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Project Summary

Intellectual Merit

We will develop new algorithms that enable live, collaborative, dynamic and scalable simulations. We
envision large-scale, complex simulation systems connected to real-world live feed data that can be used by
lay persons via the Internet, and viewed and edited simultaneously by collaborating scientists. Real-time
live-feed data streams will be provided by world-wide-web sources and other Internet sources. In addition we
will apply machine learning techniques to improve predictive performance of the simulations Thus we propose
innovative approaches to the integration of data-driven applications for use in prediction, risk-assessment
and decision making (the dmc technical focus area). Our work is focused on both the economic prosperity
and vibrant civil society (ECS) and the advances in science and engineering national priority areas (ASE).

We will demonstrate the generality of our research by applying it to two quite different applications that
we will implement: simulation of economic markets and simulation of automobile traffic in the Atlanta,
Georgia area. In both applications the world wide web provides real time data on the progress of the
corresponding real systems. In particular, for automobile traffic, we will use real-time data from Georgia’s
Department of Transportation (GDOT) traffic website, as well as data from IQStat, Inc as input to our
simulator. For the purpose of providing real-time marketing research on car radio use, IQStat has equipped
hundreds of cars in the Atlanta area with GPS receivers, radio monitors, and data transmitters to relay
their position back to IQStat’s headquarters. The IQStat and GDOT’s live-feeds will serve as input to our
simulator, enabling it to be more accurate.

The traffic simulation will be accessible to the general public via the world wide web. Individual com-
muters, for instance, will be able to enter proposed routes and our system will simulate their travel to provide
an estimate of the time it will take. Commuters could then compare multiple routes to determine which
path they should take to work.

From a practical point of view, we expect our simulation systems to provide helpful information to
investors, commuters and other lay persons. From a scientific point of view, several challenging research
questions arise and will be addressed in this work:

• How can editing of “live” complex simulations be accomplished?

• How can complex, running simulations be effectively viewed by multiple users simultaneously?

• How can live-feed data be easily connected and synchronized to running simulations?

• How can machine learning technologies be integrated into a simulation system to make it more accurate
as a forecasting tool?

By answering these questions we address our second technical focus area which concerns the integration
of human-computer interfaces, information management and computing to support complex distributed
systems (i.e. int technical focus area).

Broader Impact

This research will have broader impact both within our institutions (the University of Georgia and Georgia
Tech) and externally. In the short term, our simulations will be made available through the web to enable
commuters to travel more quickly and consequently increasing our economic prosperity by reducing fuel
consumption (ECS).

In the long term our technologies will become an important new collaborative medium for scientific
investigation in a number of applications and as such address the advances in science and engineering
(ASE). Example applications include air traffic control systems, communication networks, and simulation of
world-wide manufacturing and sales distribution systems.

Locally this work will include participants from under-represented groups (two of the PIs are female,
and students currently involved include African-American, Asian and female students). Additionally, we
will integrate this research into several of our graduate and undergraduate courses in the form of research
projects for the students.
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Project Description

1 Introduction

The Web abounds with useful time-sensitive data: stock prices, weather radar, web-cams, traffic reports and
so on. Millions use this information every day to guide their activities. Furthermore, with the advent of
new wireless technologies, access to online information is even more pervasive. People can access the web
from their cars, the mall, gas stations, and even from airliners. Presently, however, we can only consider the
current state of the world to inform our plans. What if we could make decisions based on what the
world will be like an hour in the future?

As one example, consider the plight of a commuter on his way to work. At his present location traffic is
flowing well, but the radio says there is a traffic jam near his destination. Does it matter? Maybe the jam
will be gone by the time he gets there. On the other hand, maybe it won’t and an alternative route is called
for.

To help this motorist we would need a fusion of online technologies like those found at mapquest.com
and georgia-navigator.com combined with a faster-than-real-time simulation kernel like GTW (Das et al.
1994). It is easy to imagine that such technologies could be fused to provide more powerful services; it
is another matter to make it so. In fact, there are critical gaps in current technologies and deep research
questions that must be addressed for this to happen.

Our research will enable interactive, persistent (always on) web-based simulations that
leverage live feed data to inform users about the predicted state of the world. Furthermore,
these simulations will be adaptive on the basis of live feed data, and modifiable by users while they are
running. These capabilities will support applications like:

• Online automobile route planners that account for current and future traffic conditions.
• Adaptable market prediction systems that allow individual investors to test hypotheses regarding the

effect of various real-time market indicators on future stock prices.
• Support for commanders in disaster relief, terror response, or battlefield scenarios via predictions

regarding the impact of action choices on a rapidly evolving situation.

This research spans several disciplines including discrete event simulation, human computer interaction
and machine learning. We have assembled a multi-disciplinary team at the University of Georgia and Geor-
gia Tech with the appropriate skills and interests for success. The project will be led by Professor Maria
Hybinette at UGA. Professor Hybinette is a co-creator of Georgia Tech TimeWarp (GTW), an influential
discrete event simulation system; currently her research is focused on efficient interactive distributed comput-
ing. Professor Eileen Kraemer studies the monitoring, visualization, and interactive steering of long-running
computations, looking both at issues in the human interactions with displays and steering and at the con-
currency control and performance issues inherent in the dynamic modification of distributed computations.
Issues in machine learning and adaptive simulation will be investigated by Professor Tucker Balch at Georgia
Tech. Professor Balch’s core research centers on learning models of social system behavior by observation.

In this work we will address research questions in three interrelated areas:
• How can an “always on” simulation respond effectively and efficiently to multiple asyn-

chronous live feed data streams? We envision simulations that utilize multiple online data sources
which provide periodic snapshots of the true state of the world. If the new information differs from
what the simulation had predicted, the simulation must be repaired. Furthermore, the data sources
may be at multiple resolutions. Numerous subsidiary questions arise, especially when the live feed
information can arrive in different forms from distributed sources at differing rates.

• How can an “always on” simulation be usable and editable while it is running? In order for
an online simulation to be most effective for an individual user, he should be able to revise the structure
of the simulation so that the information is tailored to his needs. For instance, a financial analyst may
have a strong belief that the price of oil affects the price of GM stock. He should be able to revise
the simulation online to reflect such hypotheses. Issues in the presentation of simulation state and the
representation of and comparison with “real-world” state will be considered. These issues include both
human factors issues in terms of displays and allowable interactions and performance issues in terms
of the granularity at which modifications may be applied, the frequency at which real and simulated
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Figure 1: Live Wire System Architecture

states are compared, and the criteria to be used in determining that real and simulated states have
diverged.

• How can we make the most effective use of live feed data to produce a more accurate sim-
ulation? Live feed data provides an unparalleled opportunity for simulation model refinement. In this
work we will assume that the structure of the simulation is given by a designer – e.g. Peachtree Street
intersects North Avenue at a certain latitude and longitude. Furthermore we assume the various pa-
rameters concerning relationships between nodes in the simulation can be learned by observation of live
feed data. We will consider several established machine learning techniques, including reinforcement
learning, hidden Markov models, and artificial neural nets.

2 Experimental Application Domains

We will apply our research in two application domains: interactive traffic simulation and economic markets.
Each of these domains offers unique challenges that will also enable us to demonstrate the broad applicability
of our ideas. Both domains offer potential broader benefits society as well.

Our applications will serve two audiences:

1. Researchers and simulation designers who use simulation to build accurate models of real world systems.

2. Laypersons who seek easy online access to the results of these simulations; commuters, for example,
who want to know what the traffic will be like.

