
Merging Parallel Simulation Programs

Abhishek Agarwal and Maria Hybinette

Computer Science Department
University of Georgia

Athens, GA 30602-7404, USA

maria@cs.uga.edu

Abstract

In earlier work cloning is proposed as a means for ef-
ficiently splitting a running simulation midway through its
execution into multiple parallel simulations. In simulation
cloning, clones usually are able to share computations that
occur early in the simulation, but as their states diverge in-
dividual LPs are replicated as necessary so that their com-
putations proceed independently. However, if, over time the
state of the clones (or their constituent LPs) converges there
is, as of yet, no means for recombining them. In this case
some efficiency is lost because they will execute identical
events. This idea is the reverse of cloning, as we merge logi-
cal processes that have been previously cloned and we show
that this can further increase efficiency because the new un-
cloned LPs will complete computations that would other-
wise be duplicated. We discuss our implementation of merg-
ing, and illustrate its effectiveness in several example simu-
lation scenarios.

1. Introduction

In this work we introduce simulation merging as the con-
verse of cloning and we show that for efficient parallel sim-
ulations merging is as important cloning. To put merging in
context, we must first briefly review simulation cloning.

In earlier work we introduced simulation cloning as a
means of gaining efficiency in the execution of parallel sim-
ulations. Simulations are cloned at decision points. As sim-
ulation time progresses, the decision points are analogous to
forks in the time-line where the state of the executing sim-
ulations begins to diverge. Cloning is efficient because all
simulations after a fork benefit from shared computations
made before the fork. In fact, because our cloning scheme
is incremental, clones continue to benefit from shared com-
putations after a decision point, depending on how quickly
the change in state propagates among the constituent LPs.

We refer to a simulation clone as fully diverged when
all of its LPs have been cloned. Even though computations
were saved before diverging, after diverging the continuing
simulation is as expensive as a separate stand-alone simu-
lation. However, as simulations continue to run, it is pos-
sible, perhaps likely, that the state of separate clones that
were once distinct may converge. This is possible, for in-
stance, in simulations of stable systems that tend to con-
verge to an equilibrium, or of cyclic systems that “reset”
each day (e.g. the air traffic network).

It is natural to wonder, if once clones have converged
to similar states, might they be recombined or merged? In
other words, can forked time lines be recombined? In this
way a simulation could benefit again from shared computa-
tions in the same way that it did before the fork.

Consider that a single simulation clone may comprise
hundreds or thousands of LPs distributed over dozens of
processors. At first it would seem that merging simulations
is a bit like putting the proverbial genie back in the bottle.
How could we efficiently evaluate the state of such a vast
process, then compress it back together with its sibling? In
fact, the answer is simple, flexible and dynamic. Our ap-
proach is to recombine simulations gradually, in the same
way that they are cloned in the first place: one LP at a time.

Specifically, LPs occasionally compare their state with
the state of their peers. If the states are identical (or “close
enough”) the LPs recombine. This enables a clone to be
fully diverged or fully re-converged with another, or any-
where between these two extremes.

2. Problem statement

In order to provide context for the problem, we must first
review our approach to simulation cloning in more details.
After that, we describe the need for and challenge of simu-
lation merging.

For cloning and merging we assume that simulations
consist of multiple logical processes (LPs) that communi-

cate exclusively by time stamped messages. Conceptually,
one may consider that the simulation is composed of vir-
tual logical processes, physical logical processes, and mes-
sages. The relationship between physical and virtual LPs
is similar to that between physical and logical (virtual) ad-
dress space in modern virtual memory systems. The cloning
software maps the simulation programmer’s virtual logical
processes and messages to their corresponding “real” phys-
ical logical processes and messages. We introduced this ap-
proach in (Hybinette and Fujimoto 2001). Virtual LPs and
messages do not have a physical realization. Instead, each
virtual LP maps to one physical LP that has a physical re-
alization in the parallel simulation system. Similarly, each
virtual message maps to a single physical message.

Computations common between two or more clones are
completed by a physical LP and shared by the virtual LPs in
the clones that are mapped to the physical LP. Similarly, vir-
tual messages among different clones are mapped to a sin-
gle physical message to avoid duplication. Sharing of com-
mon computations may proceed until the state of one of the
virtual LPs diverges from the others. At this point the LP
must be replicated and it becomes a physical LP.

