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Abstract

This paper describes the design and performance of
IDES, a Java-based distributed simulation engine being de-
veloped at Sandia National Laboratories. The feasability
of using Java is demonstrated by achieving order of mag-
nitude speedup gains, on a model with three quarters of a
million simulated entities, on a “off-the-shelf” system of 56
PentiumPro processors.

1. Introduction

The Infrastructure for Distributed Enterprise Simulation
(IDES), is a distributed simulation engine under develop-
ment at the Sandia National Laboratories. As one of IDES’s
principle goals was portability and use in heterogeneous
computing environments, we have implemented IDES in
Java. This paper describes IDES’s organization, and reports
on overhead costs of executing simulations under IDES,
on a large-scale computing system built of clusters of Pen-
tiumPro processors. While overall processing rates are fully
in accordance with Java’s reputation for slowness, we find
that by increasing the number of processors (and so also
increasing the available memory size) we effectively in-
crease the size of model that can be simulated, and increase
the aggregate rate at which the simulation’s work is per-
formed. IDES is a general simulation framework, suitable
for simulating computer systems and communication net-
works. While these and the motivating IDES application
area are of interest, the principle contribution of this paper
is in demonstration of a distributed simulator built in Java,
run on a reasonably large configuration, and assessment of
the strengths and limitations of distributed simulation using
Java. Such an assessment is quite timely, as the general sys-
tems area of distributed simulation is of growing practical
importance, and Java is the most visible language today for
doing distributed programming.

IDES targets a variety of potential simulation problems;

its general structure admits to discrete-event simulations
that can be described in terms of entities that communi-
cate with each other through message-passing. An entity
is “woken up” for processing as a result of either having
scheduled itself to wake up at that time, or having received
a message. When an entity “wakes up” it performs some
computation, possibly generating one or more messages to
itself or other entities as a result—and schedules (as a func-
tion of its present state) the time at which it will next wake
up.

While sparse, this paradigm is general enough to sup-
port construction of richer computational models, such as
process orientation. Even without that addition it is rich
enough to model many computer and communication sys-
tems. However, one class of problems of particular interest
to Sandia has strongly influenced our approach to synchro-
nization. In that class, the calculation an entity performs to
determine its next wakeup time is the numerical integration
of a differential equation. An example of such in communi-
cations modeling is when one uses a Fluid Stochastic Petri
Net (FSPN) to model the network [6]. Differential models
describe fluid flow; in an IDES implementation of FSPN
one might integrate to determine when, in the absence of
further changes in the inflow behavior, the fluid level at a
fluid place reaches a critical threshold; that time becomes
its next wakeup time. It may happen that after scheduling
its next wakeup time at w, an entity receives a message to
be processed at time s < w, and as a result reschedules its
next wakeup time at s. The fact that such a rescheduling
depends on the solution of a differential equation implies
that it is very difficult in general to predict a lower bound
on when next an entity will wake up. This means that such
models have little “lookahead”, a facet that affects synchro-
nization. Section 2 discusses this in more detail.

The emergence of Java as the lingua franca of network
computing, plus the existing and growing importance of
simulation in all facets of complex system design has led
a number of groups to look at issues of Java-based sim-
ulation. simJava, developed at the University of Edin-
burgh was among the first publically released simulators
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written in Java. It provides a process-oriented modeling
environment, complete with animation classes. However,
simJava is unsuitable for our purposes as it neither sup-
ports distributed simulation, and its construction makes it
performance-challenged. However, Page, Moose and Grif-
fin have added functional distribution to simJava using
Java’s Remote Method Invocation (RMI) methods [10], al-
though no performance or capability assessments are of-
fered. Java-based distributed simulation using conservative
synchronization has been reported by Ferscha and Richter
in [2]. That project also explores the use of Java’s RMI fea-
tures in a simulation context. Capabilities in either problem
size or processing speed are not assessed. Java is sparking
interest in application to simulation in purely serial contexts
as well [7, 5].