We envision an architecture like that illustrated in Figure 1. In this architecture, a faster than real time
simulation runs on one of our servers (or on several in the case of a parallel simulation). Through a web
server, Internet users are able to query the simulation. In some cases, as in the traffic simulation, users will
be able to request specific simulation runs for their personal use.

In our paradigm, the underlying simulations are composed of Logical Processes (LPs) that correspond
to objects or activities in the real world. In the case of an economic simulation, an LP might correspond to
a particular commodity. Of course the value of one commodity might depend on another, so our simulation
must enable a researcher to indicate such relationships. Creation of such editing interfaces is one of our
proposed research thrusts.

Researchers will be provided a web-based interface for adding LPs and revising the links between them,
similar to the example in Figure 2. At this level the editor allows a user to add or remove LPs, and to add or
remove data links between them. In the example in the figure, a researcher has indicated that the value of
gold depends on the Dow Jones Industrial average as well as on crude oil prices. You will also notice that live
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Figure 2: Our vision for the Web based interface for editing simulations. On left live-feed LPs are indicated by a
flash, while “simulated” LPs are indicated by an S.

feed information is entering the simulation for gold, DOW and NASDAQ. These live feeds are “buffered” by
LPs that simulate their value further into the future. We envision that the buffering LPs will use machine
learning techniques to improve their accuracy over time.

The system must provide synchronization points in order to provide coordinated access between the
scientists as well as with the simulation allowing updates to the simulation only at “safe” points. We will
use different interactive steering approaches to enforce this “safety” in different ways.

We now describe each simulation application, and our research plans regarding them.

2.1 Interactive Traffic Simulation

U.S. transportation systems, including rail, air and roadways are frequently congested. Congestion can
lead to severe delays, frustration, and expense for all involved — from the traveler to the transportation
authority. Congestion related delays cost highway commuters billions of dollars each year; and businesses
whose workers commute are impacted financially as well. In many cases such delays and their related costs
could be reduced or avoided with informed planning.

Previously, we have collaborated with researchers at MITRE on a related problem: air traffic simulation.
MITRE developed and validated an air traffic simulator called the Detailed Policy Assessment Tool (DPAT).
DPAT executes on our parallel simulation executive GTW, developed by one of the PIs (MH) at the Georgia
Institute Technology (Das et al. 1994). This work demonstrated the ability to simulate several hours of air
traffic in the continental U.S. in less than a minute using a shared memory multiprocessor. DPAT simulates
air traffic patterns and computes congestion related delays and through-puts. The software can simulate both
international airspace, as well as the continental US (CONUS). For more detail on DPAT please see (Wieland
1998).

We will leverage our experience with transportation simulation in the creation of an automobile traffic
simulator. Several such simulations have been created before (Ben-Akiva and Bierlaire 1999; Bottom et al.
1999; Wahle and Schreckenberg 2001). Ours is distinct primarily because it includes consideration for
multiple live feeds form different sources, and adaptation or learning (more on those topics later). Please
note that it is not our objective to create the “best” traffic simulator – instead we seek to show how a typical
traffic simulator can benefits from live feed.

The transportation network is represented as a graph composed of intersections at the vertices, and roads
as edges between them. Vehicles are represented as messages that are passed from edges to intersections,
where they are distributed back out to edges. Figure 3 illustrates how such a traffic network can be composed.

LPs that represent intersections are parameterized with variables that describe in what ratios incoming
vehicles are distributed to outgoing edges. Such parameters can be estimated by a simulation designer a
priori; they could be based on traffic studies at each intersection; or they could be learned using adaptive
techniques coupled with live feed.

Vehicles can be simulated individually, or at a larger scale as groups of 10s or 100s of vehicles. This
approach is known as multi-resolution simulation (Reynolds, Jr. et al. 1997). When vehicles are aggregated
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Figure 3: On Left: The traffic simulation will be composed of intersections (squares) and roadways between them.
Each roadway link supports unidirectional travel for vehicles. On Right: An example snapshot of the georgia-
navigator.com website. The speed of traffic in each direction for each highway is indicated by the color of that stretch
of road.

in groups, they can be dis-aggregated at intersections, re-grouped as appropriate for the intersection, then
sent out to the roads.

How the System Will Work Our idea is to provide a service similar to that provided by mapquest.com:
namely an online route planning service. The primary difference is that our system will provide recommen-
dations on the basis of current and future traffic conditions.

For demonstration purposes, we will reduce the complexity of route planning by restricting the map to
include only primary roadways. Users will click on the map to indicate the major intersection near their start
and end points. Travelers will also be asked to enter the start time of their trip. Using this information, as
well as current and predicted traffic conditions, a simple route planning algorithm (e.g. A-star) will generate
a proposed path for the traveler. We will also enable users to enter and save their own routes and to compare
expected travel times between candidate routes on a simple text page. This simplified interface might be
used by those with wireless PDAs.

We will allow different interfaces for different types of users by providing three URLs: one URL for
those with full-screen capabilities – desktop or laptop users, another URL for those with PDAs and a third
for those accessing by cell phone internet service. The interfaces differ in terms of display complexity and
interaction style.

Sources of Live Feed Data A key motivation for experiments in this domain is our access to multiple
sources of relevant live feed data. In particular we will employ:

• georgia-navigator.com: This website provides real time information about traffic speeds on all of
Atlanta’s major commuter access highways. See Figure 3.

• IQStat, Inc.: IQStat has instrumented 100 cars in the Atlanta area with GPS receivers and digital
communication devices. By January 2005, IQStat expects to have 500 vehicles in Atlanta equipped
with their technology. They are able to report the locations of all vehicles every two minutes. Please
see the attached letter of support from IQStat.

• Internet users: Our hope is to attract a significant number of Internet users to the service. In
addition to our system providing them with information, they will also provide us with information
about their planned activities. This information can be used in the simulation just like the other data
sources.

These disparate sources of data provide information at multiple resolutions and they are fully asynchronous.
One of the key research issues we will address is how to support multi-resolution live feed simulation.
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2.2 Online Markets

In addition to traffic, we will simulate economic markets. Economic market simulations are data-flow driven,
(as opposed to traffic simulation, which is spatially oriented). Our goal in addressing this type of application
is to provide a more obvious opportunity for editing simulations. We would like to provide an environment in
which users can experiment with different hypotheses regarding the relationships between economic entities.

Again, the approach is to represent key objects in the world by Logical Processes (LPs) in a simulation. In
the economic simulation, LPs correspond to commodities, equities, and other objects that generate numerical
values (e.g. the price gold or the current Dow Jones average). We will enable a user to revise simulations
by adding or deleting directed links between the LPs.

A directed link from one LP to another indicates that the output of one LP (e.g. crude oil prices) affects
the state of another LP (e.g. the price of gold). We assume implicitly that each LP generates a single output
value (e.g. the price of the corresponding commodity). In this simulation there are several special types of
LPs:

• Live feed LPs that inject live feed data into the simulation,
• “Regular” LPs that periodically compute a value for their associated commodity according to code

provided by the simulation designer,
• Learning LPs that can learn an association between the other commodities they monitor and their own

output. Learning will be covered in a later section.

Using these various types of LPs in the simulation editor, a researcher can assemble a running simulation
of an economic market (see Figure 2).