If replication is “one way” only, all cloned simulations
will eventually end up in a fully replicated state. Once in
this state, efficiency from shared computations is no longer
feasible. However, it may be the case that cloned simula-
tions converge back to similar or identical states. It may be
possible to reclaim efficiency by merging (invert cloning)
simulations back together.

Our problem is twofold:

1. How can we identify clones that may be merged
safely? and

2. How can we accomplish the merging?

Our approach is to consider merging at the LP level –
in much the same way that cloning is accomplished at the
LP level. Accordingly a clone, composed of many LPs, is
merged with another one LP at a time.

As an example, consider an air traffic simulation. Sup-
pose that cloning was being used to evaluate whether to re-
strict traffic at the Sacramento airport (which is represented
as an LP in our simulation). Later, the restriction is lifted.
After the restriction is lifted, flights may gradually return
to a normal pattern, and be similar to the original simula-
tion without a restriction. In this case, during the period of
the restriction, the states of simulated airports (LPs) near the
Sacramento airport may diverge. However, after the restric-
tion is lifted they may gradually converge to the state of a
simulation without a restriction.

A number of sub-problems arise as we consider how
merging should be implemented. For example, there are sit-
uations in which unexpected thrashing may occur. Suppose
we have fully replicated the air traffic simulation and the

cloned simulations are now beginning to converge. Specif-
ically, suppose that the Sacramento airport can now be
merged and the merge is performed. After the merge, the
Sacramento airport can accept arrivals of aircraft from air-
ports that are still diverged, which would lead to an imme-
diate re-cloning of the LP. However if that aircraft arrival
did not cause the airport to diverge, or differ, it becomes
an immediate candidate for merging again. We can quickly
wind up in a merge/clone cycle wasting enormous amounts
of CPU effort.

Another consideration is when or how frequently we
should check for re-convergence. One solution is to con-
sider merging a cloned logical process at any time that it
receives a message, this has the benefit that after a merge,
LPs will avoid being cloned again as in our previous exam-
ple. However, this may result in too much overhead. A more
practical approach is to check en masse at specific check
point times. The frequency of checks could be specified by
the simulation application designer.

To reduce the cost of full LP state comparisons we envi-
sion the merging system to use heuristics or statistical meth-
ods that gauge the most likely elements to be different, and
to compare those elements first. In our initial implementa-
tion however we assume that LPs have a limited amount of
state to compare. This is a reasonable assumption for op-
timistic simulations; otherwise system memory would be
quickly exhausted by the simulation’s state saving features.

The several problems we must address then, are:

• How and when can we detect that logical processes re-
convergence?

• How can we avoid merge clone thrashing?

• How frequently should we test for merging?

• How can we implement merging so that the resulting
simulation outcome is correct?

We address these questions in the sections that follow.
Our earlier work showed that cloning can provide a signifi-
cant application performance advantage for a wide class of
simulation executions. In this work our initial results indi-
cate that clone merging can similarly provide improved per-
formance.

3. Implementation

Merging is implemented together with cloning in a lay-
ered fashion with the operating system at the bottom, the
simulation executive in the middle, and the simulation ap-
plication at the top. The code that implements merging and
cloning is layered between the simulation application and
the simulation executive. This approach allows cloning and
merging to run on top of various underlying simulation ex-
ecutives. From the point of view of the executive cloning

and merging software is simply part of the simulation ap-
plication. Cloning is independent of the synchronization
mechanism (optimistic or conservative), however our im-
plementation is using an optimistic simulation kernel.

An efficient implementation of merging requires us to
pay careful attention to two issues: comparisons and thrash-
ing. Merging of course, requires state comparisons, but state
comparison is expensive, so our implementation must con-
sider how to minimize them. Additionally, we must avoid
merge/clone thrashing cycles, where an LP is merged and
then immediately re-cloned due to receiving a message from
an LP that has not yet been merged. We address these is-
sues at the application level and within the cloning/merging
library.

We observe that it is difficult to estimate how long it
might take for cloned LPs to converge without knowledge
of the application. Accordingly, in order to reduce the num-
ber of comparisons, we rely on the application program-
mer to provide a recommendation for how frequently LPs
should be checked to see if they have converged. This infor-
mation is provided by the application programmer using an
API given later in this section.