2. Distributed Simulation

A distributed simulator like IDES is comprised of a col-
lection of processors, each of which is assigned a group of
entities to simulate. The problem of maintaining tempo-
ral fidelity between processors is a well studied problem in
the Parallel and Distributed Simulation (PADS) literature,
e.g. ([3, 8]). So-called “conservative” techniques work by
prohibiting a processor from doing any simulation work at
time w before the processor is certain that none of its enti-
ties will be affected by a message from an entity in another
processor, at a simulation time smaller than w. “Optimistic”
techniques use speculative computing, check-pointing state
to support rolling back to an earlier simulation time when a
message arrives in an entity’s past.

It has been well established that to get good performance
using conservative methods it is necessary for the simula-
tion model to provide good lookahead. In the context of
IDES-type models, lookahead means an ability to predict
a lower bound on the simulation time when next an entity
may wake up and send a message to another entity. But,
as we have already seen, when wakeup times are computed
by numerical solution of differential equations, lookahead
in general is very hard to find. For this reason we look to-
wards an optimistic method.

A bevy of optimistic synchronization protocols exist, all
complex and all challenging to program correctly and effi-
ciently. The models motivating IDES are characterized by
extremely large data states associated with some entities.
We are very concerned about memory consumption, since
the state-saving associated with optimistic processing, can,
if left uncontrolled, run amok. We have therefore adapted
a protocol that (with modifications we describe) provides a
great deal of control while eliminating anti-messages.

Breathing Time Buckets (BTB) is in a class of syn-
chronous protocols that engage in global synchronization
periodically. It revolves around the notion of an “event

horizon”, which we define as follows1. Supposing that en-
tity states are globally synchronized at time t, a processor
executes events (in the IDES context, wakes up entities)
in monotone non-decreasing time-stamp order. After pro-
cessing the nth event after the synchronization point, let
tn be the time of the smallest known future event on the
processor. Now as the processor executed events, it gener-
ated messages, some of which are destined for other pro-
cessors. We should note here that a message generated by
an event processed at time s has a send time of s. However,
the time at which the message affects the recipient, called
the receive time, may be larger. The gap between send-time
and receive-time reflects things like transmission time over
a communication channel, or the time lapse between when
the job enters service and when it leaves service. This gap
is pervasive and essential to achieving high performance in
parallel distributed simulation. Returning to the notion of
event horizon, we let rn be the least receive time among all
off-processor messages generated by the n events executed
since the last synchronization point. A processor’s local
event horizon (LEH) occurs at the earliest time rn such that
rn ≤ tn. The system’s global event horizon (GEH) is the
minimum processor LEH. Now, if processors last synchro-
nized at time t, and g(t) is the GEH following that, the inter-
val of simulation time [t, g(t)) has the useful property that
no inter-processor message whose send-time is in [t, g(t))
can also have a receive-time in [t, g(t)). Therefore, pro-
vided that at time t a processor already has all messages tar-
geted to its entities with receive times in [t, g(t)), all proces-
sors can correctly simulate forward from t to g(t) without
receiving messages from entities on other processors. The
problem is that at time t the value of g(t) is not known—no
processor knows when to stop! By its very definition, g(t)
must be computed. This is where optimism comes in. Con-
ceptually a processor may execute forward from time t until
it discovers its local event horizon. As it executes, it saves
state. Reaching its local event horizon, it then coordinates
with other processors to compute g(t), and then rolls back
to its state at time g(t). All off-processor messages gener-
ated by executing events in [t, g(t)) are known then to be
correct, and can be incorporated into the simulation’s state
for evaluation in future synchronization windows.

There are a number of papers concerning BTB and mod-
ifications to its implementation [15, 13, 14]. IDES has made
additional ones. First, the original notion of event horizon
(and all the literature describing it) is in terms of entity lo-
cal event horizons; from our perspective it is as though ev-
ery entity executes on its own processor. As a consequence,
IDES global event horizons are larger, so more simulation
work is accomplished per synchronization window. An-
other contributionmade by the IDES project was in describ-

1All the literature on BTB defines the event horizon more restrictively.
We comment on this later.



ing the “pre-emptive min-reduction” [9], yet another in not-
ing and studying when it makes sense to alter the BTB mes-
sage passing scheme. Rather than withhold all messages
at the sender until g(t) is known, and then distribute ones
with send-times less than g(t), one can send messages as
generated, and then have the receiver filter out ones with
send-times as large as g(t).

