application (provided by
the user) that interacts with a simulation executive. The simulation executive pro-
vides primitives that allow simulation programmers to define their own applications
and it implements the necessary underlying synchronization protocols. This is a
layered software system, with the operating system at the bottom, the simulator
executive in the middle and the simulation application at the top (See Figure 10).

Cloning is implemented in a software library named Clone-Sim that provides an
Application Programmer Interface (API) to the system. The library supports on-
demand “cloning” of parallel and distributed discrete event simulations. Efficiency
is accomplished by intercepting communication primitives (function calls) between
the user application and the simulation executive. The approach will work for inter-
active as well as non-interactive environments and both optimistic and conservative
simulators can be supported. The results reported here were accomplished with a
Clone-Sim implementation using Georgia Tech’s Time Warp simulation executive
[Das et al. 1994] called GTW, an optimistic simulator.

The architecture of Clone-Sim is shown on the right of Figure 10. Interactive-Sim
exists as a software layer between the simulation executive and the user’s application
simulation program. Interactive-Sim itself is decomposed into sub-modules, where
each is implemented for a particular simulation executive. The sub-modules are
“pluggable” in that the appropriate submodule is plugged in for a specified simula-
tion executive. New sub-modules can be implemented using a specified application
interface. The general idea behind Interactive-Sim is that it is transparent to the
simulation program, and also to the programmer utilizing the cloning primitives.

Clone-Sim is composed of two primary modules: Interactive-Sim which is
layered between the simulation executive and the application simulation and the
Clone-DB database. Clone-DB is independent of the synchronization primitives
of the simulation executive. Interactive-Sim: (1) intercepts message sends and (2)
processes events. Accordingly, Interactive-Sim emulates the simulation executive’s
message send and message receive function prototypes to intercept the invocation
to process events or to forward copies of a message to cloned LPs. After intercep-
tion, Interactive-Sim queries Clone-DB to determine whether message or process
cloning is necessary (via respective inquire functions). Eventually Clone-Sim calls
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 15

the simulation executive’s actual message send and receive functions to accomplish
the simulation. From the point of view of the simulation executive, Interactive-
Sim is a simulator application. Details of the application programmer interface of
cloning are beyond the scope of this paper, but are described elsewhere, please see
[Hybinette and Fujimoto 2002].

6.1 Assumptions

The relationship between the user application and the simulation executive is illus-
trated on the left of Figure 10. Here, the user application defines the events and the
simulation executive handles synchronization issues. It is assumed that the simu-
lation executive provides ScheduleEvent (send and schedule) and ProcessEvent
(receive) primitives. If the application uses GTW as a simulation executive, it
must define ProcessEvent, and tell GTW when to schedule the event. GTW then
schedules a call to ProcessEvent at the appropriate time.

We also assume:

—that one can schedule events conservatively, i.e. the event can be scheduled
with the assumption that it will never roll back, (this is trivial if the simulation
executive is conservative);

—the simulation executive supports dynamic LP creation and allocation, initializa-
tion and copying of LPs;

—simultaneous events are addressed by the underlying simulation engine (e.g. by
prioritization).

Note that Clone-Sim ensures that simultaneous events do not interfere with
cloning. This is done by prioritizing cloning events (such as instantiations of new
simulations and physical processes) above all other events. The next section de-
scribes how cloning has been implemented using an optimistic simulator.

6.2 Implementation of the Optimistic Protocol

Clone-Sim has been implemented using GTW, Georgia Tech’s Time Warp simu-
lation executive [Das et al. 1994]. GTW is an optimistic simulator. Recall that
events in an optimistic simulation may roll back. As mentioned above the event
that instantiates cloning must be a conservative event (guaranteed to never roll
back). However, subsequent LP cloning events (within the same version of the
simulation) may roll back.

A key challenge in the optimistic implementation is handling the roll back of
events that may have triggered the cloning of a new physical LP. To address this,
we use a special roll back function to keep LP mapping information consistent.
When a message is received by an LP and the appropriate recipient does not yet
exist, the parent accepts the event, clones itself and then sends a copy of the message
to activate the new child LP. As a result, the original destination field in the event
is overwritten with the parent’s address. Before the destination is overwritten,
however, it is saved in a separate field. During rollback, the original destination
and mapping information is restored via the rollback function.

Two main data structures are used by the cloning mechanism, a relationship
table and a mapping table. The relationship table keeps track of the shape of

ACM Journal Name, Vol. 1, No. N, M 2002.

16 · M. Hybinette and R. M. Fujimoto

the version tree i.e., which version cloned which other versions. This structure is
modified when a simulation is cloned (not each time an LP is cloned). The data
structure is read by LPs to determine which other LPs are their children upon the
receipt of a message.