Thrashing occurs when a cloned LP is merged then
quickly re-cloned. This happens when the cloned LP re-
ceives a message from another LP that is still cloned, even
though the sender’s LP state may not have diverged from
it’s corresponding cloned physical logical process. Thrash-
ing may be further aggravated when merging runs on an
optimistic simulation engine. Our solution to the first part
of the problem is to delay replication (cloning) until it can
be determined that the sender’s virtual logical processes are
indeed diverged. Observe that identical sender virtual log-
ical processes send identical messages. Thus one can rely
on message checking to detect situations where replica-
tion is necessary. We addressed this issue in previous work
in which we introduced just-in-time cloning. Just-in-time
cloning delays replication of cloned logical processes until
it is absolutely necessary, thus avoiding unnecessary repli-
cation. Merging uses Just-in-time cloning to avoid unneces-
sary re-cloning.

When merging is implemented on an optimistic exec-
utive we may find situations where LPs are merged, but
then the merging event is rolled back. Clearly, this behavior
could contribute to merge/clone/merge thrashing. We ad-
dress the problem by scheduling merging events conserva-
tively at physical logical processes at global virtual time.

Now we introduce the API for merging that is provided
to the simulation application programmer. The API also in-
cludes calls to support cloning which are described in CI-
TATION. There are three merging functions available. We
list the function names below, then describe them in detail
later. The functions are prefixed with the letters CM to indi-
cate that they are functions from the clone merge library:

CM_Enable(check-frequency);
CM_Disable();
CM_RegisterFunction(mergefunc);

CM Enable() and CM Disable enable and dis-
able merging. CloneMerge Enable() turns on
a timer (in simulated time) in the simulation execu-
tive, and each time the timer expires, a clone merge
check performed. When the simulation is completely
merged CloneMerge Disable is called automati-
cally. The check-frequency parameter defines how
regularly the merging library checks for merging af-
ter the simulation is cloned.
CM RegisterFunction(mergefunc) reg-

isters a user defined function defined by its parameter.
This function is provided by the application program-
mer to compare two LPs so that it can be determined
if they are ready for merging. mergefunc returns ei-
ther True or False depending on whether the LPs should
be merged or not. We require this function from the user be-
cause it is possible that the state of two LPs may be bit-wise
different, but still equivalent. The kernel cannot re-
solve these ambiguities without help from the application
level. Also note that since the user defines the func-
tion that determines the similarity between the states,
this function may also relax the constraint on “equiva-
lence”, which consequently can increase the efficiency of
merging.

The merging library uses the merge time[LP][clone]
data structure to store the time to make a comparison to
test for merging for each physical logical process. The ma-
trix is indexed by logical process and clone and set
by the merge library. It is initialized by the time given
by the parameter check-frequency in CM Enable(
check-frequency) and is reset every time the timer
expires. In general the comparison time of clones of a par-
ticular logical process should be set to the same time in
order to synchronize the merging event. Observe that differ-
ent logical process may schedule merging asynchronously,
especially if they do not communicate without any im-
pact on performance.

The merging library also uses two functions internally
(transparent to the simulation application):

CM_ScheduleMergeEvent();
CM_Merge(parent_lp, child_lp);

CM ScheduleMergeEvent()) is scheduled by a
logical process on itself by the merging library when the
timer for state checking expires. This is done by sending a
blocking message to itself. In general, parent and descen-
dant virtual logical processes should schedule comparisons
simultaneously to that their states are synchronized. In or-
der to prevent indefinite blocking, priority is given to the
parent process.

Single Simulation Diffusion Fully Replicated Condensation Single Simulation

Single Simulation Diffusion Fully Replicated

No Merging

Merging

Figure 1. Sequence of Events in Simulation
Cloning and Simulation Cloning with Merg-
ing: Top: A simulation that can be merged
benefits from sharing computations after the
simulation converges and merges into one
single simulation. The LPs are incrementally
merged. Bottom: A simulation that can be
merged but that remains cloned cannot ben-
efit from shared computations.

If two LPs are equivalent they are merged by
CM Merge(parent lp, child lp), This func-
tion changes the mapping of the virtual logical pro-
cesses so that their corresponding physical logical process
are now equivalent. The child’s old physical logical pro-
cess is set to inactive and returned to the pool of physical
logical processes.

4. Performance

In this section we experimentally evaluate the perfor-
mance of merging simulations. We observed in earlier ex-
periments with cloning that the performance depends sig-
nificantly on when in simulated time a simulation is cloned
(or in this, case merged). Performance is maximized when
cloning occurs late in a simulation because all computations
up to that point can be shared. Conversely, we expect that
merging will have the best impact on performance when
merging occurs early in the simulation.