The problem of reducing state-saving costs is another
widely studied area in PADS (see the bibliography of [4]).
At present IDES uses so-called “copy saving”, which means
that prior to executing a wakeup at time t the variable por-
tion of an entity’s state is checkpointed in its entirety. In
the future IDES will use more sophisticated “incremental”
state-saving techniques. However, the modification we de-
scribe here for memory usage control should be adaptable
to any checkpointing scheme.

Optimism uses memory by saving information needed
to accomplish recovery. If after time t processors synchro-
nize at a time h(t) ≤ g(t), then the same properties hold as
before—no event executed in [t, h(t)) depends on the ex-
ecution of some event on some other processor which was
not known at time t. Under BTB, memory used to save state
before time h(t) can be made available for reuse once h(t)
is known. The reclaimed memory is used then to save state
in the next synchronization window.

Memory control is an important issue in optimistic sim-
ulation. The best known parallel simulators, GTW [1] and
SPEEDES [15] both control memory by initiating garbage
collection periodically; essentially a processor garbage col-
lects (also known as computing the global virtual time, or
GVT) after every n events processed, where n is a configu-
ration parameter. In our context it is likewise straightfor-
ward to use available memory to control the size of the
synchronization window, bringing the window to a close
when there is a threat of exhausting available space. We
accomplish this by having each processor track the number
of bytes of state memory it has saved. Prior to executing
an event, the amount of used memory is compared against
the threshold. When the threshold is exceeded, the proces-
sor offers its time-of-next-event to the window reduction,
just as though it were its own LEH. The time-stamp of-
fered is clearly no larger than the processor’s LEH, so that
the ultimate window edge computed, h(t), is no larger than
g(t). This scheme is similar in concept to the GTW and
SPEEDES memory control methods, as the BTB window
calculation is the moral equivalent of GVT. In the remain-
der of the paper we will speak of the end-of-window time,
h(t), with the understanding that it is the time computed at
which the processors re-synchronize.

One attraction of Java over C++ is its relatively sim-
ple and direct syntax for expressing exception handling.
We could in principle recover from exhausted memory by
letting Java throw an “out-of-memory” exception, and use

this to trigger the window calculation. While appealing in
concept, the approach has implementation and performance
problems. First, by the time Java exhausts memory, it is
very likely thrashing the swap disk (we confess to have dis-
covered this the usual way, empirically). We want to re-
claim the memory before we start shaking the disk. Second,
at the point Java realizes the memory is gone, we will need
to immediately reclaim some memory that is needed for the
end-of-window calculation, such as message buffers. So
while the proposed scheme requires identification of a suit-
able threshold, in practice it is much easier to implement
than an exception-based scheme.

3. Implementation Details

IDES differs from other BTB-based simulators both by be-
ing implemented in Java, and in the particulars of how it
manages to reconstruct the simulator state when h(t) is
known. As these details are pertinent to anyone who would
use Java to build a simulator or to anyone who would use
the BTB protocol to synchronize a distributed simulation,
we will sketch some of those details.

One of the attractions of Java is that threads are built
directly into the language. It is tempting to use threads
liberally in the simulation model itself, e.g., in a process-
oriented simulator map a process directly to a thread, but
in our experience threads should be used cautiously. There
is a much greater potential for synchronization errors and
race conditions using threads. However, threading is pre-
cisely what is needed to deal with asynchronous communi-
cation. IDES establishes a two-way socket connection be-
tween every pair of processors (and we note in passing that
Java makes socket creation and management blessedly sim-
ple). A processor throws a thread for each such socket to
listen for and deal with incoming messages. A processor
also throws a thread to deal with scheduling and executing
events. Thus, if there are P processors used in the system,
each processor throws P + 1 threads. Potential synchro-
nization problems (and hence mechanisms to protect from
those problems) are then limited to entities that are shared
between message handling code and simulation workload
code.