The mapping table is maintained by active LPs. The mapping table is part of the
local state of the physical logical processes. This table is exclusive to the owner of
the state. However, during instantiation of a clone the parent initializes the index
that belongs to its child. Thereafter, the child itself maintains its own information.

This mapping table contains (1) mapping information, (2) “birth” timestamps
and (3) a bit indicating whether the corresponding LP is active or not. The mapping
table is referenced to determine whom to clone and to whom to forward messages.
The VRcvSet discussed in section 5 is constructed from the mapping table. It
is also referenced to determine which LP to roll back or to determine which LP
should handle a message when it is addressed to an LP that does not exist before
the timestamp of the message.

7. CLONING EVALUATION

In order to establish the utility of the cloning mechanism, we evaluated the system
in three ways. First, we present performance results from a real world task and ex-
amine typical usage scenarios. Second, we look at the performance improvement of
cloning while controlling the rate at which physical LPs must be replicated. Finally,
we examine the scalability of the approach both analytically and empirically.

Evaluation of cloning was conducted on two machines: an SGI Origin 2000 with
sixteen 195 MHz MIPS R10,000 processors and on an SGI Power Challenge with
twelve 75 MHz MIPS R8000 processors. On the Origin the first level instruction
and data caches are each 32 KB. The unified secondary cache is 4 MB. The main
memory size is 4 GB. The first level instruction and data caches on the Power
Challenge are each 16 KB and the unified secondary cache is 4 MB. The main
memory size of the Power Challenge is 3 GB. Each data point represents at least 5
runs for the Power Challenge and at least 15 runs for the Origin. The experiments
use 4 processors on the Power Challenge unless otherwise indicated.

7.1 Air Traffic Control Simulation

To investigate the utility of cloning for real world tasks we implemented the cloning
mechanism and examined typical usage scenarios for a commercial air traffic control
simulation called the Detailed Policy Assessment Tool (DPAT). DPAT simulates
air traffic patterns and computes congestion related delays and through-puts. The
software can simulate both international airspace, i.e. Asia and Taiwan, as well as
the continental US (CONUS). For more detail on DPAT please see [Wieland 1998].

The system models the behavior of each airport and the airspace between them.
The airspace is divided into sectors. Each sector can enforce restrictions such as
the number of aircraft occupying a sector at a specific time. In these experiments,
two control restrictions affect the flow of aircraft: Ground-delay programs and
Miles-In-Trail (MIT).

Departing aircraft can be regulated by Ground-Delay-Programs. These restric-
tions prevent aircraft from departing an airport in order to avoid circling above the
destination airport (which wastes fuel and can increase the risk of accidents).
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 17

0 1200 3000

Cloning Point(s)

MIT restrictions

10.0
11.0
12.0
13.0
14.0

Si
m

ul
at

io
n

Pa
th

s

Simulation Time (minutes)Now

Si
m

ul
at

io
n

Pa
th

s

10.0

11.0
11.0
11.0

11.0

Cloning Points

MIT Restrictions

0 600 630 700 730
3000

Simulation Time (minutes)Now

Si
m

ul
at

io
n

Pa
th

s

Fig. 11. DPAT usage scenarios. Left: several clones generated on several MIT values at
the same simulation time. Right: one MIT value is evaluated at several initiation times.
Time of the decision points are shown as dashed vertical lines.

En-route traffic is controlled by miles-in-trail restrictions that set a minimum
distance between aircraft. The allowed minimum distance differs depending on
weather conditions. In good weather the minimum distance allowed is typically 2
miles, while in bad weather (decreased visibility) the minimum distance is typically
increased to 5 miles for greater safety.

The FAA can evaluate the effect of MIT restrictions and Ground-Delay-Programs
on traffic flow using a simulation like DPAT. For example, an air traffic controller
may wish to increase safety by increasing MIT restrictions provided this does not
adversely affect the traffic flow rate.

Using dynamic cloning we anticipate that an increased number of alternative
MIT restrictions can be evaluated to manage the air space than if the simulation
were simply replicated. To investigate this hypothesis, we evaluated typical usage
scenarios of the DPAT software.

Two questions controllers often face regarding MIT restrictions are: What MIT
value is the most beneficial and when should a new MIT value be enforced? These
questions suggest two scenarios (depicted in Figure 11).

On the left, alternative values of MIT restrictions are imposed at the same time
in the future. The figure depicts scenarios where a controller considers MIT values
between 10 and 14. Each of the restrictions are activated 1,200 minutes from “now”
(i.e. 20 hours from the current time). This point in time is labeled the “cloning
point.” We refer to this as the “forked” scenario.

On the right of Figure 11, different clones evaluate different points in time when
a particular MIT restriction is imposed. Here, different simulations evaluate the
same MIT restriction (11) enforced at various times in the future. For reference, the
original MIT restriction of 10 is also evaluated. The time to enforce the restriction
varies between 600 minutes from the current time to 730 minutes (the evaluations
are initiated at 30 minute intervals). This is referred to as the “staggered” scenario.

