
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SASSY: A DESIGN FOR A SCALABLE AGENT-BASED SIMULATION SYSTEM USING A
DISTRIBUTED DISCRETE EVENT INFRASTRUCTURE

Maria Hybinette
Eileen Kraemer

Yin Xiong
Glenn Matthews

Jaim Ahmed

Computer Science Department
University of Georgia

Athens, GA 30602-7404, USA

ABSTRACT

The PDES literature offers a rich set of techniques for
distributed and efficient simulation. However, there is
a growing need for simulators that support agent-based
applications, and PDES systems are not always well
suited for these applications. Example agent-based ap-
plications include simulation of biological systems such
as ants and bees, multi-robot systems and battlefield
simulations. The robotics research community has de-
veloped agent-based simulators that provide useful APIs
for agent applications. However, such simulators have
performance limitations, and they do not scale well. Our
approach is to provide middleware between an agent-
based API and a PDES simulation kernel. The result is
a simulation system that offers an agent-based API for
the programmer to a high performance PDES system.
Here we describe our design and initial implementation
of SASSY, the Scalable Agents Simulation System.
We describe our initial implementation and compare
the design with related approaches.

1 INTRODUCTION

Our goal in this work is to leverage the efficiency, speed,
and parallelism available in discrete event simulation
(DES) systems for agent-based modeling (ABM). Our
approach is to use a standard parallel discrete event
simulation (PDES) kernel paired with added middleware
to provide an agent-based paradigm for the simulation
application developer.

We are not the first to propose the
use of PDES for agent-based modeling
(see for instance (Uhrmacher et al. 2000,
Logan and Theodoropoulos 2001,
Riley and Riley 2003)). However, we believe there are
several unique aspects of our approach that contribute
a novel high-performance design. In particular, we
use a “standard” PDES kernel, and we provide a

“standard” agent-based model view. Because we use a
standard PDES kernel we are able to easily leverage
existing and future performance technologies such
as optimistic protocols, distributed execution, and
advanced efficient Global Virtual Time calculations.
Because we provide a standard ABM API, we make
the simulation application developer’s job easier – she
can more directly map her problem to the simulator
without having to know the details of PDES.

Why PDES? For more than two decades re-
searchers have focused on improving the efficiency of
discrete event simulation systems (DES). Numerous
techniques have emerged such as parallel execution
on shared memory multi-processors, distributed ex-
ecution on multiple machines, optimistic execution,
faster algorithms for Global Virtual Time calcula-
tion, duplicating (cloning) simulations in progress
to aid what-if-scenario analysis and more recently
software systems and architectures to improve inter-
operability between different simulation technologies
(e.g., distributed interactive simulation (DIS) and
the high-level architecture (HLA) and their exten-
sions). (Jefferson and Sowizral 1985, Das et al. 1994,
Fujimoto 1990, Hybinette and Fujimoto 2001,
Dahmann et al. 1997).

Why Agent-Based Modeling? Several emerging
simulation applications call for an agent-based view that
is not well suited to the DES model. Accordingly, agent-
based simulators have been developed (e.g., TeamBots
(Balch 1998), Swarm, (Minar et al. 1996), Mason
(Luke et al. 2005), Player/Stage (Gerkey et al. 2003)),
but these simulators suffer from performance and scala-
bility limitations. In order to illustrate these points we
will briefly review the DES and agent-based simulation
paradigms.



Hybinette, Kraemer, Xiong, Matthews and Ahmed

2 RELATED WORK

DES systems are fast and efficient because the systems
they simulate are treated as if they proceed forward in
discrete time steps – the intervening time is ignored.
As compared to continuous time simulation, the dis-
crete nature of time in DES systems enable a reduction
in complexity because the requirement for synchroniza-
tion is reduced. Furthermore, researchers have con-
sidered carefully how to gain speedup by distributing
and parallelizing DES across multiple processing ele-
ments in Parallel Discrete Event Simulation (PDES)
systems. In general DES implementations use an event
list paradigm where events are scheduled at a partic-
ular time T by adding them to a priority queue with
timestamp T. Events are processed by Logical Processes
(LPs). PDES systems treat scheduling of events as mes-
sages that are sent between LPs (the LPs are possibly
on different machines).