IDES does not buffer and “bundle” messages destined
for a common destination. This is a common enough per-
formance optimization used throughout high-performance
computing; we are interested in determining whether there
are any benefits in our context, but have not yet done so.

Another performance-sensitive area of our implementa-
tion proved to be loops over all entities on a processor, and
associative access to those entities. Java provides Vectors
and Hashtables, each with a rich assortment of methods for
using them. In our performance tuning we discovered that



these methods are quite expensive. Since our pool of enti-
ties is static, we could (and did) change loops over all enti-
ties to loop over a simple array of entities, rather than use
Java enumerators on Vectors.

Our techniques for reconstructing the simulator state at
the end of a window depend on IDES organizational details.
An entity is woken up when among all on-processor enti-
ties, its time-of-next-wakeup is least. At that point the entity
removes from its own message queue every message whose
receive-time is no larger than the wakeup time. Ordinarily
this is equivalent to saying that the receive-time is equal to
the wakeup time. However, we allow for the possibility that
a scheduled wakeup is un-interruptible—for instance, when
a non-preemptive server finishes servicing a job in service,
in which case there may be messages whose receive-times
are strictly less than the wakeup time. Messages are re-
moved from the entity’s message queue in increasing time-
stamp order, each one being processed individually. Any
new message that is generated as a result of this processing
is handed off to the processor’s Router. If the destination
entity of the new message is on the same processor as the
source, that message is immediately inserted into the desti-
nation’s message queue, possibly changing the destination’s
time-of-next-wakeup. If the destination is off-processor the
message is held by the Router, and will be transmitted later
if its send-time is smaller than the computed edge of the
synchronization window.

The number of entities managed on a processor can be
very large, indeed, distributed simulation only makes sense
when there is a great deal of simulation workload. We must
be careful then to use a data-structure for the wakeup-time
event list that “scales” as the number of entities grows. In
addition, the data structure we use must support efficient
identification and deletion of events, this to accommodate
canceling an entity’s wakeup time at w and rescheduling
for some time s < w. The last requirement is that the data-
structure efficiently support rollback and reconstruction.

Jeff Steinman, the inventor of BTB, has written about
data structures used in his tool [13, 14]. Without going
into details, we observe that our definition of the event hori-
zon is different than his—his BTB window is defined as
the least receive-time among all messages generated, ours
is defined as the least receive-time among all off-processor
messages. Our windows are necessarily larger than his, but
in return our rollback requirements are more complex. His
data structures are built around his notion of event horizon,
and do not suit ours. Furthermore, there is no evidence of
support for event cancellation.

As we will see, even with our expanded notion of win-
dow, the end-of-window synchronization costs are onerous
in a distributed system, and so we are willing to accept the
mildly more complex rollback requirements. To appreciate
these, consider the desired state of the simulator at window

edge h(t): for every entity there should be a wakeup event
that was scheduled at a time less than h(t), which will oc-
cur at a time at least as large as h(t). Similarly, each entity’s
message queue must contain all those and only those mes-
sages for which it is the destination, with send-times less
than h(t), and receive times at least as large as h(t). Fi-
nally, each entity’s state must reflect the effects of the last
event to affect it prior to time h(t).

The essential problem is that before the end-of-window
time is known, the processor may process wakeups with
time-stamps larger than h(t), consuming messages with
receive-times larger than h(t), pushing entity state past time
h(t). We consider message queues, entity state, and event-
list management separately.