A cloned simulation passes through three distinct phases:
(1) before cloning (2) diffusion (before the simulation is
fully replicated) and (3) fully replicated. When merging is
enabled, the simulation transitions back from fully repli-
cated to partly replicated and finally, fully re-converged.
Merging most likely most beneficial the earlier the merg-
ing point.

The performance of merging was evaluated using the
benchmark application P-Hold. P-Hold provides syn-
thetic workloads using a fixed message population (Fu-

jimoto 1990). Each LP is instantiated by an event. Upon
instantiation, the LP schedules a new event with a speci-
fied time-stamp increment and destination LP. In all our
experiments P-Hold is configured with 512 logical pro-
cesses and a message population of 4, 096. The sender is
configured to chose a recipient LPs from a uniform dis-
tribution. We conducted the experiments on an SGI Ori-
gin 2000 with 24 X 300 MHz MIPS R12000 processors
with 4MB cache memory and 8 GB of system main mem-
ory. All experiments used two processors.

Performance improvement due to merging over pure
cloning can be measured in terms of the progress of virtual
time as a function of real time, i.e. the independent variable
for this experiment is execution time and the metric is sim-
ulation progress (virtual time). Larger values indicate better
performance. For this experiment the simulation is run for a
total of 2, 000 simulated seconds. The simulation is cloned
when approximately 25% of the simulated time is complete
(i.e. at simulation time 500). We manipulated the simula-
tion application so that LPs could merge at a specific point
in simulated time. We ran three experiments, with three dif-
ferent merging times. Performance in these simulations is
illustrated in Figure 2.

The plot in Figure 2 shows three curves: the left-most

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400

Pr
og

re
ss

 (
V

ir
tu

al
 T

im
e)

Execution Time (seconds)

Merge at 600
Merge at 1200
Merge at 1600

Figure 2. Performance of P-Hold Larger num-
bers indicate better performance.

curve shows a run where merging occurs at simulated time
600, the middle curve shows a run where merging occurs at
simulated time 1, 200 and the right-most curve merging oc-
curs at simulated time 1, 600.

We observe that performance degrades upon instantia-
tion of new clones. This is evident by a more shallow slope
of the curves at the cloning time. The simulations then con-
tinue with linear progress after simulated time 500. All three

curves show similar performance until simulated time 600,
when the left-most curve accelerates. This is a result of
merging starting at time 600 and completing at time 800.
The acceleration of simulated time for the middle curve is
noticeable at simulated time 1, 200 and the right most curve
at simulated time 1, 600.

In these experiments, in the best case, merging improves
performance by about 24% over a non-merged simulation
(which ran for 418 seconds, but is not shown in the plot).

In a second experiment, we investigate the impact of
merging on speedup in the performance on P-Hold. For
comparison, a pure cloning scheme (i.e. no merging), is
compared against merging. Performance is evaluated as
speedup of the run time of merging versus pure cloning.
Speedup is the total running time of pure cloning divided
by the running time of merging.

The independent variable in this experiment is the merg-
ing point. The plot of this experiment is shown in Figure 3.
The results indicate that merging outperforms pure cloning

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 200 400 600 800 1000 1200 1400 1600 1800

Sp
ee

du
p

Simulation Time (merging point)

Figure 3. Speedup of cloning with merging
over pure cloning with P-Hold Larger num-
bers indicate better performance.

for all merging points. As expected, merging is more ben-
eficial the earlier the merging point. The results show that
merging can achieve up to 2.5 speedup (when the merging
point is instantiated at the time of cloning). However, we
would expect speedup in this case to be capped at 2.0 be-
cause the comparison between two clones that run to com-
pletion and two clones that merge, then run as one. We be-
lieve that the speedup exceeds 2.0 due to additional over-
head incurred by cloned simulations.

The benefit of merging depends on the frequency of state
comparisons and the size of the state. It should be noted that
in our initial implementation there is an overhead associated

with merging that we measured in the worst case. Merging
overhead averages 9.4% of the application run time. The
worst case occurs when the application test for merging fails
frequently because the state is still diverged.

5. Related work

Simulation cloning has been shown to improve perfor-
mance of interactive applications such as simulations of the
ground transportation (Schulze et al. 1999; Schulze et al.
2000) and air-traffic control (Hybinette and Fujimoto 2001).
Cloning and extensions of cloning has been implemented
both in conservative (Chen et al. 2003; Schulze et al. 1999;
Schulze et al. 2000) and optimistic (Hybinette and Fujimoto
2001) simulation executives.