The PDES paradigm is well suited for simulation
applications that consist of multiple computational or
processing nodes with packets or messages passing be-
tween them. Networking simulators, for instance, rep-
resent routers as LPs, and packets as messages/events.
Other examples include simulation of air traffic with
airports as LPs and aircraft as messages, and road sys-
tems as intersections (LPs) and cars (messages). In this
paradigm, computation occurs at the fixed LPs – the
messages that move between them have no computa-
tional capability. Most applications for PDES involve
a large number messages in comparison to the number
of LPs.

The standard PDES API for simulation develop-
ers is not well suited to agent based applications be-
cause it does not offer the programming model these
researchers expect. For example, multi-agent system
(MAS) researchers expect to treat agents as objects
that move around in an environment (like messages
in DES, but with the ability to compute). In most
PDES simulations LPs don’t move, they represent geo-
graphically static objects such as network routers, air-
ports, sectors in the airspace, intersections. So, in these
simulators the objects that perform computing don’t
move. In contrast, in physical agent simulations the
agents move around. In general, ABM researchers ex-
pect their agents to (Riley and Riley 2003, Balch 1998,
Gerkey et al. 2003):

• Use the Sense-Think-Act cycle – agents
sense their environment, consider what to do,
then act. This is the predominant computa-
tional paradigm for agents; it stands in contrast
to the message/event paradigm for PDES.

Distributed Discrete Event Simulation Kernel

PDES Application Programmer Interface

Agent Application 
Programmer Interface

Agent App:
Ant 

Simulation

Agent App:
Robot 
Soccer

DES App:
Auto Trafc

DES App:
Air Trafc

In
te

gr
at

ed
 M

on
ito

rin
g 

an
d 

St
ee

rin
g

Figure 1: SASSY: The (S)calable (A)gent(s) (S)imulation
(Sy)stem: Our Distributed Simulation System Supports
Both General Simulation Applications and Agent Based
Simulations

• Compute – Agents have computing capability
and state; again, in contrast to messages in
PDES, which provide no computing function.

• Proliferate – MAS simulations typically in-
volve hundreds or thousands of agents.

• Persist – Agents are persistent members of the
environment, in contrast to messages that exist
only for a short periods.

For these reasons, a number of MAS and multi-
robot systems researchers have devised their own sim-
ulation systems for their research. From a software
engineering and ease of use point of view their simula-
tors are well suited to the research tasks they pursue,
but these simulators are not “high performance” in the
same sense that state of the art PDES systems are. In
fact, some agent based simulation systems face serious
performance limitations. These limits prevent MAS re-
searchers from investigating systems with thousands or
millions of agents.

We feel the best solution is to provide middleware
between a PDES kernel and agent-based API. This will
enable MAS researchers to program using a model that
is comfortable for them, while they leverage the high
performance of an underlying PDES kernel.

3 SYSTEM DESIGN

We have implemented an architecture like that illus-
trated in Figure 1. In this architecture, a faster than
real time simulation runs on one of our servers (or on
several in the case of a parallel and distributed simula-
tion). Faster than real time simulation allows models
to advance ahead of the corresponding wall-clock time.
Through a web server, Internet users are able to query
and steer the simulation. In some cases, as in a traffic
and a multi-robot simulation that we have developed,
users can request specific simulation results for their



Hybinette, Kraemer, Xiong, Matthews and Ahmed

Agent

Sense
Think

Act

State

Environment

Figure 2: The Physical Agent Model

personal use. At the same time, the researchers who
have designed the simulation will be able to revise it
while it is running.

4 THE PHYSICAL AGENT MODEL

In the standard physical agent model, an
agent senses its environment, considers what
to do, then acts (see Figure 2). This is fre-
quently referred to as the sense-think-act cy-
cle (Riley and Riley 2003, Uhrmacher et al. 2000,
Logan and Theodoropoulos 2001).