For the message queues we borrow the trick used in good
Time Warp simulators to not actually delete a message once
consumed. Rather than have a queue from which mes-
sages are consumed once processed and into which mes-
sages (from co-resident entities) are inserted as generated,
we use a queue into which messages may be inserted, and
whose “next message” is pointed at in the interior of the
queue. The message queue is maintained in monotone
non-decreasing receive-time order. Once h(t) is known
we need to release “committed” messages—those we now
know contribute to the state of the simulator at h(t), and get
rid of messages generated after time h(t). It is easy to iden-
tify and eliminate the committed messages by scanning for-
ward through increasing receive times. We have to examine
each of the remaining messages individually to determine
whether to keep or discard it, as that decision is based on
the message’s send time, and the messages are ordered by
receive-time.

All that is needed to save entity state is a queue of state
vectors (one queue per entity), organized in monotone non-
decreasing time-stamp order. An entity is check-pointed at
time w, just prior to being woken up at time w. Its variable
state is copied into a state-vector, which is appended to the
end of the entity’s state-vector queue. Once h(t) is known
we need to restore the entity to the state it had at time h(t)
(excluding any modification that might have optimistically
been made at time h(t)). This is accomplished by searching
the queue for the state-vector whose checkpoint time w′ is
least among all those at least as large as h(t), and restoring
the entity’s variable state to the vector stored at that point.
It may be that no such state-vector is found, which means
that the entity is already in the correct state. Following state
restoration, all memory associated with saving entity state
may be reclaimed.

Finally we consider the most complex data structure, the
event-list. We could support rollback by leaving events be-
hind in the event-list as they are processed, just as we did
with the entity message queues. However, the event-list is
the central data structure in the simulator, and the cost of



accessing it tends to increase with the number of events in
the list. In our experience most events that are executed
are committed and so do not need restoration. Optimiz-
ing then to the common case, as events are processed they
are removed from the event list, but added to the end of
an auxiliary deque (queue where additions are made at the
end, removals at either end). We therefore have a means of
restoring to the event-list any events that were prematurely
executed. Once h(t) is known, we scan the deque from the
front to identify committed events—those that occurred at
times less than h(t). Space for committed events can be
reclaimed. The send time of each remaining event is com-
pared with h(t), if smaller the event is re-inserted into the
event queue, if as great as h(t) the event is discarded.

Restoration of speculatively processed events is only
one correction that must be made. A second correction is
needed due to the fact that as new events are generated, we
insert them into the event-list. Consequently, any event in-
serted by the processing of an event at time h(t) or larger
needs to be removed. To support this correction, every time
an event is inserted into the event-list (aside from the end-
of-window correction described above), an addition is made
to a deque of scheduled events. At the end of a window,
the deque gives a description of every event scheduled dur-
ing that window, in monotone increasing time-stamp order.
Once h(t) is known we simply scan the deque in decreas-
ing time-stamp order looking for events scheduled at times
as large as h(t). For each such one we use the event de-
scription from the deque to find and remove the event in the
event-list. Once a deque element scheduled before h(t) is
found, the remainder of the deque is discarded.

There is a final correction that must be made, one relating
to event cancellations. Suppose that an entity’s next wakeup
time is scheduled to occur at time w. Now suppose at some
time s the entity receives a message that causes its wakeup
time to be reduced to w′ < w. The first wakeup event must
be canceled, and the second one inserted. However, whether
or not that cancellation commits depends on whether s <
h(t). If we cancel an event, we must be prepared to restore it
if it turns out that the cancellation was speculative (e.g., s ≥
h(t)). Towards this end, when an event is canceled, we add
a description of the cancellation action to yet another deque,
this one ordered in increasing time-of-cancellation-action.
When h(t) is known it is easy to identify canceled events
that must be restored—those whose time-of-cancellation-
action are at least as large as h(t), a set determined easily
by scanning the cancellation deque from the back. Once
one encounters deque elements with times less than h(t) ,
the remainder of the deque can be discarded.

The requirements of a central event queue can be de-
termined from these operations we’ve described. Inser-
tions, deletions, and searches must all be handled efficiently.
There are a number of suitable data-structures, almost all of

them are complex. The simplest of the group is the Skiplist
[11], a randomized data structure that supports each opera-
tion in logarithmic time, with high probability. The IDES
central event list is a Skiplist, chosen largely because of its
simplicity. There remains a great deal of interest in identify-
ing “the best” event-list algorithm (e.g., see [12]), however,
the cost of event-list management pales against the compu-
tational overhead we expect for IDES applications, so our
only concern is that the algorithm used be efficient and scal-
able. The Skiplist satisfies that requirement nicely.