The experiments using DPAT simulate 50 hours (3,000 minutes) of air traffic over
the Continental US. This configuration consists of 738 sectors and 520 airports, or
a total of 1258 logical processes. The total number of flights scheduled is 53,860.
Typically, this scenario induces 349 delays that are more than 15 minutes late.
Cloned simulations are instantiated on a sector near Chicago’s O’Hare airport,
sector “ZLC1N.”

ACM Journal Name, Vol. 1, No. N, M 2002.

18 · M. Hybinette and R. M. Fujimoto

To stress the cloning mechanism the experiments use an initial MIT restriction
of 70. This is much larger than values typically used by the FAA, but larger
numbers cause more congestion and thus lead to faster spreading of replicated
LPs, making it a more challenging test case of the cloning software. Smaller MIT
values (as those shown in the usage scenarios) lead to significantly better cloning
performance. Cloning is evaluated by instantiating clones that increase the MIT
value by a specific percentage. In the forked scenario each successive clone increases
the value by 10%. In the staggered scenario each clone evaluates the same MIT
value. The time difference between successive clones in the staggered scenario is 30
to 60 minutes.

DPAT is implemented on GTW (an optimistic parallel simulator) and is linked
to the cloning library Clone-Sim. The DPAT source code includes 20,133 lines of
C. Additional instructions are inserted into the sector code to detect preset cloning
times and to identify the proper logical process (i.e. it ensures that ZLC1N induces
cloning in the cloning set). At the proper time, a conservative event schedules
a cloning event which in turn clones the process and sets the MIT value. The
instructions added to DPAT to detect and initiate cloning were fewer than 100
lines of code.

7.2 Performance

We conducted a number of experiments to investigate the impact of dynamic cloning
on DPAT simulation performance. For comparison, a batch-processing scheme,
where each simulation path is run separately, one after the other, is compared with
the dynamic cloning scheme. Performance is evaluated as speedup of the run time
of cloning versus batch processing. Speedup is the total running time of the batch
processing approach divided by the running time using dynamic cloning.

The independent variables of this experiment are the inception time of the cloning
point (in simulated time) and the number of simulations. Both the “forked” and
“staggered” scenarios are evaluated.

The plot on the left of Figure 12 shows the performance of DPAT on an Origin
when several clones are generated on different MIT values at the same simulation
time (the forked scenario). The plot on the right shows the performance of DPAT
when one MIT value is evaluated at several different initiation times (for reference,
the performance of a single simulation, where no clones are generated is shown as
well).

The results indicate that dynamic cloning always outperforms the traditional
batch scheme when running multiple simulations. As one would expect, simulation
cloning becomes more advantageous as the number of alternatives increases or the
later the decision point is inserted. The plots show that dynamic cloning runs up to
240 percent faster than the batch scheme (e.g. for simulating different MIT values:
running 5 different MIT values at 2,500 simulated minutes takes 75.38 seconds for
the dynamic scheme versus 183.60 seconds for the batch scheme).

7.3 Message Spreading Rate

The benefit of the incremental update scheme is evaluated by varying the rate at
which one clone causes the creation of additional physical LPs. Our incremental
update scheme avoids replicating the entire state space upon cloning the simulation.
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 19

800
1200

1600
2000

2400Cloning Point 1
2

3
4

5

Number Simulations

0.8

1.2

1.6

2

2.4

Speed-up
(Batch/Cloning)

800
1200

1600
2000

2400Cloning Time 1
2

3
4

5

Number Simulations

0.8

1.2

1.6

2

2.4

Speed-up
(Batch/Cloning)

Fig. 12. Simulation cloning significantly improves the performance of DPAT over batch
processing. Left: speedup of cloning over batch processing for DPAT when several clones
are generated on different MIT values at the same simulation time. Right: speedup of
DPAT when one MIT value is evaluated at several initiation times. Larger numbers
indicate better performance.

To quantify this effect we use a benchmark called P-Hold. P-Hold provides synthetic
workloads using a fixed message population [Fujimoto 1990]. Parameters of the
application allow us to control the spreading rate.

P-Hold works as follows: each LP is instantiated by an event. Upon instanti-
ation, the LP schedules a new event with a specified time-stamp increment and
destination. The destination LP is specified within the message.

To control the spreading rate of P-Hold we adjusted the selection of the destina-
tion LP of a message (logical processes are instantiated by receiving messages). In
the first case the spreading is slowed by having an LP send messages only to itself
or to its neighbor (the local distribution). In the second case the spreading is not
constrained and the destination is selected from a uniform distribution among all
logical processes in the simulated system. The timestamp increment to schedule
a new event is 1.0 in the local case and selected from an exponential distribution
between 0.0 and 1.0 in the uniform case. In the cases of instantiated multiple simu-
lations, each new clone is instantiated with the same time stamp. The experimental
P-Hold simulations use a message population of 8096 and 1024 logical processes (for
more detail on P-Hold please see [Fujimoto 1990]).