Multi-agent simulators are typically configured as
shown in Figure 3. The code for each agent connects
to a process that maintains world state for the simu-
lation. An Application Programmer’s Interface (API)
allows agents to query the simulator for sensor informa-
tion and to send actuation commands to the simulator.
The simulator updates the world state accordingly. The
simulator checks for possible physical interactions that
would prohibit a requested action. The simulator also
moderates interactions between agents (such as com-
munication).

The agents may be implemented in a number of
ways. In TeamBots, for instance, agents are Java
objects with “call back” methods the simulator calls
to give them an opportunity to run (Balch 1998). In
SPADES and Player/Stage the agents are separate pro-
cesses that connect to a single-threaded simulation en-
gine (Riley and Riley 2003, Gerkey et al. 2003).

5 DISCRETE EVENT SIMULATION

Discrete event simulations typically maintain data struc-
tures of state variables, an event queue of forthcoming
time-stamped events and a global clock that indicates the
progress of the simulation (see Figure 4). The simulation
advances by repeatedly processing the event containing
the smallest time stamp from the event list. Process-

Agent
Sense

Think
Act

State

World State Model

Agent
Sense

Think
Act

State

Agent
Sense

Think
Act

State

Agent
Sense

Think
Act

State

Agent
Sense

Think
Act

State

Agent
Sense

Think
Act

State

Figure 3: An Agent-Based Simulation

Processor Element

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Event Queue

Figure 4: A Discrete Event Simulation System in Which
Several LPs Schedule and Execute Events

ing an event may cause one or more state variables to
be modified, and/or new events to be scheduled. For
example, a discrete event simulation may model an air
traffic system where state variables indicate the num-
ber of airplanes at each airport. Departure and arrival
events modify these variables as new aircraft arrive or
depart from the airport (Wieland 1998).

Distributed parallel simulation provides two advan-
tages. First, multiple processors can be used to reduce
the execution time of the simulation. Second they may
be required to support distributed personnel or resources
(e.g., a combat simulator with multiple human partic-
ipants at different locations). Distributed simulation
also facilitates linking existing simulators developed for
different platforms to model large systems.

In this work, a parallel simulation is composed of dis-
tinct components called logical processes or LPs. Each
LP models some portion of the system under investi-
gation. For example in an air traffic simulation each
airport might be represented by an LP. The logical
processes may be mapped to different processors. As
in a sequential simulation, a change in system state is
defined by an event. The “scheduling” of an event is
accomplished by sending a message from one LP that
may request the destination LP to change its state or
schedule additional events.

A synchronization mechanism is used to ensure each
LP processes events in time-stamp order. The two lead-



Hybinette, Kraemer, Xiong, Matthews and Ahmed

Processor Element

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Event Queue

Processor Element

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Event Queue

Processor Element

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Event Queue

Processor Element

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Logical 
Process

Schedule

Receive

Event Queue

Figure 5: A Parallel Discrete Event Simulation System in
Which Several PEs Support Multiple LPs to Schedule and
Execute Events

ing classes of synchronization protocols are conservative
and optimistic approaches. A conservative protocol en-
forces consistency by avoiding the possibility of an LP
ever receiving an event from its past (as measured in
simulated time). The optimistic protocol, in contrast,
uses a detect-and-recover scheme. When an event is
received in an LP’s past, an LP recovers by rolling back
previously processed events with later time-stamps than
the one that was just received.

6 API TO THE SASSY PDES KERNEL

SASSY provides a PDES API (application programmer
interface), as well as an Agent-Based API that is im-
plemented as middleware on top of a PDES kernel (see
Figure 1). In this section we describe the PDES API.

The API for the PDES simulation application pro-
grammer is simple and easy to use. SASSY is im-
plemented in Java, and therefore benefits from object-
oriented system design. The kernel provides an abstract
class Logical Process that implements the features of a
generic logical process. These methods are implemented
as private; the application programmer does not need
interact with them. Methods requiring application-
specific implementation are designated abstract and
are to be implemented by the application programmer.