3 Simulation

The two major classes of simulations, continuous and discrete, differ in their treatment of simulation time.
Continuous simulations treat state changes as occurring continuously over time. The behavior of the system
is often characterized as a set of differential equations. Applications typically simulated by continuous
approaches include modeling of weather, surface transformations and viscous fluids. In contrast to continuous
simulations, discrete simulations treat state changes as occurring at discrete points in time. “Events” define
system state changes and represent important activities in the system, such as an arrival or a departure
event in an airport simulation. Each event has an associated time stamp indicating the simulated time when
the event occurs. This research is concerned with discrete event simulation.

Discrete event simulations typically maintain data structures of state variables, an event list of forthcom-
ing time-stamped events and a global clock that indicates the progress of the simulation. The simulation
advances by repeatedly processing the event containing the smallest time stamp from the event list. Pro-
cessing an event may cause one or more state variables to be modified, and/or new events to be scheduled.
For example, a discrete event simulation may model an air traffic system where state variables indicate the
number of airplanes at each airport. Departure and arrival events modify these variables as new aircraft
arrive or depart from the airport. Typical discrete event simulation applications include modeling ground
and air traffic, battlefield management, and communication networks.

3.1 Parallel Discrete Event Simulation

Distributed parallel simulation provides two advantages. First, multiple processors can be used to reduce the
execution time of the simulation. Second they may be required to support distributed personnel or resources
(e.g., a combat simulator with multiple human participants at different locations). Distributed simulation
also facilitates linking existing simulators developed for different platforms to model large systems.

In this work, a parallel simulation is composed of distinct components called logical processes or LPs.
Each LP models some portion of the system under investigation. For example in an air traffic simulation
each airport might be represented by an LP. The logical processes may be mapped to different processors.
As in a sequential simulation, a change in system state is defined by an event. The “scheduling” of an event
is accomplished by sending a message from one LP that may request the destination LP to change its state
or schedule additional events. For example processing a departure event may result in scheduling a new
arrival event at another airport. Since events are scheduled by sending messages, “message” and “event” are
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used interchangeably in our discussion. To summarize: distinct components in the simulation are modeled
by logical processes and the simulation progresses as LPs exchange time-stamped event messages that cause
changes in the system state at discrete points in time.

A synchronization mechanism is used to ensure each LP processes events in time-stamp order. The
two leading classes of synchronization protocols are conservative and optimistic approaches. A conservative
protocol enforces consistency by avoiding the possibility of an LP ever receiving an event from its past (as
measured in simulated time). LPs wait to process events until reception of an out-of-order event is impossible.
The optimistic protocol, in contrast, uses a detect-and-recover scheme. When an event is received in an LP’s
past, an LP recovers by rolling back previously processed events with later time-stamps than the one that
was just received.

A benefit of optimistic simulation is that they can be used to enable the inclusion of computationally
intensive operations in real-time interactive environments such as synthetic environments (Hybinette and
Fujimoto 1999; Hybinette and Fujimoto 2002). In most other cases these environments preclude calculations
that run slower than real-time. While optimistic protocols are more complex and require more memory than
conservative protocols, they offer greater concurrency by being less reliant on lookahead.

3.2 Cloning Parallel Simulation Programs

Simulation cloning is a technique that replicates a running sequential or parallel simulation program during
its execution in order to explore different possible futures of the simulation. It can be used, for instance, to
concurrently explore alternative courses of action to deal with emerging events. For example, in an air traffic
control setting, one might wish to use simulation to compare alternative approaches to managing the flow
of aircraft when inclement weather is forecast for one portion of the air space. This may require controllers
to restrict the number of aircraft entering this portion of the airspace. Operationally, this is handled by
increasing the spacing between aircraft (called the miles in trail or MIT) restriction. One might wish to
evaluate the overall impact of such restrictions on the flow of traffic throughout the entire traffic network,
since delaying certain flights will have a “ripple” effect that propagates throughout the system.

In this example, the simulation can be initialized with the current state of the traffic space, and executed
forward until reaching the point where new restrictions are to be imposed. The simulation can then be cloned
(replicated), with each clone simulating the traffic space with a different MIT restriction. The point where the
simulation is cloned is referred to as a decision point. The cloned simulations can execute concurrently, and
will produce identical results as a traditional replicated simulation experiment where the entire simulation is
executed, from the beginning, using different MIT restrictions that are imposed at the time of the decision
point.

Simulation cloning can improve the performance of the simulation in two different ways. First, it is clear
that the computation prior to the decision point is performed only once, and its results are shared among
the different clones. This is in contrast to a replication experiment where this computation will be repeated
for each replication. Second, it is often the case that there is much computation that is common among the
clones, even after the decision point has been reached. For example, traffic congestion in the eastern part of
the U.S. will not affect traffic on the west coast for some time. Therefore, the simulation of air traffic in the
west coast will be identical immediately after the clones are created. One would like to also perform these
computations only once, and share their results, rather than repeat them within the different clones.

A technique called incremental cloning has been developed to allow computations after the decision
point to be shared among the different clones (Hybinette and Fujimoto 2001). The basic idea in incremental
cloning, is to provide mechanisms to detect when portions of the cloned simulations diverge from each other,
and replicate portions of the simulation only as needed.

The benefit of cloning has been demonstrated by evaluating a commercial air traffic control simulation
in (Hybinette and Fujimoto 2001). The performance results show that cloning can significantly reduce the
time required to compute multiple alternate futures. These results also show that dynamic cloning becomes
more advantageous as the number of alternatives increases or the later the decision point is inserted. It
is also demonstrated that virtual logical processes are especially efficient when the influence of a message
introduced by a logical process does not spread to other processes in the simulation at a high rate. This is
shown by using a benchmark that varies the rate of cloning other LPs. It is also shown both analytically
and empirically that the advantages of cloning are preserved regardless of the number of clones (or execution

6



paths).

3.3 Proposed Research in Simulation

The objective of this portion of the research is to address the systems-level challenges associated with enabling
simulations to serve as collaborative tools, and for them to accept and respond to live feed data. The tool
will react to the current state of the world by initializing or correcting a faster-than-real-time simulation
based on live-feed data from online sources. The tool must be interactive to enable the large-scale simulation
to be viewed and edited simultaneously by multiple collaborating scientists. The running simulation will
adapt by evaluating and responding to differences between state predictions and real-time live-feed data.
Achieving these objectives is not trivial, because in order for such a system to provide useful information to
a decision maker, it must provide it quickly. Accordingly, these advances must be made in the context of a
high performance implementation.

The research concerning the simulation executive will focus on four main thrusts:
• Multi-resolution live feed simulations
• Compensatory simulation to correct and re-use the simulation results with respect to live-feed data.
• Simulation merging to enable the efficient, concurrent investigation of multiple execution paths.
The key research challenges for the simulation software arise from the simultaneous requirements that

we must simulate relevant situations for multiple distributed users at faster than real-time rates. “Relevant”
means that the simulation must predict future outcomes arising from the current real-world state of the
system that is simulated.

The problem of integrating online time sensitive, real-world data (live feed) with faster-than-real-time
simulation introduces new, challenging research issues. As an example, simulation forecasting tools must
provide information on the basis of accurate world state information.

This work will enable collaborative simulation where numerous clients interact with each other through
a shared running simulation. Issues we want to explore in this context include: How can efficiency be
improved by allowing clients to “share” part of a global running simulation, or can sharing be prevented
without impacting the performance of the simulation?