7.4 Performance

The independent variables for this experiment are the inception time of the cloning
point (in simulated time) and the number of simulations. The cloning time varies
between 0 and 600 simulated seconds in the local case and between 0 and 180
simulated seconds in the uniform case. There are zero to five new clones created
for each case of P-Hold making it a total of 1 to 6 simulations run simultaneously.

The plot on the left of Figure 13 shows the performance of P-Hold in the local case
versus batch processing. The plot on the right of Figure 13 shows the performance
of P-Hold in the uniform case versus batch processing. When running multiple
simulations, the results of a single simulation, where no clones are generated is
shown for reference.

In the local case, dynamic cloning always outperforms the traditional batch
ACM Journal Name, Vol. 1, No. N, M 2002.

20 · M. Hybinette and R. M. Fujimoto

0 100 200 300 400 500Cloning Time 1
2

3
4

5
6

Number Simulations

0
1
2
3
4
5

Speed-up
(Batch/Cloning)

0 20 40 60 80 100 120 140 160 180
Cloning Time 1

2
3

4
5

6

Number Simulations

0
1
2
3
4
5

Speed-up
(Batch/Cloning)

Fig. 13. Incremental updating improves the performance of P-Hold over batch processing.
Several clones are generated simultaneously at the same simulation time. Left: Speedup of
where destination LP is either self or nearest neighbor, the local case (slower spreading).
Right: Speedup of cloning over batch processing where destination LP is selected from a
uniform distribution of all LPs in the simulation (fast spreading). Larger numbers indicate
better performance.

scheme approach. In the uniform case however, the batch scheme performs better
if cloning is initiated early and when evaluating more than 3 alternatives. This is
because the spreading is quicker, and as a result very few computations are shared
between the clones. If the cloning event occurs later, more computations are shared
and again dynamic cloning outperforms batch processing.

As in the DPAT experiments, the performance advantage of cloning becomes
more dramatic the later clones are spawned or the larger the number of alternatives.
For the uniform case, dynamic cloning improves performance by as much as 313
percent and in the local case by as much as 450 percent (e.g. instantiating 6 clones at
virtual time 550 takes 53.04 seconds for the dynamic scheme versus 239.27 seconds
for the batch processing scheme). As one would expect, the plots indicate that
cloning is more advantageous for simulations using local interactions.

The dramatic improvement over the batch-processing is due to the incremental
updating scheme. The performance gain of the local case highlights that incremen-
tal updating further improves the benefit of dynamic cloning when the behavior of
the cloned simulations diverges slowly.

8. SCALABILITY

We now examine the scalability of cloning. Specifically, we examine how cloning
impacts the performance as we increase the number of clones. For a replicated
simulation application with N execution paths, each LP is duplicated N times.
In many cases, messages are duplicated N times as well. On average, we expect
a replicated simulation to consume N times the resources (in terms of space and
time) as a simulation with a single execution path.

In the best case our cloning approach is significantly more efficient than replica-
tion (as much as N times faster). In the worst case, cloning is only slightly less
efficient than replication. In this section we show that this efficiency is scalable
with respect to the number of clones. By that we mean that cloning maintains its
advantage over replication regardless of the number of execution paths.
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 21

When evaluating the performance and scalability of a cloned simulation it is
important to keep in mind that there are three key phases of an application’s “life
cycle” as follows:
• Before decision point: in this phase the simulation has not been cloned, and

there is a single execution path. It is during this phase that cloning offers a
tremendous advantage over replicated simulations. All events processed in this
phase run once, whereas in the replicated case the events must be processed
redundantly in each copy of the simulation.

• Spreading: our approach uses an incremental method that only duplicates
(clones) LPs as necessary. At the decision point only a small number of LPs
must be replicated. In this phase a large proportion of computations can be
shared, and the approach retains a significant advantage over replicated sim-
ulations. However, as the replicated LPs interact with other LPs it becomes
necessary to clone the affected LPs as well.

• Spreading complete: eventually all LPs will have been cloned. From this
point on, the fully cloned simulation must process the same number of events
as a replicated simulation. The additional overhead of cloning in this case is a
single comparison per event. Cloned simulations in this phase are only slightly
more expensive than replicated simulations.

The performance improvement of a cloned simulation in comparison to replicated
simulations depends on the relative length of each of these phases. For instance, if
the decision point occurs late in the simulation, the cloned simulation would have a
tremendous performance advantage over replicated simulations. On the other hand,
the worst case for cloned simulations is an early decision point combined with rapid
spreading. In this case the cloned simulation’s performance will be slightly worse
than a replicated simulation (an extra comparison for every event).