To implement a simulation application to run
on SASSY a programmer extends the LogicalPro-
cess class by implementing three abstract methods:
initializeLP, runLP, and finalizeLP (see Figure 6).
These methods respectively initialize simulation data
structures, describe an execution handler that is run
when the logical process is scheduled, and call routines
that are activated when the logical process leaves the
simulation.

The LPs schedule events both remote and local
(including events to itself) via messages. A SASSY
message is a Java object that specifies the destination

Worker PE

PE_id : int

receiveMessage
sendMessage

LP

LP_id : int

sendSimMessage()
abstract InitializeLP()
abstract runLP()
abstract finalize()

GlobalNameServer

routingTable

getGlobalRoutingInfo()

schedules

owns

consults(1)

MasterPE

SimSocket : Socket

main()
createPEs()
recvMonitoringSteerMsgs()
sendMonitoringSteerMsgs()

creates

SchedulingLoop

incoming: PriorityQueue
outgoing: PriorityQueue
LPs : List

procSimEvents()
procMonitoringCommands()
procSteeringCommands()

LocalNameServer

routingTable

getLocalRoutingInfo()

consults(2)

Figure 6: SASSY: The (S)calable (A)gent (S)imulation
(Sy)stem: Java Implementation

of the message and is sent via the sendSimMessage()
method.

To run a simulation application on SASSY, two con-
figuration files are specified. One file specifies simulation
system configuration information (e.g., number of PEs,
available machine IP numbers). The other file specifies
application specifics such as the names of the simula-
tion objects and their corresponding numeric identifiers.
Each line in this file provides information about one LP
in the application.

Consider as an example a road traffic simulation
consisting of road segments, implemented so that each
road segment corresponds to a logical process. A line of
the application configuration file might look something
like:

Segment(tab)I-85N-S(tab)I-85
north from I-285 to I-75/85(tab)
9250/3/0,I-7585N-S

As the simulation kernel parses the line, it creates
an instance of the Segment class (which is a subclass
of LogicalProcess), sets its application-level name ID to
”I-85N-S”, sets its description to ”I-85 north from I-285
to 1-75/85”, and passes the string ”9250/3/0,I-7585N-
S” into the Segment’s setConfigData() method. This
method, implemented by the application programmer,
parses the string to define this Segment (LP) as 9250
meters long, 3 lanes wide, initially containing 0 cars, and
sending all cars leaving this Segment to another Segment
(LP) identified as ”I-7585N-S”. The simulation kernel
then assign this newly created LP to one of the PEs.

A monitoring and steering capability permits us to
dynamically add (and remove) logical processes (sim-



Hybinette, Kraemer, Xiong, Matthews and Ahmed

ulation objects) through the monitoring and steering
console.

6.1 Initialization, Execution and Wrap-Up

Because the simulation application class objects are cre-
ated by SASSY according to the information contained
in the configuration file, the initialization phase for the
application is simple. Typically, at least one logical
process sends a message in the initialization phase.

After the simulation is initialized, it enters the exe-
cution phase. The simulation application runs as spec-
ified by the application programmer in the appRunLP()
method.

In the appRunLP()method the application program-
mer specifies the behavior of the simulation: what the
LP should do upon receiving a message. Typically, the
LP responds to the receipt of a message by updating
its local state based on the content of the message and
optionally generating one or more messages to be sent
either to itself or to other LPs.

It is up to the simulation application to end the
simulation. Currently, there are two ways to specify the
end of the simulation: at a specified simulation time, or
when some amount of real time has elapsed in which no
messages have been sent. The monitoring and steering
system provides direct control of termination and can
stop/pause/rewind and restart the simulation.

7 IMPLEMENTATION OF THE PDES
KERNEL

The simulation kernel is implemented as a package of
Java classes. Initially, the kernel is composed of two
or more PEs (processing elements). One PE serves
as the MasterPE, the remainder serve as WorkerPEs.
The MasterPE gets execution information from the user
at the command line, creates WorkerPEs accordingly,
processes the configuration information, and allocates
LPs to the WorkerPEs. The LPs are initialized by the
WorkerPEs according to the configuration information.