With respect to cloning in general, related work in inter-
active parallel simulation include (Franks et al. 1997) and
(Ferenci et al. 2002). The approach of (Franks et al. 1997)
allows for the testing of what-if scenarios provided they are
interjected before a deadline. Alternatives are examined se-
quentially using a rollback mechanism to erase exploration
of one path in order to begin exploration of another. (Fer-
enci et al. 2002) create a new simulation from a previous
base-line simulation by executing forward. They can deter-
mine if a computation can be reused by using a predicate
function that is tested on the baseline simulation, however
as in (Franks et al. 1997) only the testing of one alterna-
tive at a time is allowed. A drawback of this latter approach
is that one must manage the entire state-space of the base-
line simulation.

Cloning has been used to improve accuracy of simula-
tion results, i.e., to run multiple independent replications
then average their results at the end of the runs. For exam-
ple, in (Glynn and Heidelberger 1991) research focuses on
how to achieve statistical efficiency of replications spread
on different machines. In (Vakili 1992) replications are syn-
chronized via a shared clock. In this way the same event oc-
curs at the same time at all replicas.

Cloning is also used in sequential simulations to prop-
agate faults in digital circuits (Lentz et al. 1999), model-
ing of flexible manufacturing systems (Davis 1998) or to
fork transactions in simulation languages (Henriksen 1997).
Sequential simulation languages typically clone dummies
(“shadows”) to do time-based waiting (Schriber and Brun-
ner 1997).

Our approach that avoids redundant computations is
similar to approaches (but in the reverse) that reduce the
cost of rollbacks: Lazy cancellation (Gafni 1988), Lazy re-
evaluation (West 1988) the aggressive no-risk (ANR) (Dick-
ens and Reynolds 1990) protocol or exploiting “lookback”
(Chen and Szymanski 2003) for example. Lazy cancellation
uses message comparisons and consequently delays sending
anti-messages until the event that originally scheduled them

is guaranteed not to be re-generated. Lazy re-evaluation is
a technique that avoids state recomputation when process
state is un-altered after a rollback. ANR delays delivering
messages until the event that created them is guaranteed not
to be rolled back (the sender event), this technique avoids
cascading rollbacks. Lookback is a techniques that identi-
fies situations where one can avoid rollback.

Our approach is applicable both to optimistic and conser-
vative protocols. It uses state and message comparison as in
the lazy cancellation and revaluation protocols. However,
the number of state comparisons is minimal and only oc-
curs infrequently. After merging, it uses just-in-time cloning
(Hybinette 2004), which uses message comparisons, that
was proposed earlier, to avoid cloning immediately after an
LP is merged, but it only compares messages if the LP is
again subject to replication.

6. Conclusion

Merging parallel simulations enables cloned simulations
to recapture computational time wasted by unnecessary
clones in a cloned or replicated simulation. The efficiency
of cloning is provided by shared computations before the
LPs are replicated. Merging enables simulations to recap-
ture the efficiency of shared computations after LPs merge.

We demonstrated the potential benefit of merging using
the parallel simulation benchmark, P-Hold. The impact of
merging on performance depends on when in the simula-
tion merging occurs. Results indicate that merging can im-
prove the performance of simulation cloning by a factor of
2.5 when merging occurs at an advantageous time. At best,
when a clone is immediately followed by a merge opera-
tion the overhead is insignificant. Over all run time is vir-
tually the same as that for a a single simulation run. These
initial performance results indicate that merging may signif-
icantly reduce the time required to compute multiple simu-
lations.

At present we have only evaluated the approach in a syn-
thetic application. In future work we will investigate per-
formance in more typical simulation tasks, such as ground
and air transportation (e.g. D-PAT (Wieland 1998)). Addi-
tionally, we assume that the cost of state comparison is low.
This may be reasonable since we only need to to compare
state at irregular, user defined intervals. In future work we
will examine the impact of varying the state size and also
also explore heuristic methods, such as hierarchical com-
parison of data specified by the simulation application de-
signer. The idea is that the designer could define an ordered
comparison of the LP state data in order to make the com-
parison run very efficiently (by efficiently, we mean able
to come to a negative decision quickly, since this will be
presumed to be the most common case). One adaptive ap-
proach we are considering is to record the locations within

the LP state which caused the most recent failures, and to
check those locations first.