Before proceeding to empirical results, we consider how the number of clones and
the number of processing elements (PEs) may impact the scalability of the cloning
algorithm.

8.1 Scalability: Number of Clones

Before the first decision point, every message applies to every possible clone and
the work of processing a message is automatically shared between the future cloned
execution paths. In comparison to a single copy of a replicated simulation, our
cloning algorithm requires an additional operation to determine if it is in this phase.
Because the results of events processed during this phase are automatically shared
between the future clones, we realize up to N times higher performance with respect
to replicated simulations.

After spreading is complete, each message applies to only one clone, so additional
processing to determine whether it should be forwarded is not required. The over-
head of cloning in this phase is just one comparison per received message – the LP
must determine whether the simulation has reached the “fully replicated” phase of
the simulation. Because of the additional comparison per event, performance of the
cloning approach is slightly worse than replication in this phase of the simulation.

Analysis of performance during the spreading phase is a bit more complicated.
As the number of clones is increased, performance is impacted during the spreading

ACM Journal Name, Vol. 1, No. N, M 2002.

22 · M. Hybinette and R. M. Fujimoto

phase in three ways. As the number of clones increases: (1) each LP must maintain
additional state information to keep track of the set of clones to which it belongs,
(2) the amount of information appended to messages increases because the sender
must communicate which clones it belongs to (see Section 5 for additional details),
and (3) the time required for an LP to process each incoming message increases.

(1) and (2) are information storage, or space costs. Additional information is
needed at the LPs and in the messages during the spreading phase to enable a
receiving LP to compute whether it will need to clone itself or perhaps forward the
message to a cloned version of itself.

We can estimate the storage requirements for (1) and (2) using information
theory as follows. Assume there are N clones. In addition to the content of the
message used by the simulation application, the sender must also communicate
which subset of the N clones it belongs to; there are 2N − 1 possible subsets, or
2N − 1 possibilities for this part of the message. According to Shannon, if all of
the approximately 2N possible subsets are equally likely, the information content
of this portion of the message is log(2N − 1) ≈ N bits [Shannon and Weaver 1949].
Essentially, one bit is required for each clone. This is the worst case. If we know a
priori that certain subsets are more likely than others, advanced coding techniques
may be employed to reduce this space overhead (e.g. Huffman coding, see for
example [Cover and Thomas 1991]).

In terms of information storage requirements, the overhead scales linearly with
respect to the number of clones. In comparison, N replicated simulations would
require the same message to be sent N times. In a cloned simulation we can send
one message with N additional bits appended. We are, in effect, compressing each
additional message into one bit.

During the spreading phase, the time to process a message once an LP receives
it increases linearly with respect to the number of clones. Processing a message
involves at most: (1) four set intersections, (2) three set inverses, and (3) forward-
ing the message to the corresponding cloned LPs (see Section 5 for more details on
the computation). It is possible on some hardware for (1) and (2) to be computed in
constant time (otherwise, it is at worst O(N/sizeof(largest bit vector on hardware))).
If parallel multicast is available, (3) can be accomplished in constant time as well.
Empirically, the cost for these operations is insignificant in comparison to the other
costs of processing a received message. In other words, cloning overhead is much
less expensive than duplicating the entire processing of a message as would occur
in a replicated simulation.

To summarize scalability with respect to the number of clones: Before the first
decision point, the overhead of cloning is minimal and performance in comparison
to a replicated simulation is almost N times better. After spreading is complete,
the overhead, in comparison to a fully replicated simulation, is one comparison
operation per event – performance is slightly worse than replication. Finally, during
the spreading phase, required resources (space and time) increase linearly with the
number of clones but are always less than the cost of full replication.

8.2 Scalability: Number of PEs

For many parallel algorithms, as the number of PEs is increased, speedup becomes
sub-linear because synchronization and communication overheads begin to domi-
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 23

0

2

4

6

8

10

12

14

16

18

20

22

5 10 15 20 25 30

Ru
n

Ti
m

e

Number Simulations

Replicated Trials
Cloned Simulation

Fig. 14. Empirical performance of our method scales with the number of clones. Perfor-
mance is measured as the run time of the simulation, excluding initialization and wrap-up.
Smaller numbers indicate better performance.

nate. Our cloning algorithm, however, only requires synchronization at one point:
the initialization of a new clone. No other inter-processor synchronization is neces-
sary. Therefore the cloning algorithm scales with the number of PEs to the same
extent as the underlying parallel simulation. The cloning overhead does not in-
crease as the number of processors increases, of course applications may be subject
to inefficiencies in the underlying simulation executive. Our implementation uses
the GTW executive which has been shown to be efficient empirically [Das et al.
1994].