The SASSY kernel uses a hierarchical name service
structure, similar to DNS (Mockapetris 1987). A global
name server runs on the MasterPE and contains a map-
ping of the PE’s IDs to their physical addresses. Each
WorkerPE runs a local name server that maintains LP
ID to physical address mapping information for all the
LPs running on this PE.

In order to reduce PE to PE communication, each
local name server also caches the mapping information
concerning LPs on other PEs whenever they acquire
such information.

Each WorkerPE is responsible for receiving and
sending messages. It periodically checks its two queues:

Agent

Sense
Think

Act

State

Discrete Event
Simulation Agent Proxy LP

Event 
Queue

Figure 7: An LP in the PDES System Serves As a Proxy
for a Simulated Physical Agent

the incoming queue and the outgoing queue. For an
incoming message, the WorkerPE checks the message
type and processes it accordingly. For an outgoing
message, the WorkerPE consults the local name server
to find the physical address of the destination. If the
local name server does not contain this information, the
WorkerPE consults the global name server to get the
physical address and then sends the message to that
PE.

8 THE AGENT-BASED MODEL API

In this section we describe SASSY’s Agent-Based Mod-
eling API. The ABM API is implemented as middleware
between the PDES kernel and the agent-based model
application code (see Figure 1). Each agent is provided
a PDES proxy LP that serves to process and create
messages. Figure 7 shows how this works for one agent.

Each agent proxy maintains a model of relevant
objects in the environment near the corresponding agent
it serves as a proxy for. When agents move or act in
the world they generate an event that is sent to the
other nearby agents so they can track the movements
and state of others. The agent proxy LPs keep their
state current for the agent they support.

As mentioned above, the Agent Proxy LP (APLP)
keeps track of the world’s state that is relevant to the
agent it serves. In our approach, there is no central repre-
sentation ofworld state. Instead, theworld state relevant
to each agent is maintained by that agent’s proxy LP. As
an agent’s state changes, it notifies other agents using
a state message reflection mechanism. Message reflec-
tion is accomplished by a distributed publish/subscribe
mechanism implemented by a set of LPs arranged in
a grid. These LPs are referred to as Interest Moni-
toring LPs (IMLPs). Each agent registers interest in
(subscribes to) the activities that occur within specific



Hybinette, Kraemer, Xiong, Matthews and Ahmed

1

2

3

4

1
2

3

4

012

3
4

0

1

2 3

4

A B

C

D

Figure 8: Four Agents: A, B, C and D That Roam
About a 2 Dimensional Space. The Light Colored Region
Is an Interest Region Maintained by IMLPj. Positions of
the Agents and Their Directions Are Denoted by Dots and
Arrows (the Numbers Refer to Instants in Simulated Time)

cells. Agents that move within a specific cell period-
ically publish their state by sending a message to the
relevant IMLP; then the IMLP reflects those messages
to other interested agents.

Our approach is similar to HLA interest
manager approaches that use conservative clocks
(e.g., Tacic and Fujimoto’s work reported in
(Tacic and Fujimoto 1998) and Wang, Turner and
Wang’s work in (Wang et al. 2003)). Tacic and Fu-
jimoto’s work focuses on reducing network traffic in a
simulation using a conservative protocol (HLA) while
Wang, Turner and Wang describes how to integrate
agents using different interest management schemes into
an HLA-based distributed simulation. In contrast, our
approach supports optimistic simulation, and our focus
is on reducing the number of rollbacks.

Logan and Theodoropoulos also propose a related
approach in (Logan and Theodoropoulos 2001). Logan
and Theodoropoulos implemented interest management
for an optimistic simulator. In their approachworld state
is maintained in “environmental LPs” (similar to our
IMLPs). In our approach the agents track world state
themselves, there is no centralized representation of any
agent’s state.

We believe our approach enables more efficient par-
allel execution, as well as allowing the agent LPs to
advance optimistically. Further, it reduces the neces-
sity for rollbacks. We illustrate the approach with an
example below. Recall that our focus is to reduce roll-
back while minimizing bandwidth requirements.