3.3.1 Multi-Resolution Live Feed Simulations

Previous work in multi-resolution simulation (Reynolds, Jr. et al. 1997) is primarily concerned with applica-
tions that require aggregation and disaggregation of groups of agents. For example an army platoon can be
simulated at one level as a single unit, but at another level as individual soldiers. The platoon is simulated
as an aggregated group for movement purposes, but then disaggregated when a combat activity begins.

Observe that live feed data may be available at different resolutions. For example, in our automobile
simulation application the georgia-navigator.com website will provide information about the average speed
of hundreds of cars at five minute intervals. On the other hand data from IQStat will provide the locations of
individual vehicles every two minutes. These data are distinct in their (1) spatial coverage, (2) the number
of vehicles they concern and (3) the rate at which the information arrives. Our simulation systems must
address all of these differences. Accordingly we will investigate how our simulation can allow high and low
resolution entities to be present in the simulation at once. Related work include (Chen and Szymanski 2002;
Liljenstam et al. 2002), where the first adopts a component based view allows components to be contructed
using a C++ class library.

However, a difference in our research is that the challenges here concerns the use of live feed data streams
to correct an ongoing simulation. In previous work (Hybinette and Fujimoto 2002) we have shown how
an interactive human-in-the-loop simulation can schedule I/O processing in anticipation of the simulation’s
need for it. The simulation can also respond to user requests that differ from those that the simulation
had anticipated. We will leverage this earlier work, but carry it further in two important ways: first, the
incoming live feed will be distributed among many LPs, and it will arrive at different resolutions and rates.
These issues have not been addressed before. Second, the LPs themselves will learn from the live feed data
so that they will provide a more accurate simulation as time goes on (see section on adaptive simulation).

Intially we will use time as the basis for integrating multi-resolution data, developing a dynamic sched-
uler that deals both with regularly scheduled updates and with interrupt-driven type updates, similar to
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approaches in scheduling animations. We will also consider real-time aspects of live-feed. For example we
may store older, as-yet-unprocessed live feed for our learning algorithms, in order to better refine the learning
process. Real-time, closest-to-reality constraints might dictate what we need to garbage collect and keep
only the most recent.

3.3.2 Compensatory Simulation and Merging

We propose two new techniques, called merging and compensatory simulations, to improve the performance of
simulation by reducing redundant computations. Merging allows replicated computations to merge portions
of the simulation state so that future computation can share state while compensatory simulations allow
new simulations to re-use portions of a simulation that have already been constructed or modeled. In these
approaches we address how simulations may reduce the number of computations by sharing or re-using
common computations.

We are proposing to use a mechanism called compensatory simulations to accommodate live-feed data.
Here, we will exploit a distributed caching scheme where we will leverage on previous simulated computations
in order to gain in performance, just as simulation cloning leverage computations by other clones.

A possible consequence of incorporating live-feed data into a simulation is that the system may “thrash”
as it repeatedly corrects events that conflict with progress in the real-world. This is likely to happen when
simulation application code does not correspond closely enough with the actual process it is simulating. One
way to address situations like this is to enable the simulation to learn from live-feed data. For instance, if,
in a particular situation, a real-world process causes a particular event repeatedly, the simulation should
respond in the same way. There are a number of machine learning techniques that can learn from example,
and would therefore apply in this domain.

This work will also enable collaborative simulation where numerous clients interact with each other
through a shared running simulation. Issues we want to explore in this context include: How can efficiency
be improved by allowing clients to “share” part of a global running simulation, or can sharing be prevented
without impacting the performance of the simulation?

We are proposing a number of techniques and approaches that vary both in the amount of effort and
expertise required. Consequently, we can accommodate both undergraduate, master students and doctoral
students.

Compensatory Simulations Simulation forecasting tools must provide information on the basis of ac-
curate world state information. But, as the simulation progresses, the state of the world may change in an
unexpected direction, thus invalidating portions of the simulated outcome. To address this, we are develop-
ing a new approach, called compensatory simulation, to synchronize a simulation’s assumptions with quickly
changing information about the state of the world.

For example, an air traffic controller may wish to use faster-than-real time simulation to evaluate how
a restriction affects the flow of traffic throughout the entire traffic network. Here, the simulation is ini-
tialized with the current state of the traffic space, and executed forward until reaching the point where
new restrictions are to be imposed. The controller can then evaluate the effect of the restriction via the
simulation.

A problem with this approach is that the results of the simulation may be inaccurate because the sim-
ulation may not have accounted for recent changes in the state of the world. As an example, suppose a
simulation takes 15 minutes to run and that the controller starts the simulation, say, at 10:00 AM and wants
to evaluate the impact of restrictions he might impose at 10:30 AM. If at 10:10 AM the state of the air
traffic control network changes in a significant manner, the results provided at 10:15 AM will be wrong.
However, if the simulation could respond efficiently to live-feed data, it would correct erroneous portions of
the simulation, while retaining the results of computations that are unaffected by the change.

To accommodate live feed data we propose compensatory simulations. A compensatory simulation share
pre-simulated results while accounting for live-feed data. One approach is to rollback the portion of the
simulation that is affected by the live feed data and then re-execute forward. A second approach is to
start from the beginning of the simulation and examine the results from the original simulation. Both of
these approaches may gain performance by leveraging a derivation of the cloning mechanism. Both of these
approaches may suffer from excessive re-computation. However, it is likely that there are some conditions

8



where one approach or the other is effective. We may also study techniques for managing information that
may be stored for later re-use. We propose a new scheme called: distributed LP caching for computational
re-use and to study efficient storage schemes to address data storage management. These are described
below:

• Distributed LP caching: Each LP manage a database (cache) of data that informs it of newly
scheduled events. Here, the ideas of an LP cache is for the LP to avoid computations that have already
been computed.

• Time Sensitive LP caching: The performance and usefulness of an LP managing its own database
may be dwarfed with the “simplicity” of the LP’s computation. We propose to design an LP that
monitors how long it takes to calculate itself versus the time of looking up in the database.

• Efficient Information Storage: Study techniques for managing information that may be stored for
later re-use. The information that needs to be stored may be large and consequently we need new
techniques on how to incrementally store (possibly to secondary storage), and how to compress the
data and how to load and re-use this information.

Related work in caching include (Walsh and Sirer 2003; Riley et al. 2000; Ferenci et al. 2002) implemented
in network simulators. The first is a language based scheme that improves the performance of a sequential
network simulator. This approach is similar to function caching as described in (Pugh and Teitelbaum 1989).
The second approach caches “routes” in order to avoid maintaining a complete routing table. The third
caches the results of a previous simulation runs and re-uses results according to protocol specific knowledge.
We propose a more general approach that is a distributed approach and is sensitive to time constraints of
computations. We also propose to implement a “learning” cache that learns when to check the cache and
when not to. We may use optimization

Simulation Merging Merging of clones would allow cloned computations to revert to an un-cloned state.
This will increase efficiency because the new un-cloned LPs will complete computations that would otherwise
be duplicated. In this part of the research we propose to merge clones when they are sufficiently similar.
This idea is the reverse of cloning, as we merge logical processes that have been previously cloned.

One necessary contribution of this work will be a mechanism for evaluating the similarity of clones. We
expect that reasonably complex LPs will never again be identical after cloning. However the quantitative
outcome of a simulation may be statistically identical if “similar” clones can be merged.

A problem that we will look at here is to determine when a cloned object is sufficiently similar to be
un-cloned. We will leverage techniques discovered in the exploration of Just-In-Time cloning (Hybinette
2004). For example we will look at mechanisms that incrementally re-assemble a cloned object (the object
may reconstructed from portions of the object that converges). We will also look at techniques that may
further improve the efficiency of simulations such as lookback that loosens the constraints of rolling back
computatitions (Chen and Szymanski 2003).