8.3 Scalability: Performance

In this section we evaluate scalability experimentally with regard to (1) the perfor-
mance as number of clones increase, (2) the performance improvement as more pro-
cessors are available to run the simulation, (3) the impact on run time performance
as the number of clones (and LPs) increase and (4) the impact on performance for
a given number of clones as the message population increases.

To evaluate how the number of clones impacts performance, a suite of experiments
were run using the P-Hold benchmark application. The number of clones was varied
from 1 to 32, while the number of PEs was varied from 1 to 16. The number of
LPs was varied from 4 to 1024, and the message population was varied from 64
to 8192. All simulations ran for 300 simulated seconds. For comparison, we also
ran a replicated simulation under the same conditions. In these experiments, the
decision point for cloning was set early (at 10 simulated seconds) in the simulation
to create a worst-case situation for cloning.

A plot showing representative performance is presented in Figure 14. Performance
is run-time excluding initialization and wrap-up. This plot depicts a series of P-
Hold runs on 4 processors using 256 logical processes and a message population of
128. Each data point is the average of 5 runs. This plot shows that as the number of
clones increases, run time increases linearly. It also shows that in all cases, cloning
is more efficient than replication. The advantages of cloning over replication scale

ACM Journal Name, Vol. 1, No. N, M 2002.

24 · M. Hybinette and R. M. Fujimoto

1
2

4
8

16
Number Processors 4

6
8

10
12

14
16

18

Number Simulations

16

32

64

128

256

512

Run Time

Fig. 15. Cloning scales with the number of processors. Performance is measured as the run
time of the simulation, excluding initialization and wrap-up. Smaller numbers indicate
better performance.

with respect to the number of clones. Similar results using the DPAT and again
the P-Hold application are provided in Section 7.2 and 7.4.

To assess potential sequential bottlenecks we examined the impact on perfor-
mance as the number of processors and the number of clones is varied. Performance
is measured as the run time of the simulation, excluding initialization and wrap-up
(shorter run times indicate better performance).

The plot in Figure 15 illustrates the impact on run time as the number of pro-
cessors is varied from 1 to 16 and the number of simulations is varied from 4 to
18. This simulations use 256 logical processes and a message population of 1024.
All simulations run for 1000 simulated seconds and are cloned midway, at 500 sim-
ulated seconds. The run time and number of processor axes are plotted in a log
scale. The planar shape of the resulting plotted data shows that speedup is linear
with regard to the number of PEs.

8.4 Summary of Scalability Results

In this section we have argued that cloning is almost always more efficient than
simulation replication. In some phases of a simulation, we can provide up to N
times higher performance (where N is the number of execution paths).

The situation where replicated simulation has an advantage occurs when a de-
cision point is placed early in simulated time and spreading is rapid. This forces
the cloned system to fully replicate all LPs; the system must provide a separate
execution path for every clone. However, in this worst case, cloning is only slightly
less efficient than replication; only one additional comparison is required to process
each event.

Our analysis shows that the advantages of cloning are preserved regardless of
ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 25

Single Simulation Diffusion Fully Replicated Pruned

Single Simulation Diffusion Fully Replicated Not Pruned

Pruning

No Pruning

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Pr
og

re
ss

 (V
irt

ua
l T

im
e)

Execution Time (seconds)

Single Simulation/No Pruning
Two Simulations/Pruning

Two Simulations/No Pruning

Fig. 16. Pruning of DPAT.

the number of clones (or execution paths). This analysis is confirmed empirically
through a number of experiments in which multiple parameters of the simulation
are varied.

9. PRUNING EVALUATION

Just as it is advantageous to add clones to a running simulation, it may also be
useful to enable a user to terminate a simulation that is no longer needed. This
releases computational resources so they can be used by the remaining clones.
Simulation pruning may be interactive or activated via a trigger function defined
at the insertion of the cloning point.

Performance improvements due to pruning can be observed by measuring the
progress of virtual time as a function of real time. In these experiments 2 days
of air traffic delays or 3000 simulated minutes are evaluated. Cloning occurs at
simulated time 804 and pruning is initiated by a trigger that is installed at the
insertion of the decision point. The trigger is set to be activated at simulated time
1,116. The trigger then checks if subsequent events will activate a cloning point.
The trigger is a conditional statement that inserts a decision point when executing
an event that has a time stamp later than 1,116. In these experiments an event
with a time stamp of 1166.70 inserts a cloning point at the current simulated time
(i.e. the cloning point is inserted at 1166.70).

The plot on the right of Figure 16 shows three curves: the curve on the left
depicts a single simulation shown for reference, the middle and right curves show
runs of two simulations each, where cloning occurs at simulated time 804. The
simulation depicted by the the right curve is never pruned while the clone in the
simulation plotted in the middle curve is pruned at simulated time 1,116.70.