Consider the scenario illustrated in Figure 8. In
this case we are concerned with agents A, B, C, and D.
A and B will register interest in the light colored cell
(for convenience we will refer to it as IMLPj). C and
D will move through the J cell and post state messages
to IMLPj. In a real simulation all four agents would

1

1 2 3

4

1 2 3

2

3 4

A

C

IMLPj

B

D
3

4

Figure 9: Event Message Timeline for Agent LPs A, B, C
and D and IMLPj

subscribe to multiple IMLPs and they would also all post
state information to the IMLP cell they travel within.
In this example we focus on the messages related to
A and B acting as subscribers and C and D acting as
publishers.

In Figure 9 we show an example timeline of event
messages sent to and from IMLPj. In this timeline, all
four agents are roughly synchronized. Events occur as
follows: Agent A subscribes to information from IMLPj
at time 1, and unsubscribes at time 4 (all times are
given in simulation time). Agent B subscribes at time
3, and unsubscribes at time 4. Agent C enters cell J
at time 1, it sends an enter message at time 1, then
state messages at time 2 and 3. Agent C leaves cell
J at time 4, and sends a corresponding leave message
at that time. IMLPj receives the state messages from
C, and “reflects” them to A and B at the appropriate
times. Agent D enters cell J at time 2 and leaves at
time 3; it sends appropriate enter and leave messages
at those times. IMLPj reflects the time 2 state message
from D to agent A at time 2. Note that Agent B does
not have to be notified of D’s activities because it was
not interested in IMLPj at time 2. In this scenario no
rollbacks were necessary.

IMLPs maintain a record of state messages and sub-
scription windows back to Global Virtual Time (GVT).
If a state message arrives within the subscription win-
dow of a particular agent, the IMLP will reflect that
message to the interested agent. Also, if later in time, an
agent registers interest in events during a time window
in the past, the IMLP will reflect those old messages
from that time to the agent.

Now consider the timeline in Figure 10. Events
move forward in a manner similar to the earlier exam-
ple, except that agent D is somewhat behind the other
agents. In real time agent D arrives in cell J after C has
come and gone, and after A and B have unsubscribed
to information about cell J. D’s message at time 2 is
reflected to agent A. A is forced to rollback because it
had already advanced in simulated time to time 4. Note
that agent B does not have to rollback because it is not
affected by D’s activities.



Hybinette, Kraemer, Xiong, Matthews and Ahmed

1

1 2 3

4

1 23

2

3 4

A

C

IMLPj

B

D
3

4

Rollback A

Figure 10: Time Lines of Agents (Agent LPs): A, B, C
and D and Interest Manager LP That Corresponds to a Cell
in the Grid (in This Example There Is One Cell per LP).
This Example Shows That Agent A Needs to Roll Back

Note that IMLPj never had to rollback. In fact, it
is never necessary for an IMLP to rollback (a proof of
this assertion is left for future research).

9 MONITORING AND STEERING
MODULE

Different simulation applications have different needs
for external runtime input and control (steering) and
output and display (monitoring). SASSY has a power-
ful and flexible built-in monitoring and steering (M/S)
architecture that can accommodate these varying needs.

When initialized, the simulation creates a socket and
listens on a (user-specified) port for connections from a
monitoring/steering client program. ThisM/S client can
be implemented in several ways – it can be interactive
(as might be needed for run-time adjustment of the
simulation parameters either by a human researcher
or by a custom steering module such as a machine
learning algorithm) or non-interactive (such as feeding
in sensor data at periodic intervals for comparison with
the simulation’s prediction) and can be implemented
in whatever programming language the user prefers, so
long as it is capable of sending and receiving through a
socket connected to the simulation kernel.

A simple application protocol, modeled after HTTP,
is used for the exchange of M/S requests and responses
between the M/S client and the simulation. Four types of
messages are exchanged: monitoring requests from the
client, the corresponding reports from the simulation,
steering requests from the client, and the corresponding
acknowledgments from the simulation. Although these
messages occur as request-response pairs, they are not
synchronous, as the client may make a request to be
carried out at some future simulation time, in which
case no corresponding response will be received from
the simulation until the monitoring request is fulfilled.
Further, note that the monitoring request may initiate
a continuing stream of responses rather than a single
response. SASSY provides a number of built-in M/S

Message 
type?