4 Usable and Editable Simulations

Interactive simulation allows users to not only view the output of an ongoing simulation, but also permits
multiple users to view and edit the internals of he simulation itself, in either a collaborative or independent
mode. Thus, two classes of users must be supported:

• consumers: those who wish to query (view the output of) the simulation: the drivers in the traffic
application, the traders in the economic market application

• simulation scientists: those who wish to view/alter the parameters or components of the simulation
itself

4.1 Supporting the consumer

It has been said that the purpose of computing is intuition rather than numbers. Similarly, the purpose of
each of the live-feed applications that we propose is to provide humans with insight into developing situations
and to serve as a decision aid. Each of the experimental application domains described above(Atlanta Road
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Network, Online Markets) presents information to and solicits information from users. As with any presen-
tation of data or processes, the interfaces to these simulations must be designed with usability considerations
in mind, and the quality of the interface through which the users interact with these applications is critical
to their success. High-level design goals for these interfaces are that the software be intuitive(easy to learn,
easy to remember, easy to apply to new problems) and powerful(efficient and effective).

These goals must be achieved in an application-specific way. In the Atlanta traffic application, safety
is a primary concern. We note that it is best not to distract people who are driving a 4,000-lb vehicle at
70+ miles per hour on a highway with six lanes in each direction and intersections with nicknames such as
“Spaghetti Junction”. That is, the traffic displays will be used under dangerous, high-stress conditions. The
driver must be able to obtain needed information with no more than a quick glance at a screen. Interactions
with the display are necessarily limited at drive time, but may be more detailed during a planning phase
(before the driver pulls out). Furthermore, the size of the display is constrained, likely the size of a PDA
screen, perhaps somewhat larger.

In developing the consumer’s interface to the traffic application, we will apply the results of in-depth
studies and guidelines of these types of displays, such as (FHW ; Smith and Mosier 1986; MIL 1989), as well
as standard human factors design and evaluation techniques including task analyses, heuristic evaluation,
and user studies. Although the displays we will develop will share many of the characteristics of other PDA
and small-screen displays studied in HCI research, the complexity of the driving task and the potential for
risk forces the application of principles from avionic human factors (Marshak et al. 1987). However, the
target users of this device will differ substantially from the airline population. Thus, lab research and field
studies will be necessary to understand both the task of driving with advanced displays and the cognitively
complex task of way finding (Wetherell 1979; Zwahlen and DeBald 1986; Streeter et al. 1985). Further,
many differences will exist among individual drivers and many different driving situations will occur, making
modeling and generalization difficult (Dingus et al. 1990; Avolio et al. 1985; Pauzie et al. 1989). A major
human factors concern for navigation systems (Rockwell 1972; Dingus et al. 1986) is that the addition of
visually displayed information, especially moving maps, may divert visual attention from primary visual
tasks such as lane tracking and obstacle detection. Although drivers may often have spare attentional
resources(Dingus et al. 1988), there may be situations in which processing and response demands exceed
capacity. This may result in increased mental workload and errors.

In both the traffic and economic market applications we will develop displays and interactions based
on an initial task analysis, followed by cycles of prototyping and user evaluation, in order to develop user
interfaces that work well for the tasks at hand.

4.2 Supporting the simulation scientist

Interactive simulation bears many similarities to the practice of interactive steering of computations(Kraemer
et al. 1998; Kohn et al. 2000; Vuppula et al. 2000), which permits users to monitor a program’s execution
and to adjust both application parameters and the allocation of resources in an online fashion. In the
case of interactive steering of computations, the user’s ability to monitor the program in execution, observe
intermediate results, and to “tweak” application parameters, select or install new control algorithms, and
direct the allocation of resources allows users to attain increased quality or reduced execution time. Further,
the use of well-designed views and controls can provide users with the opportunity to explore the application’s
behavior and to develop intuition about aspects of it that require remediation or are ripe for optimization.
In the case of interactive simulation, the simulation scientist may seek to adjust performance, but is more
likely to be making adjustments in order to obtain a higher-fidelity simulation. The interface through which
the simulation scientist interacts must provide a suite of display views in support of the tasks of configuring,
monitoring, and controlling the editable simulation. Essential views include:

• Statistical presentations, including parameters of the simulated entities (traffic, stock market), de-
viation of selected simulation parameters from their corresponding live-feed values over time, and
performance statistics. The scientist may choose to see these values aggregated since the beginning of
the simulation or over some sliding window of time selected by the user.

• An animated display of the simulation in action, at varying levels of detail, represented as LP nodes
with messages of various types passing across channels between LPs, again over a user-selected time
window. Such a view can help the scientist to develop intuition about the performance of the simulation
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• An animated display of the simulation in action, at varying levels of detail, represented in terms
of the simulated entities (traffic intersections, moving market averages, for example). Such a view
can help the scientist to develop intuition about the fidelity of the simulation (adherence to live feed
data). Side-by-side comparisons of the simulated versus actual environments over time might also
prove illuminating.

• Detailed views of individual LPs or canonical LPs. The names and values of selected variables at the
LPs will be displayed. Associated with these variables are attributes live feed input, writable (anytime),
writable (at a synchronization point), evaluation variable, etc.. Such views are useful in verifying the
behavior of the simulation, as well as identifying variables that may be used or affected in editing the
simulation.

• A display of the simulation environment parameters, such as variables involved in the management of
cloning, merging, or rollback.

• A display of the learning modules in use, as well as those available for use.
• A display of available live-feed inputs.
• A display of the evaluation modules and parameters in use, and their parameters.
These views should provide sufficient information for the scientist to monitor the state of the simulation,

to make decisions about dynamic changes to the simulation, and to enact these changes. Through this
interface, the simulation scientist will be able to enact:

• changes to LPs: These include changes to parameter values at an LP, adding, removing, or replacing
an LP, directing that clones be created or merged, or altering the policy or mechanism by which LPs
are cloned or merged.

• changes to live-feed status: These include the addition, removal, or update of live-feeds either to
simulation components or to evaluation modules.

• changes to learning modules: These include updating parameters of the current learning module(s),
as well as addition or removal of learning modules.

• changes to evaluation modules: These include updating parameters of the current evaluation
module(s), as well as addition or removal of evaluation modules.

Technical challenges exist in realizing such an editable simulation, among these are safety in the ap-
plication of changes to the various components in the simulation system, performance effects associated
with these dynamic changes, and usability concerns in the implementation of the interface. Our prior
work in the interactive steering of distributed computations prepares us well to address this similar problem
in interactive simulation(Kraemer et al. 1998; Hart et al. 1999; Miller et al. 2001). Safety in this context
means that dynamic changes to the simulation are applied in a way that maintains the correctness of the
computation. Note that although some dynamic changes may be applied at any of the participating LPs
at any point in the simulation(altering a local parameter at one LP) , others may be correctly applied only
at certain points in the simulation(between transactions in a transaction-based simulation), and still others
may require some coordination among LP updates (enforcing simultaneous update of a simulation policy,
or transferring responsibility for some task from one LP to another). It should be noted that the approach
to safety, including both the degree of control, if any, that is attempted or guaranteed, and the method by
which safety is implemented, is dependent upon other choices, related to the structure of the simulation
components, instrumentation and data collection methods, and the programming model assumed in the
simulation.