The acceleration of simulated time due to pruning is noticeable at the activation
of the pruning trigger as a substantially increased slope (at simulated time 1,116.70).
The pruned curve immediately conforms to the slope of the single simulation curve.

An estimate of the performance of a cloned simulation that is pruned can be
estimated by factoring the single simulation execution time into the proportion of
time spend at the different phases of cloning:

Estimated Time = single simulation proportion ∗ single time
ACM Journal Name, Vol. 1, No. N, M 2002.

26 · M. Hybinette and R. M. Fujimoto

+ diffusion simulation proportion ∗ diffusion savings factor ∗ single time
+ replicated simulations proportion before pruning ∗ # prunes ∗ single time
+ replicated simulations proportion after pruning ∗ # prunes ∗ single time

The “diffusion savings factor” depends on how much state that is shared between
clones. In this estimate, pruning is assumed to occur after diffusion 1 (see illustra-
tion on left in Figure 16). Since a pruned simulation is compared with an unpruned
simulation the first three factors are eliminated in the subtraction.

As an example consider the performance curves described above. Here, the simu-
lation completes at simulated time 3,000. Each run completes in real time at 15.93
seconds for the single simulation run, 20.33 seconds for the cloned and pruned
run, and 30.30 seconds for the cloned run (note that pruning improves the perfor-
mance by 33 percent over not pruning the simulation). In this example the pruning
heuristic predicts that the performance improvement should be 9.73 seconds:

Estimate Time Benefit =
3, 000 − 1166.70

3, 000
∗ 15.93

= 9.73 seconds

The actual performance benefit is:

Actual Time Benefit = 30.30− 20.33
= 9.97 seconds

In this case the estimate differs 2.4 % from the actual performance. The above
methodology can be used for multiple prunes with the same pruning time. For
clones with different pruning time, the heuristics may be applied to each clone
separately and adding the time benefit of each pruned simulation.

Note that the implementation allows pruning to occur during the diffusion phase,
even though our evaluation heuristic assumes otherwise.

10. CONCLUSIONS AND FUTURE WORK

Simulation cloning enables the exploration of multiple possible futures in interactive
parallel simulation environments. The mechanism may be applied to simulations
using either conservative or optimistic synchronization protocols.

Simulation cloning improves simulation performance in two ways: First, simula-
tions that are interactively cloned at a decision point are able to share the same
execution path before the decision point, so the computations before the decision
point only need to be executed once. Second, after cloning, multiple versions of the
simulation are able to share computations and messages via a construct called vir-
tual logical processes. Additionally, clones can be created “on-the fly” and “pruned”
when it can be determined that they will not provide useful results.

The benefit of execution path sharing is demonstrated by evaluating a commer-
cial air traffic control simulation. Our performance results show that cloning can
significantly reduce the time required to compute multiple alternate futures. These
results also show that dynamic cloning becomes more advantageous as the number
of alternatives increases or the later the decision point is inserted.

1Diffusion is the spreading phase of cloning; this is before the simulation is fully replicated.

ACM Journal Name, Vol. 1, No. N, M 2002.

Cloning Parallel Simulations · 27

We also demonstrate that virtual logical processes are especially efficient when
the influence of a message introduced by a logical process does not spread to other
processes in the simulation at a high rate. This is shown by using a benchmark
that varies the rate of cloning other LPs. The advantages of cloning are preserved
regardless of the number of clones (or execution paths).

Efficient implementation of the cloning mechanism is achieved by intercepting
the communication primitives of the simulator executive. By monitoring send and
receive primitives, cloning can determine when to clone a logical process and when
to forward a message (clone a message). To accomplish this, the LPs maintain a
data structure used to determine mappings to virtual logical processes. Additional
information is piggy-backed by the sender on messages so the receiver can determine
who to forward a message or to clone a process.

Our work focuses on eliminating inefficiencies arising from the use of replicated
trials for testing the impact of different policies on performance (as might be the
case in an air traffic control application). However, researchers often use replicated
trials with different random number seeds to determine statistical measures such as
the mean and confidence interval of a performance variable. The best use of cloning
in stochastic simulation remains an open question. Because if the random numbers
differ at the start (by far the most common scenario), the replications may have
little computation in common. If this is the case simulation cloning will not be ad-
vantageous. However, one can use cloning in conjunction to traditional replication,
with cloning used to evaluate alternate parameter settings, and replicating a set of
clones to address the random number issue.

Consider an example where a researcher would like to test five different policies
and that he would like to test each one five times (for statistical significance). Sup-
pose, also, that the different policies are applied mid-way through the simulation.
Ordinarily one would have to run 25 replicated simulations to test each of the five
policies five times. Cloning can be employed in this example as follows. The sim-
ulation is cloned five times at the start; each clone is initialized with a different
random number seed. Mid-way through the simulation, each clone is cloned five
times (one for each policy). The final result is 25 different execution paths – each
policy is tested five times with different random number seeds. This approach is
efficient because computations can be shared at each stage of the simulation.