Steering 
cache

Steering 
request

Monitoring 
cache Send sim 

messages and M/S 
responses

Apply relevant 
monitoring

Apply relevant 
steering

Get one incoming 
message

Monitoring 
request

Simulation 
message Run LP

Figure 12: Incoming Steering and Monitoring Messages
are Kept in a Cache. The Kernel Manages the Cache
and Schedules Applies Monitoring and Scheduling Requests.
Monitoring and Steering Events Can Be One-Time, On-
Going, Periodic or Conditional Basis

features at the kernel and simulation levels as well as
an API for adding additional M/S capability at the
application level.

Incoming requests whose types are recognized by
the kernel are handled at that level, while unrecognized
requests are assumed to be application-specific and are
forwarded to the application for handling (See Figure 11
and Figure 12 for details).

Handling at this points consists of scheduling the
monitoring and steering requests in the appropriate re-
quest cache. Monitoring and steering actions occur only
at their scheduled times and when their conditions, if
any, are satisfied. This approach permits monitoring
and steering actions to be performed on a one-time,
ongoing, periodic or conditional basis.

The M/S architecture is linked with SASSY from
the lowest levels of the simulation kernel to the applica-
tion level allowing monitoring and steering flexibility. It
can monitor and steer at various levels, the application
level variables, simulation level logical processes (e.g.,
scheduling semantics) and the simulation itself (e.g.,
stop, pause, and replicating the whole simulation). In
other words in addition to fine-grained application-level
monitoring and steering, e.g., observing and adjusting
individual application variables, it is also possible to
monitor and steer the simulation itself at a very coarse-
grained level, even to the point of controlling and ob-
serving powerful kernel features such as load-balancing,
cloning, and merging of simulations.

10 CONCLUSION AND FUTURE WORK

We have presented the design and implementation de-
tails of SASSY, a hybrid simulation system that supports
agent-based simulation on top of a high-performance
PDES kernel. SASSY also provides monitoring and
steering support. The PDES kernel and monitoring
and steering components have been implemented. The



Hybinette, Kraemer, Xiong, Matthews and Ahmed

MasterPC 
receives M/S 
request from 
M/S Client

Request 
simulation-

wide?

Simulatio
n-wide 
request 
cache

Yes

Local M/
S request 

cache

Request is 
forwarded to 
WorkerPE

No

Request 
conditions 

met?

Request 
time 

reached 

Request 
conditions 

met?

Request 
time 

reached 

Kernel applies 
request and 
generates 
response

Request 
recognized 
by kernel?

Yes

Yes

Application 
applies request 
and generates 

response

No

Response is 
forwarded to 

MasterPE

MasterPE 
sends M/S 
response to 
M/S client

Yes

Figure 11: Monitoring and Steering Messages Are Routed Either to the Application Level or to the Simulation Control
Level. For Application Control Level Messages the Kernel Makes Sure That the Message Is Routed to the Appropriate
Machine (Local or Remote)

agent-basedmodeling API is under development. We ex-
pect soon to evaluate SASSYusing standard applications
such as PHOLD and our traffic and agent simulators
that are under development.

REFERENCES

Balch, T. 1998. Behavioral diversity in learning robot
teams. Ph. D. thesis, College of Computing, Georgia
Institute of Technology.

Dahmann, J. S., R. Fujimoto, and R. M. Weatherly.
1997. The department of defense high level architec-
ture. In Proceedings of the 1997 Winter Simulation
Conference(WSC-1997), 142–149.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and M. Hy-
binette. 1994, December. GTW: A Time Warp sys-
tem for shared memory multiprocessors. In Pro-
ceedings of the 1994 Winter Simulation Conference
Proceedings (WSC-1994), 1332–1339.

Fujimoto, R. M. 1990, October. Parallel discrete event
simulation. Communications of the ACM 33 (10):
30–53.

Gerkey, B. P., R. T. Vaughan, and A. Howard. 2003,
Jul. The player/stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings of
the International Conference on Advanced Robotics,
317–323. Coimbra, Portugal.