4. Performance Evaluation

Next we turn to an empirical study of IDES, on a net-
work of 14 PC clusters. Each cluster has 256Mb of mem-
ory shared among four PentiumPro processors running at
200MHz, each processor has 256K secondary cache. Seven
clusters are interconnected through an Ethernet fast switch,
the other seven through another, with a 200Mps connection
between those switches. Each cluster is running Linux and
JDK-1.1.3. Just-in-time compilation is not a part of this dis-
tribution.

The performance of a distributed simulation is always a
complex function of many factors including load imbalance,
communication volume, state-saving costs, and event gran-
ularity. Our goal is to assess the intrinsic overheads, while
avoiding as many of these complicating factors as we can.
In our study the workload driving the simulator is not repre-
sentative of the applications we anticipate for IDES, nor is it
representative of simulations of computer and communica-
tion systems. However, the facets this workload minimizes
are those whose effects we can reasonably gauge. State-
saving is minimal—yet we know that as the amount of state
saved grows, the per-event execution time will increase pro-
portionally. This increase would not be reflected in an op-
timal serial simulation, so we know that the relative perfor-
mance of the simulation will decrease proportionally. By
the same token, the computational granularity in our work-
load is minimal. As the amount of computational work per
event grows the execution time per event grows, but this
growth is reflected in an optimal simulation. As the execu-
tion granularity of an event grows, so too does the ratio of
work-to-overhead, and the relative performance of the dis-
tributed simulation grows. Since the necessary state-saving
and the computational grain are problem dependent, in this
study we minimize both so as to evaluate the fixed costs of
running the distributed simulation.

The workload we use is the PHOLD model (parallel
hold) which figures prominently in many analytic models
of parallel simulations. In the PHOLD model a fixed num-
ber of messages circulate through a network of entities. An
entity processes a message with time stamp w by gener-
ating a random increment δ and a random destination d,



then schedules the message to be received at d, at simu-
lation time w + δ. In our adaptation of PHOLD, δ is drawn
from an Erlang-5 distribution (selected to provide substan-
tial variance while avoiding a high frequency of very small
samples). The usual form of PHOLD chooses destination
entities uniformly at random. This would induce a large
volume of communication, more so than one typically ex-
pects, and so much that its cost would surely obscure other
factors. In our version we consider the entities to form a log-
ical ring. When an entity selects a destination, it chooses a
geometrically distributed offset, and with equi-likely proba-
bility adds, or subtracts that offset from its own ring position
to compute a destination entity. In the runs reported here
the mean of the geometric is 10, so that significant locality
is enjoyed in the communication pattern. The workload as-
sociated with processing a message is minimal in the sense
that there is no computational payload associated with it;
all of the work involves choosing the next destination, and
the time the message appears there. Message processing
typically consists of removing an event from the event list,
generating three random variables, generate a message and
enqueue it, scheduling a new event.

The workload is balanced perfectly, by assigning a con-
tiguous subchain of entities to each processor, each sub-
chain having the same length. The state per entity is min-
imal, consisting of a few double precision numbers, and a
few integers, just 72 bytes total.

By stripping down the model driver to the barest essen-
tials, we hope to be able to determine where the fixed over-
heads are in the IDES engine. We go about that task by first
looking at IDES run serially. If we disable state-saving, use
an ordinary Skiplist as the priority queue, eliminate thread-
switching, and eschew all end-of-window processing (be-
cause there are no windows!), then IDES on one processor
is a perfectly good optimized serial simulator. We can study
its performance to get a sense of how fast a Java-based sim-
ulator can run, to assess how large a model it can simulate,
and to use as a baseline against IDES with extra costs, run
on one processor.