In related work in interactive steering of computations, researchers have addressed consistency concerns
at a variety of levels. Some systems leave such concerns entirely up to the user or programmer(Winfield
1998)(Beazley and Lomdahl 1997), or rely on the application to provide the necessary consistency checks(Eisenhauer
and Schwan 1998). Others, typified by a “scripting approach” , limit the points in the program at which
steering may take place, and still others limit the steering system to a particular programming model,
i.e., simple iterative computations with a single main loop(Geist et al. 1996). Application-specific steering
systems typically solve the consistency problem in an application-specific manner.

At the other end of the spectrum, more complex schemes for controlling interaction points(Vetter and
Schwan 1997),(Oberhuber et al. ) and detecting changes that affect consistency(Parker and Johnson 1995)
have been developed. However, few of these systems address the coordination of steering actions across
multiple processes in a distributed system.
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In prior work we developed Pathfinder, an architecture for interactive steering of distributed systems
that attempts to meet the diverse needs of different users, program models, and applications. In the design
of this architecture we emphasized configurability (permitting the user to select an appropriate balance
among safety, lag, and perturbation in both monitoring and steering) and support for the coordinated,
consistent steering of distributed programs. The programming model assumed in this work was an event-
based model, with the option to specify the computation as consisting of a set of (possibly nested) logical
actions. These logical action boundaries form good locations at which to both collect data and apply steering
changes. For example, in a phased computation, each phase would perform a single logical action across
multiple processes. A steering change across multiple processes then could be applied such that it takes place
between the same phases at each process. Multiple algorithms for the construction of these logical actions
based on event streams were implemented and evaluated(Vuppula et al. 2000) and codes were developed
to perform consistent updates to these distributed computations(Miller et al. 2001). Each of these studies
involved an evaluation of the performance effects of the implementation choices employed.

Usability of the interface is important issue if the tools we develop are to gain acceptance. Here, our
prior work with the development of tools for visualization and interaction with complex systems will guide
our approach. We will follow the procedure employed in our prior tool development for Pathfinder and for
problems in computational biology(Liu and Kraemer 2001),(Wu and Kraemer 2001),(Zhang et al. 2001),
(Farahi et al. 2003),(Wang and Kraemer 2003). That is, we will meet with members of our target user group
(simulation scientists),walk through with them the tasks they seek to perform and the interactions and
displays they desire, develop prototypes (first on paper, later in software), get feedback, and then redesign.
This process is performed iteratively, with functionality added or moved as the design progresses.

5 Adaptive Simulation

Simulations with live feed provide a unique challenge because the simulation can be held back at any time
when the live feed data at a particular time contradicts what had been predicted by the simulator for that
time. Whenever this happens the simulation (or at least part of it) must be reset (rolled back) and run
forward again from the corrected point. Clearly, if we can reduce the frequency of such occurrences, the
simulation could run much further into the future, and do so more efficiently.

If the simulation could “learn” not to make mistakes, or, put another way, if it could predict the future
more accurately, it could simulate further into the future before a rollback event. Machine learning techniques
can address this.

Our approach is to apply machine learning at the Logical Process (LP) level. In particular, consider that
each LP is provided a set of input variables (as incoming messages), and from those it should compute an
action (or output) that is exported to other LPs. In the case of a market simulation the inputs correspond
to incoming information on commodity values that affect the price of the commodity under consideration.

At least two types of machine learning techniques are appropriate to this task: supervised learning (Sutton
and Barto 1998) and reinforcement learning (Mitchell 1997).

In a supervised learning system the learner is provided a set input-output pairs for training, where the
provided training output is the desired outcome. Object recognition or classification is a common task for
such systems (e.g. given an image of a face, whose face is it?). Artificial Neural Nets (ANNs) (Mitchell 1997)
are often used for these types of problems. ANNs are stateless in that each classification task is independent
from those that came before.

In a reinforcement learning system the learner is provided sensor inputs and a reward for its last action.
On the basis of this information it must choose an output. The learner is not provided the “correct answer”
as is the case with supervised learning. Instead it must search for actions in particular states that provide
positive rewards.

5.1 Proposed Research in Adaptive Simulation

Machine learning is not new to simulation. For instance there is a great deal of work concerning the use of
Artificial Neural Nets (ANNs) as a simulation modeling infrastructure (e.g. (Alon et al. 1991; Hajjar et al.
1998)). Others have investigated how ANNs can be simulated efficiently (e.g. (Garca-Orellana et al. 2001;
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Barbosa and Lima 1990)). In our own work, we have trained agents that use Reinforcement Learning (RL)
in simulation before they were used to control robots (Balch 1998).

Our work is distinct from this other research however, as we focus on the application of ANNs and RL to
the task of online adaptive modeling in a running simulation with live feed. We will use live feed information
to “train” LPs so that they make more accurate predictions. Presumably, the longer such a simulation runs,
the more accurate it will become. Our objective is to investigate how machine learning can be used to create
simulations that are faster (because of fewer roll backs) and more accurate.

In the context of discrete event simulation, we can view an LP as an input-output process for which the
mapping from input (incoming message) to output (outgoing messages) is carried out by a section of code
that follows a possibly stochastic, but nonetheless predictable pattern. The mapping from input to output
is usually coded by an application programmer who has substantial experience regarding the behavior of the
real-world process that the LP corresponds to.

In our case, with live-feed, we have access to information about the real-world process itself. The general
approach is to embed a learning algorithm into LPs to enable them to learn the input-output mapping,
possibly without the assistance of an application programmer. As live feed information becomes available it
is used online to improve the accuracy of the corresponding LP. For this part of the project we will address
the following research questions:

1. How can machine learning algorithms be integrated into the LPs within a discrete event simulation to
use live feed to improve its performance?

2. Which types of machine learning algorithms are best for particular applications?

3. To what extent do machine learning augmented LPs improve the run time performance of simulations
with live feed?

4. To what extent do machine learning augmented LPs improve the accuracy of simulations with live
feed?

As described above, we have a plan already for how to integrate ANNs and RL with LPs in a discrete
event simulation (Question 1). With regard to Question 2 we suspect that ANNs will be most appropriate
for LPs that perform simple input-output processing and that they can be trained by directly applying live
feed as the correct “output;” while RL will be appropriate when LPs act as agents, and must learn to move
through a set of states to accomplish a goal. We will also evaluate the impact of this approach by measuring
how he resulting simulations improve, both in runtime efficiency and in accuracy.

6 Research Plan

Research will be carried out in three laboratories: the Re-Active simulation laboratory, the BORG laboratory
and the Viz Eval laboratory of which the proposers are directors. We have proposed research to span 3 years.
This work will be conducted by the proposers, one senior personal, four PhD students and several under-
graduate students. Our research plan per year is as follows:

Year 1: UGA: UGA will focus on developing the simulation infrastructure, and on prototyping the
various user interface components of Live-Wire. This includes both agent based simulations and event
oriented simulators and multiple live feed data streams. We will simulate live feed data by using log
files provided by IQStat and the Georgia DOT.

Georgia Tech: Georgia Tech will focus on initial implementations of learning algorithms within
discrete event simulations, using log files as simulated live feed.

Year 2: UGA: This year we will integrate real live feed data and evaluate how well our systems work. year
we will turn our attention on how to merge similar simulations. We will leverage lessons learned from
the compensatory scheme. We will extend the compensatory scheme to include adaptive simulation
technologies. We believe that augmenting live-feed with machine learning technologies will have a large
impact in our community, and is an ambitious part of our proposal. We will also work on a hybrid
cloning and compensatory scheme.
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Georgia Tech: GT will continue working on machine learning technologies, now with real live feed.