Hybinette, M., and R. M. Fujimoto. 2001. Cloning paral-
lel simulations. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 11 (4): 378–407.

Hybinette, M., andR.M.Fujimoto. 2002. Latency hiding
with optimistic computations. Journal of Parallel
and Distributed Computing 62 (3): 427–445.

Jefferson, D. R., and H. Sowizral. 1985. Fast concurrent
simulation using the time warp mechanism. In Dis-
tributed Simulation 1985, Volume 15 of Simulation
Council Proceedings, 63–69. Society for Computer
Simulation (SCS).

Logan, B., and G. Theodoropoulos. 2001. The
distributed simulation of agent-based systems.
http://www.cs.bham.ac.uk/research/pdesmas/ .

Luke, S., C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. 2005. MASON: A multiagent simulation
environment. SIMULATION 81:517–527.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi.
1996. The swarm simulation system: A toolkit for
building multi-agent simulations.SantaFe Institute.

Mockapetris, P. V. 1987, November. RFC 1034:
Domain names — concepts and facilities. Obsoletes
RFC0973, RFC0882, RFC0883. See also STD0013
Updated by RFC1101, RFC1183, RFC1348,
RFC1876, RFC1982, RFC2065, RFC2181,
RFC2308. Status: STANDARD.

Riley, P. F., and G. F. Riley. 2003, December. SPADES
– a distributed agent simulation environment with
software-in-the-loop execution. In Proceedings of the
2003 Winter Simulation Conference (WSC-2003),
817–825.

Tacic, I., and R. Fujimoto. 1998. Synchronized data
distribution management in distributed simulations.
In Proceedings of the 12th Workshop on Parallel and
Distributed Simulation (PADS-98), 108–115.

Uhrmacher, A. M., P. Tyschler and D. Tyschler. 2000.
Modeling and simulation of mobile agents. Future
Generation Computer Systems 17 (2): 107–118.

Wang, L, S. J. Turner and F. Wang. 2003. Interest man-
agement in agent-based distributed simulations. In
Proceedings of the Seventh IEEE International Sym-
posium on Distributed Simulation and Real-Time
Applications(DS-RT 2003), 20–29.

Wieland, F. 1998, December. Parallel simulation for
aviation applications. In Proceedings of the 1998
Winter Simulation Conference(WSC-1998), 1191–
1198.



Hybinette, Kraemer, Xiong, Matthews and Ahmed

AUTHOR BIOGRAPHIES

MARIA HYBINETTE is an assistant professor in
the computer science department at the University of
Georgia (UGA). Her research is focused on distributed
simulation, multi-agent-based simulation and experi-
mental systems. She completed her Ph.D. at Georgia
Tech and then was a research scientist also at Georgia
Tech. Before joining UGA she was employed as a staff
simulation & modeling engineer at the MITRE Cor-
poration. She now directs the Distributed Simulation
Laboratory (DSL) at UGA with Eileen Kraemer.

EILEEN KRAEMER is an associate professor in
the computer science department at the University of
Georgia. Prior to joining the faculty at UGA, she served
on the faculty at Washington University in St. Louis
in the Computer Science Department of the School of
Engineering and Applied Science, she is a co-director
of the Distributed Simulation Laboratory and served as
director of the Computer Visualization Laboratory. She
received her Ph.D. in Computer Science in September
of 1995 from the College of Computing at the Georgia
Institute of Technology in Atlanta.

YIN XIONG is is a Ph.D. student in Computer Sci-
ence department at the University of Georgia. Her
research interests include developing mechanisms to en-
able efficient and scalable simulation systems for large
scale agent based simulations. She received her M. S.
in Computer Science in 2001 from the University of
Georgia.

GLENN MATTHEWS is an MS student and was a
research assistant at the Distributed Simulation Labo-
ratory at the University of Georgia. His current research
interest is in the area of machine learning.

JAIM AHMED is an MS student in Computer Sci-
ence at the University of Georgia. He research interests
include agent-based simulations. He joined the Dis-
tributed Simulation Laboratory at the University of
Georgia in 2005.