The model size that can be simulated is a function of
available heap memory, which is a Java command-line ar-
gument. All of our experiments are conducted on machines
that have 64Mb memory per processor; in these experiments
we allocate 50Mb memory for the heap. Experimentation
established that largest model that could consistently be run
without memory faults by the serial simulator has approxi-
mately 30,000 entities. The largest model the IDES-on-one-
processor version can handle (that is, IDES with all state-
saving and window control overheads enabled) is slightly
smaller. This works out to be 1.67K bytes per entity. That
strikes us to be on the high side, but not completely insane,
as Java encodes a great deal of information in entities. Used
memory is the cost of that encoding. Then, as we will see,

once we introduce communication, the available memory
drops considerably, presumably large chunks are taken over
by communication entities.

The bottom line on serial performance is that when the
number of entities simulated ranges from 3K to 30K, the
rate at which messages are processed ranges from 1488
messages/second for 3K, to 1320 messages/second for 30K.
The decrease may be attributed to increasing event-list costs
as the size of the model increases; however, the event-list
costs clearly scale, degrading by only 10% while the prob-
lem size increases by an order of magnitude.

On the architecture used, had we encoded this example
in C, it would be reasonable to expect message processing
rates that are an order of magnitude faster, on models that
are an order of magnitude larger. For now, this is the price
paid for compile-once-run-anywhere portability. Java afi-
cionados promise great things for just-in-time compilation,
and we will certainly view a significant increase in speed
with favor.

When running IDES on one processor, we wished to
measure some of the overheads encountered at the end of
a window. We can force a window calculation through the
memory control mechanism described earlier. The ques-
tion then becomes, “how often?”. In order to keep the
state-saving cost per entity per unit simulation time con-
stant across runs, we set the memory control parameter to
trigger a window calculation after using memory equivalent
to state-saving one quarter of the entities. Over the same
range of entity counts from 3K to 30K as considered be-
fore, the message processing rates range from 1020 mes-
sages/second, to 920 messages/second, smaller than before
by roughly a third. Instrumentation establishes that of that
extra overhead, 45% is due to reconstruction of the event
queue, 20% to entity rollback and memory reclamation (al-
though the Java garbage collector is not explicitly called),
and 35% to the execution-time costs of state-saving and ma-
nipulating the auxiliary deques we’ve associated with the
event queue. The overhead due to end-of-window process-
ing is something we manipulate by our memory control.

We turn now to data from runs performed on a relatively
large-scale computation, on the architecture described at the
beginning of this Section. We are principally interested in
how capabilities grow, and how overheads grow, as the size
of the architecture grows. In our experiments we fix the
workload per processor by fixing the number of entities as-
signed to a processor, and then grow the problem and archi-
tecture together. The largest power-of-two number of en-
tities/processor we can reliably simulate without exhaust-
ing memory is 214 = 16, 384. Since some overheads are
amortized over larger workloads, we also consider 210 en-
tities/processor and 213 entities/processor. The first metric
we examine is the aggregate committed messages per sec-
ond. Figure 1 plots this metric as a function of architecture
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Figure 1. Committed messages processed
per second for various problem sizes.

size, on a set of pilot runs. Each data point is taken from
one moderately long run. Statistical variation that would be
smoothed out by formal statistical estimation of means is
evident.

The benefits of amortizing overhead over more entities
per processor is evident from the degree to which the 1K
entities/processor performance falls off at larger numbers
of processors. There seems to be little significant difference
between 8K and 16K entities per node. The performance
hit at 28 processors may be due to the fact that at that point,
for the first point in the data, all clusters are in use and
the full communication network is being used. After that
point, adding more processors induces communication only
between processors co-resident in a cluster. However, the
most important point to glean is this—we have scaled the
problem up to over three quarter of a million entities total
and are making effective use of the aggregate memory of
many many computers. The aggregate message processing
rate is an order of magnitude larger than that of an optimized
serial simulator. We have demonstrated that distributed sim-
ulation using Java is feasible.