We will also start working on collaborative applications. We believe that collaborative applications
may also benefit from machine learning and cloning technologies in order to improve performance.

Year 3: In this final year we will address optimizations and further refinements of techniques developed in
the previous years. We will concentrate on collaborative applications and how to integrate and leverage
machine learning technologies.

The PIs teaches several senior/graduate level courses each year related to their research: Operating
Systems Concepts, Modeling and Simulation, Advanced Concepts in Parallel and Distributed Simulation,
Performance Evaluation of Parallel and Distributed systems, Human Computer Interaction and several
courses in robot and multirobot systems.

In all of these courses, students are required to develop principled evaluations of their hypotheses through
experimentation. In simulation, human interaction and robotic courses students will gain background knowl-
edge and skills for the on-going research of the PI’s simulation laboratories. The best students will be
recruited to participate in the PIs laboratories.

7 Impact and Relevance

• Impact on science and industry: The proposed research can be applied to any domain where
decision makers must make informed decisions in time constrained situations. Example applications
include air traffic control, battle-management, simulation-based training and communication network
management.

An important element of our previous work, including cloning and latency hiding (work that we are
continuing here), is that it has been applied to real-world problems. We collaborated with industry
and the government using their real world data. The driving applications for this work included an
air traffic simulator called the Detailed Policy Assessment Tool (DPAT), a military large-scale battle-
management system called the THAAD Integrated System Effectiveness Simulation (TISES), and an
image sensing application called the Synthetic Scene Generation Model (SSGM).

DPAT is an air traffic control application that computes congestion related delays and through-puts in
the air traffic control system, TISES is a high-fidelity simulation that models all activities performed
by a collection of THAAD missile batteries during an engagement scenario, and SSGM is used by
Ballistic Missile Defense Organization researchers to produce phenomenologically correct images for
testing missile and satellite sensor systems. Details of our work in these domains are described in
(Carothers et al. 1998), (Hybinette and Fujimoto 2002) and (Hybinette and Fujimoto 2001).

It is critical that realistic benchmarks be used in the evaluation of simulation performance. For example
in previous work we used PCS, a realistic benchmark that simulates personal communication services
networks. A driving goal of our research is to assist users of the the ground transportation network,
economic markets and sensor nets, we have already forged collaboration with IQStat which will provide
traffic live feeds.

• Impact on education and under-represented groups: Three full-time graduate students will
be funded at the University of Georgia. We will involve undergraduates as well. The University of
Georgia attracts minority and women students to the Department of Computer science by issuing a
program called “Institute Fellowships”. The PI worked with a graduate female Africa-America student
from this program on a project involving cloned simulations, which involved publication of conference
paper. The proposed activity will engage both undergraduate and graduate students in research both
in computer science and perceptual psychology and include participants from under-represented groups
(two of the PIs are female, students currently involved include African-American, Asian and female
students). Currently, a bright undergraduate student is working on merging.

An important component of this course is learning through experimentation with multi-threaded pro-
grams on multi-processor machines. The PI taught an undergraduate/graduate course in Parallel and
Distributed Simulation Systems for the first time in the Spring of 2003. In this course students gain
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background knowledge and skills for the on-going research in the PIs simulation laboratory. Due to the
popularity of the first course taught over 40 students signed up for the PIs next course on simulation.

The research will also mesh with the educational mission at both the University of Georgia and Georgia
Institute of Technology.

• Outreach on infrastructure: We will extend the impact of our work in three ways: publications in
the popular press and scientific journals, educational exhibits on the web and through open distribution
of the software developed under this grant.

Our simulator GTW, that was developed while the PI was Ph.D. student at Georgia Tech has been
distributed to nearly 50 institutions. We will exploit these previous contacts in order to further
disseminate our work.

8 Prior Research Accomplishments

• Query-Based Visualization of Executing Distributed Computations NSF Award 9619831, 7-1-97 to
6-30-01, $270,053 (Co-PI with G.-C. Roman).

• CAREER: An Infrastructure in Support of Configurable, Consistent, Interactive Computational Steer-
ing, NSF Award 9996082, 9/1/98 to 4/30/2003, $201,617 (Single-PI).

• Instrumentation Grant for Research in Parallel and Distributed Computing NSF Award 9986032,
3/15/2000 to 2/28/2003, $76,303 (Co-PI with D. Lowenthal)

• Collaborative Research: Program Visualization: Using Perceptual and Cognitive Concepts to Quantify
Quality, Support Instruction, and Improve Interactions NSF Award 0308063, 6/15/2003 to 4/30/2006,
$303,606 Collaborator: Beth Davis, Georgia Tech.

The first of these NSF-funded projects addresses Exploratory Visualization, a novel exploratory approach
to program understanding of large, long-running distributed computations. Products of the research include a
tool for the monitoring and visualization of distributed computations, the development of a suite of algorithms
for the collection of consistent snapshots in distributed computations, and the design and implementation
of visualization and user interface techniques to support the user in achieving understanding.

The second project, funded by the NSF CAREER award, addresses the development of algorithms and
tools for interactive steering. Interactive steering permits users to monitor a program’s execution and adjust
application parameters and resource allocation in an online fashion. Steering tools must address issues
related to the consistency, lag, scalability, and induced perturbation of monitoring, display, and interaction
components. This research focuses on the design and development of infrastructure for a steering environment
that permits users to specify the configuration to provide the desired balance among consistency, lag, and
perturbation. This project includes the development of modular algorithms for the collection of snapshots
with varying degrees of consistency, and algorithms that permit the consistent application of changes to the
executing program, while minimizing resulting lag and perturbation. Instrumentation provided through the
third grant has permitted the evaluation of performance and usability in a wider variety of configurations.

The fourth project, which is early in its implementation, seeks to evaluate perceptual, attentional, and
cognitive aspects of program visualization and to study the effects of these factors on the extent to which
program visualizations achieve their goals of communicating information about a program’s state and be-
havior.

Most of Professor Balch’s previous research has focused on behavior-based multi-robot systems. He has
investigated communication in multi-robot systems (Balch and Arkin 1995), formation control (Balch and
Hybinette 2000), and behavioral diversity in multi-robot systems (Balch 2000). Of relevance to this proposal,
Balch developed and deployed a multi-robot simulation system called TeamBots (see www.teambots.org for
more information).

Recently Balch has begun a research program focused on the problem of visual tracking of multiple
interacting targets (e.g. ants) using behavior models that is funded by NSF ITR award 0219850. This work
has resulted in 5 publications at significant AI and computer vision conferences, and two submissions for
journal publication.

15



9 Roles and Coordination and Management Plan

9.1 Roles

Proposed funding will support two faculty (two months for the PI and one month for Co-PI per year) and
three Ph.D. students at the University of Georgia, and one faculty (one month per year) and one Ph.D.
student at Georgia Tech.

Professor Maria Hybinette (PI) at the University of Georgia will lead the project. She is also
primarily responsible for research issues concerning simulation. Hybinette is the creator of the idea of
simulation cloning and one of the creators of the influential discrete event simulation kernel GTW. We plan
to leverage simulation cloning in this work.

Professor Eileen Kraemer (Co-PI) at the University of Georgia is primarily responsible for human
factors research in the proposed work. Professor Kraemer’s research focuses on interactive visualization of
large, scientific programs. Professor Kraemer also investigates how such programs can be “steered” while
they are running.