A final point of interest for future work concerns the is-
sue of how similar simulations must be in order for them
to be considered “equivalent” and thus eligible for merg-
ing. It may be that relaxing the requirement that LP state
must be identical will provide even more speedup. It may
be that portions of the state have significant tolerance for
variation that will have no significant impact on the simu-
lation outcome. If so, a designer could specify such toler-
ances through an API.

References

CHEN, D., TURNER, S. J., GAN, B. P., CAI, W.,
WEI, J., AND JULKA, N. 2003. Alternative so-
lutions for distributed simulation cloning. Simula-
tion: Transactions of The Society for Modeling and
Simulation International 79, 299–315.

CHEN, G. AND SZYMANSKI, B. K. 2003. Four
types of lookback. In Proceedings of the seven-
teenth workshop on Parallel and distributed simula-
tion (2003), 3. IEEE Computer Society.

DAVIS, W. J. 1998. On-line simulation: Need and
evolving research requirements. In J. BANKS Ed.,
Handbook of simulation: Principles, methodology,
advances, applications, and practice (August 1998).
John Wiley & Sons. Co-published by Engineering
and Management Press.

DICKENS, P. AND REYNOLDS, P. 1990. SRADS
with Local Rollback. In Proceedings of the SCS Mul-
ticonference on Distributed Simulation (1990), 161–
164.

FERENCI, S. L., FUJIMOTO, R. M., AMMAR, M. H.,
AND PERUMALLA, K. 2002. Updateable simu-
lation of communication networks. In Proceedings of
the 16th Workshop on Parallel and Distributed Sim-
ulation (PADS-2002) (May 2002), 107–114.

FRANKS, S., GOMES, F., UNGER, B., AND CLEARY, J.
1997. State saving for interactive optimistic simu-
lation. In Proceedings of the 11th Workshop on Par-
allel and Distributed Simulation (PADS-97) (1997),
72–79.

FUJIMOTO, R. M. 1990. Performance of Time Warp
under synthetic workloads. In Proceedings of the
SCS Multiconference on Distributed Simulation, Vol-
ume 22 (January 1990), 23–28. SCS Simulation Se-
ries.

GAFNI, A. 1988. Rollback mechanisms for opti-
mistic distributed simulation systems. In SCS Mul-

ticonference on Distributed Simulation, Volume 19
(February 1988), 61–67.

GLYNN, P. W. AND HEIDELBERGER, P. 1991.
Analysis of parallel replicated simulations under a
completion time constraint. ACM Transactions on
Modeling and Computer Simulation (TOMACS) 1, 1,
3–23.

HENRIKSEN, J. O. 1997. An introduction to SLX.
In Proceedings of the 1997 Winter Simulation Con-
ference (December 1997), 559–566.

HYBINETTE, M. 2004. Just-in-time cloning. In Pro-
ceedings of the 18th Workshop on Parallel and
Distributed Simulation (PADS-2004) (2004), 45–51.
ACM Press.

HYBINETTE, M. AND FUJIMOTO, R. M. 2001.
Cloning parallel simulations. ACM Transac-
tions on Modeling and Computer Simulation
(TOMACS) 11, 4, 378–407.

LENTZ, K. P., MANOLAKOS, E. S., CZECK, E., AND

HELLER, J. 1999. Multiple experiment environ-
ments for testing. Journal of Electronic Testing: The-
ory and Applications 11, 3 (December), 247–262.

SCHRIBER, T. J. AND BRUNNER, D. T. 1997. In-
side discrete-event simulation software: How it
works and why it matters. In Proceedings of the 1997
Winter Simulation Conference (December 1997),
14–22.

SCHULZE, T., STRASSBURGER, S., AND KLEIN, U.
1999. On-line data processing in simulation mod-
els: New approaches and possibilities through hla. In
Proceedings of the 1999 Winter Simulation Confer-
ence (December 1999), 1602–1609.

SCHULZE, T., STRASSBURGER, S., AND KLEIN, U.
2000. Hla-federate reproduction procedures in
public transportation federations. In Proceedings of
the 2000 Summer Computer Simulation Conference
(July 2000).

VAKILI, P. 1992. Massively parallel and distributed
simulation of a class of discrete event systems: a dif-
ferent perspective. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 2, 3, 214–238.

WEST, D. 1988. Optimizing Time Warp: Lazy roll-
back and lazy re-evaluation. M.S. Thesis, University
of Calgary.

WIELAND, F. 1998. Parallel simulation for aviation
applications. In Proceedings of the IEEEWinter Sim-
ulation Conference (December 1998), 1191–1198.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