However, the aggregate processing rate is clearly not in-
creasing linearly as the number of processors increases. We
are interested in understanding what overheads are growing.
Examination of the data clearly indicates (not surprisingly)
that the end-of-window barrier and minimum reduction are
responsible.

There are two ways in which we can reduce the domi-
nant overhead cost. First, the standard BTB technique is to
withhold messages until h(t) is known, and forward only
those with send times less than h(t). Every window there
are two global synchronizations—one to establish h(t), the
other to ensure that all messages are flushed. One attraction
of the pre-send method we’ve proposed is that the minimum

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 24 28 32 40 44

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

Processors

Distribution of Activity

Base
Reduction

Q Rollback
Other
Total

Figure 2. Breakdown of processing time.

reduction that establishes the window and the synchroniza-
tion to flush messages are one and the same. By pre-sending
messages we reduce the number of global synchronizations
by a factor of 2. Another technique is to loosen the mem-
ory constraint that drives a processor to synchronize be-
fore it reaches its local event horizon. Experiments not
presented here clearly demonstrate the performance advan-
tages of pre-sending messages, and loosening the memory
control.

Figure 2 illustrates the distribution of processing time
when such optimizations are employed, on the PHOLD
variation we’ve described, where each processor has 8K
entities. For each activity we plot the average time a node
spends in that activity, normalized by the total time an opti-
mized serial simulator spends on the same problem. We plot
times for three types of activity. The “Base” activity is the
work that the serial simulator does (and hence is constant
with respect to the normalization), the “Reduction” curve
plots the time spent in the barrier synchronization and mini-
mum reduction, “Q Rollback” is the time spent reconstruct-
ing the event queue at the end of a window, “Other” is all
the rest (e.g., state-saving). The curve label “Total” reflects
the addition of all four components.

We see that on problems using 8 or few processors, the
majority of the time is spent in the same activities as does
the optimized serial simulator. As the system size grows,
so too do the overheads, so that by 44 processors, “Other”,
“Base”, and “Reduction” are comparable. Relative to these
costs, event queue reconstruction costs are quite small.

Observe that the overall increase in processing power
over an optimized serial simulator can be deduced from
these graphs—if the normalized per processor execution
time is x using p processors, then the performance increase
over the optimized serial case is p/x. For example, using
44 processors we have an increase of 44/3.25 = 13.5.

Finally, we consider the impact of reducing the mem-



ory constraint. While this has the potential of reducing the
number of synchronizations by as much as a factor of four,
in this case it reduces the number of windows by something
less because the normal BTB mechanism for terminating
a window comes into play before the memory threshold
is crossed. On the runs considered here, when memory
is tightly constrained the number of messages committed
per synchronization is essentially unaltered as the number
of processors is increased. If memory is not tightly con-
strained, the number of messages committed per window
starts at about four times that of the unconstrained case, but
as the processor count approaches 56, this factor is reduced
to 2.5. This occurs because as the number of processors
increases, the number of values contributing to the GEH in-
creases, and so the window size tends to shrink provided
that the memory control mechanism does not kick in first.
This is precisely what we observe in our data.

5. Conclusions

Discrete-event simulation of large complex systems re-
quires a great deal of memory. One way to acquire more
memory is to used distributed simulation. A natural al-
liance to consider is distributed simulation using Java, as
Java offers the potential for using many different capabili-
ties to network-wide simulation models.

This paper has described a Java-based distributed simu-
lator, IDES. We examine its performance on a sparse work-
load model in order to assess its fundamental processing
capabilities. While the raw processing power of IDES is
smaller than one would like, this is due to Java’s slowness
and is a problem that may be corrected by just-in-time com-
pilers. We examine IDES performance on a network of up
to 56 PentiumPro based processors, find that it can increase
overall processing capability by an order of magnitude and
increase the memory available for modeling in proportion
to the number of processors used.

Our work on IDES continues. We aim to investigate the
impact of using just-in-time compilation, and to incorporate
more sophisticated state-saving mechanisms. And, impor-
tantly, we are developing prototypical IDES applications to
assess IDES’s performance in its intended context.
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