Professor Tucker Balch (Co-PI) at Georgia Tech is responsible for applying machine learning tech-
niques to the problem of adaptive simulations. Professor Balch’s Ph.D. thesis work included the creation of
a large scale multi-robot simulation system. He also has a great deal of experience in multi-agent learning.

Research Scientist TBD at Georgia Tech will support the project as a programmer in the first two
years.

9.2 Management and Coordination

The primary driving force in out management plan is the shared goal of creating two “always on” simulation
applications. Each researcher has a vested research interest in creating the simulations. Overall, the lead,
Professor Hybinette, will direct the creation of the simulation. Integration with user interfaces and learning
techniques will be enabled through specification of APIs between the various components.

The University of Georgia and Georgia Tech are approximately 70 miles apart. Our plan is to hold
monthly meetings at which all PIs and students attend. We will alternate these meetings between UGA and
Georgia Tech. It is our hope that these campus visits will also facilitate additional collaborations between
Georgia Tech and UGA. Cost of the monthly meetings will be covered within the travel budgets for each
university.

1



10 Biographies

Prof. Maria Hybinette, PI

Maria Hybinette is an assistant professor in the Computer Science Department at the University of Georgia.
Her research area is in the general area of system, that centers on large-scale, high performance, discrete
event simulation on parallel shared-memory multiprocessors. A novel contribution of her work is the idea
of cloning ongoing simulations. This enable running simulations to be split into multiple, parallel
simulations at a decision point. The work has been implemented and applied to a real large-scale simulation
of the air traffic network.

Professional preparation

Emory University Mathematics and Computer Science B.S. 1991
Georgia Institute of Technology Computer Science M.S. 1994
Georgia Institute of Technology Computer Science Ph.D. 2000

Appointments

Assistant Professor The University of Georgia 2002-
Research Scientist II Georgia Institute of Technology 1998-2001
Staff Simulation and Modeling Engineer The MITRE Corporation 1997
Research Scientist I Georgia Tech Research Institute (GTRI) 1995-1996

Publications most related to proposed research

• Cloning Parallel Simulations, Maria Hybinette and Richard M. Fujimoto, ACM Transactions on
Modeling and Computer Simulation (TOMACS), October 2001 (Volume 11, Number 4)

• Latency Hiding with Optimistic Computations, Maria Hybinette and Richard M. Fujimoto,
Journal of Parallel and Distributed Computing, March 2002 (Volume 62, Number 3)

• Computing Global Virtual Time in Shared-Memory Multiprocessors, Richard M. Fujimoto
and Maria Hybinette, ACM Transactions on Modeling and Computer Simulation, October 1997

• Just-In-Time Cloning Maria Hybinette, 18th Workshop on Parallel and Distributed Simulation
(PADS-2004) (to appear) Kufstein, Austria, May 2004.

• Scalability of Parallel Simulation Cloning Maria Hybinette and Richard M. Fujimoto, In Pro-
ceedings of the IEEE 35th Annual Simulation Symposium, San Diego, CA., April 2002

• GTW: A Time Warp System for Shared Memory Multiprocessors, Samir Das, Richard
M. Fujimoto, Kiran Panesar, Don Allison and Maria Hybinette, In Proceedings of the 1994 Winter
Simulation Conference, Orlando, Florida, December 1994

Synergistic activities

Professor Hybinette has participated on the organization committee for RoboCup Junior 2001. She has served
as a reviewer for journals such as JPDC, TOMACS, and the International Journal of Formal Methods, and
several conferences.
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Collaborators and Other Affiliations

Collaborators

Tucker Balch (Georgia Tech), Frank Dellaert (Georgia Tech), Richard Fujimoto (Georgia Tech), John Miller
(UGA), Eileen Kraemer (UGA), George Riley (Georgia Tech, ECE), Karsten Schwan (Georgia Tech), Fred
Wieland (MITRE Corporation).

Graduate Advisors

Richard Fujimoto (Georgia Tech), Karsten Schwan (Georgia Tech).

Advising Students

MS in progress: Abhishek Agarwal, Abhishek Chugh MS completed: 2003 - Vinay Sachdev. PhD in
progress: Yin Xiong. I also advice 5 undergraduate students regarding their course work and career goals.

Graduate Committee Member

David Miller (MS 2001), Arumugaraja Selvaraj (MS 2002), Nan Li and Chetna Warade (MS 2003)
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11 Facilities and Equipment

Prof. Hybinette’s laboratory, the Re-Active Simulation lab, houses a 5 node Myrinet-2000 cluster. Four
nodes in the clusters are 4 Dell Power Edge 6450 Pentium III Xeon, the fifth node is a Dell PowerEdge
2550, which serves as a front end machine. The cluster is also connected via Fast Ethernet. The laboratory
also contains a Dell Precision 220 MiniTower Pentium III, and two Dell Precision 620 MiniTowers which
are dedicated for student research. The laboratory also include two printers, a HP laserjet and a HP color
laserjet printer.

Prof. Kraemer’s laboratory includes a 1 Gdb Network with the following computing equipment:
• 1 Cluster of Eight quad Pentium Xeon 500 MHz processors
• 1 Dell Server
• 4 VA Research linux workstations
• 10 Dell Intel Pentium IV computers
• 1 Silicon Graphics Octane
• 2 Hewlett Packard 4000N Laserjet Printer
• 1 Canon color laser printer
• 1 Virtual Research V6 VR Helmet with Polhemus IsoTrac II
• 1 Liberty 6-degree-of-freedom tracker with 8 receivers also an eye tracker, data gloves, and controllers
The Computer Science Department operates three TCP/IP networks of UNIX machines and two IPX

Novell networks in a configuration which is undergoing continual expansion. Utilizing standard software
components, computers from several vendors can be linked into a powerful computing resource that includes
advanced networking services and high quality programming environments.

The backbone of the Department’s UNIX network consists of several SUN Microsystems servers, including
several multiprocessors. Connected via Ethernet/Fast Ethernet to these servers are over 80 UNIX systems
(primarily SUN Ultra’s). For output, the networks connect several laser printers, color printers, line printers
and pen plotters. For specialized input, the networks connect a Hewlett-Packard scanner, a Sony video
camera and Data Translation image capture board, and 8 SUN video camera/image board systems. The
Novell networks are served by high-end Personal Computers (PCs) and connect over 80 Pentium PCs.

The Computer Science Department currently houses three parallel machines:
• Intel i860 Hypercube with 8 processors
• MasPar 2202 SIMD system with 2048 processors
• Big Red Machine (a high-speed cluster of PCs)
This equipment enables the faculty and graduate students to conduct research in advanced areas of

Computer Science.
Outside the Department, University Computing and Network Services (UCNS) supports mainframe com-

puters, research machines and computing clusters for general campus-wide use by students and faculty. This
include a SGI rack-mount Origin 2000 with 24 X 300 MHz MIPS R12000 processors with 4MB cache memory
and 8 GB of system memory, two IBM SP2 systems, both with nodes containing dual 375 MHz processors.
The first system (Frame 1) is made up of 16 nodes connected by high-speed switch. Each node has 512 MB
memory. The other system (Frame 2), has eight nodes, each with 1 GB memory.

Prof. Hybinette laboratory and the Computer Science Department facilities is currently run by the
computer support staff presently at the Computer Science Department. The staff presently consist of three
full time Computer Services Specialists. Their duties include support for instructional computing as well as
for research.
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