Currently, it is assumed that a user can interject decision points into the sim-
ulator. Defining a mechanism for automating the interjection of decision points
is a topic for future research. This may be accomplished by balancing the “run-
ning ahead” and “branching” depending on the probability of particular branches
against available computational resources and real time constraints.

ACKNOWLEDGMENTS

The D-PAT application was written by Frederick Wieland of the MITRE Corpo-
ration and we are also grateful for his helpful comments on this work. This work
was supported in part by U.S. Army Contract DASG60-95-C-0103 funded by the
Ballistic Missile Defense Organization and managed through the Space and Strate-
gic Defense Command, a MITRE Corporation research grant and a grant from Sun
Microsystems.

ACM Journal Name, Vol. 1, No. N, M 2002.

28 · M. Hybinette and R. M. Fujimoto

REFERENCES

Bestavros, A. 1994. Multi-version speculative concurrency control with delayed commit. In
Proceedings of the 1994 International Conference on Computers and their Applications.

Cover, T. and Thomas, J. A. 1991. Elements of Information Theory. Wiley Series in Telecom-
munications. John Wiley & Sons.

Das, S., Fujimoto, R., Panesar, K., Allison, D., and Hybinette, M. 1994. GTW: A Time
Warp system for shared memory multiprocessors. In Proceedings of the 1994 Winter Simulation
Conference Proceedings. 1332–1339.

Davis, W. J. 1998. On-line simulation: Need and evolving research requirements. In Handbook of
simulation: Principles, methodology, advances, applications, and practice, J. Banks, Ed. John
Wiley & Sons. Co-published by Engineering and Management Press.

Franks, S., Gomes, F., Unger, B., and Cleary, J. 1997. State saving for interactive opti-
mistic simulation. In Proceedings of the 11th Workshop on Parallel and Distributed Simulation
(PADS-97). 72–79.

Fujimoto, R. M. 1990. Performance of Time Warp under synthetic workloads. In Proceedings
of the SCS Multiconference on Distributed Simulation. Vol. 22. SCS Simulation Series, 23–28.

Glynn, P. and Heidelberger, P. 1991. Analysis of parallel replicated simulations under a
completion time constraint. ACM Transactions on Modeling and Computer Simulation 1,
3–23.

Goldberg, A. P. 1992. Virtual time synchronization of replicated processes. In Proceedings of
the 6th Workshop on Parallel and Distributed Simulation (PADS-92). Vol. 24. SCS Simulation
Series, 107–116.

Heidelberger, P. 1991. Discrete event simulations and parallel processing: Statistical properties.
SIAM Journal on Scientific and Statistical Computing 9, 1114–1132.

Henriksen, J. O. 1997. An introduction to SLX. In Proceedings of the 1997 Winter Simulation
Conference. 559–566.

Hybinette, M. and Fujimoto, R. M. 2002. Scalability of parallel simulation cloning. In Pro-
ceedings of the 35th Annual Simulation Symposium (SS-2002). IEEE Computer Society Press.
to appear.

Lentz, K. P., Manolakos, E. S., Czeck, E., and Heller, J. 1999. Multiple experiment environ-
ments for testing. Journal of Electronic Testing: Theory and Applications 11, 3 (December),
247–262.

Schneider, F. 1990. Implementing fault-tolerance services using the state machine approach: A
tutorial. ACM Computer Surveys 22, 4, 299–320.

Schriber, T. J. and Brunner, D. T. 1997. Inside discrete-event simulation software: How it
works and why it matters. In Proceedings of the 1997 Winter Simulation Conference. 14–22.

Shannon, C. E. and Weaver, W. W. 1949. The Mathematical Theory of Communication.
University of Illinois Press, Urbana, IL.

Steinman, J. 1991. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. In Advances in Parallel and Distributed Simulation. Vol. 23. SCS Simulation
Series, 95–103.

Vakili, P. 1992. Massively parallel and distributed simulation of a class of discrete event systems:
A different perspective. ACM Transactions on Modeling and Computer Simulation 2, 3, 214–
238.

von Neumann, J. 1956. Probabilistic logics and the synthesis of reliable organism from unreliable
components. Princeton University Press.

Wieland, F. 1998. Parallel simulation for aviation applications. In Proceedings of the IEEE
Winter Simulation Conference. 1191–1198.

Zayas, E. 1987. Attacking the process migration bottleneck. In Proceedings of the 11th ACM
Symposium on Operating System Principles. 13–24.

Received April 2000; revised January 2002; accepted February 2002

ACM Journal Name, Vol. 1, No. N, M 2002.

