
SYNCHRONIZED DATA DISTRIBUTION MANAGEMENT IN
DISTRIBUTED SIMULATIONS

Ivan Tacit
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280

KEYWORDS
High Level Architecture, Run-Time Infrastructure, Time Management, Data Distribution Management, Interest Management

ABSTRACT

Data distribution management (DDM) is concerned with
the problem of efficiently distributing state information
among the entities in a distributed simulation. While
heavily studied in the DIS community for training
applications using real-time synchronization, this
problem has received considerably less attention for
logical time simulations, and little pegormance data has
appeared in this regard. This paper is concerned with
evaluating the per$ormance of a logical time synchronized

1 INTRODUCTION
Consider a distributed simulation exercise composed of a
collection of simulators, each modeling a vehicle moving
over a two dimensional space. Assume each vehicle has a
sensor that can detect other vehicles that are within a
certain distance of its current location. Each vehicle
should receive position update messages generated by
other vehicles within range of its sensor. Some
mechanism is required to determine when vehicles
become visible to other vehicles, and to ensure each
simulator receives messages from all vehicles within
sensor range. The distributed simulation services that
support this functionality are sometimes referred to as
data distribution management (DDM) services.

DDM takes on a somewhat different flavor in distributed
simulations constructed by “federating” existing
simulators compared to a traditional parallel discrete
event simulation (PDES) program. PDES programs
typically assume each logical process (LP) is responsible
for determining which other LPs should receive the
messages it generates. By contrast, federated simulation

DDM mechanism. A DDM algorithm based on the
services specified in the DOD High Level Architecture
(HLA) using routing spaces is described, as well as its
implementation on a network of workstutions
environment. Performance measurements indicate that
the time overhead to provide correct logical time
synchronization of the DDM mechanisms is small relative
to network communication overheads, suggesting that
logical time synchronized DDM mechanisms cun perform
as efficiently as real-time synchronized mechanisms in
networked workstation environments.

systems typically implement this functionality in the
underlying distributed simulation software, referred to as
the Run-Time Infrastructure (RTI) in High Level
Architecture terminology rather than within the
simulation model. Each simulator (federate) specifies via
interest expressions what messages are of interest.

Data distribution management (DDM) mechanisms must
provide efficient, scalable support for large-scale
distributed simulations. They have been extensively
studied in distributed simulations for training. Work in
distributed simulation environments in the SIMNET
(SIMulator NETworking) project[l] and many DIS
systems broadcast each state update (event) to all
simulators in the exercise. It is well known that this
approach does not scale because the amount of
communications is O(N’) where N is the number of
processors. CPUs become bogged down processing
incoming messages, most of which are discarded (for
large N) because they are not relevant to the simulator(s)
within the processor. Further, communication bandwidth
requirements become excessively large as N increases. It
is estimated that 375 MBits per second per platform

108
1087-4097/98 $10.00 0 1998 IEEE

would be required for a simulation exercise including
100,000 players[Z].

Several approaches to attacking this problem have been
proposed (see [3] for a survey on this subject). Virtually
all use some mechanism to only send messages to the
destinations that have need of the information rather than
broadcast it. For example, in the Joint Precision Strike
Demonstration (JPSD)[4], federates indicate what
information they wish to receive by specifying predicates
on entity attributes. Many simulators, e.g., ModSAF[S],
CCTT[6], and NPSNET[2] use grid cells to filter
information. A two-level hierarchical filtering scheme
used in an optimistic parallel simulation is described in
[7], and a generalization of grid cells using a construct
called routing spaces is used in STOW[S]. The focus on
the work described here is on the routing space approach
that has been incorporated into the baseline definition of
the High Level Architecture (HLA), though many of the
techniques and mechanisms are applicable in other
contexts.

Thus far, most of the DDM work has focused on large-
scale, real-time training simulations. By comparison, only
a limited amount of work on this subject has been
concerned with distributed logical time
simulations[7,13,14]. Directly applying training
simulation DDM mechanisms based on wallclock time
semantics to logical time simulations will lead to errors,
e.g., some simulators will not receive messages that they
should or they will receive them in their logical time past.
These problems are discussed in section 2, and an
approach to efficiently solving them is described in
sections 3 and 4. An implementation and evaluation are
described in sections 5 and 6.

The distributed simulation is referred to as a federation,
and consists of a collection of individual simulators,

termed federates. A federate is essentially equivalent to a
logical process in PDES terminology. If one federate can
generate messages that will be received by a second, a
connection is said to exist from the first to the second.
The network formed by federates and their connections is
referred to as the federate topology. Also, the “sending
federate” refers to the federate on the sending side of the
connection, and the “receiving federate” be the federate
on the receiving side.

2 PROBLEM DESCRIPTION
Two issues must be addressed:
. each federate must receive all messages it has

specified through its interest expressions.
. no federate should receive any messages in its

(logical time) past.

By contrast, these issues can usually be relaxed in training
applications.

To illustrate the first situation, consider two tanks Tl and
T2. If Tl’s sensors indicate awareness of an enemy tank
T2 in a certain time interval, all events generated by tank
T2 with time stamp in that interval must be received by
tank Tl. It may happen that tank T2 generated events in
this interval before (in wallclock time) Tl had specified
interest in receiving these events. The RTI must ensure
these previously generated events are sent to Tl.

To address this problem a log of previously generated
messages is maintained (see Figure 1). Those messages
that are not sent to the federate when the event had been
generated are retrieved from the log, and sent to the “late”
federate, e.g., tank Tl in the example above. This
approach is described in greater detail in[l3,14]. A
variation on this approach was implemented in this study,
and is described in Section 4.

Fed,A:tankT2 72 ,

Fed. B: tank Tl 11111;
) federate time

16 (= logical time)

Fed. A: f,mk T2

Fed. B: tank Tl
federate time

ld (= logml ttme)

Figure 1. Use of a log to avoid losing messages.

The second issue is concerned with preventing federates
from receiving messages in their past. This issue is
concerned with ensuring proper synchronization of
changes in the federate topology. For example, suppose
in the previous example T2 is at logical time 10. Suppose
Tl advances beyond logical time 10 because there is no
connection from T2 to Tl. Suppose T2 now establishes a
new connection to Tl at logical time 10, and sends a
message with time stamp 10, in Tl’s logical time past.
Situations such as this must be prevented.

This problem is typically addressed in parallel simulation
systems by a connection transfer protocol [9,12]. The
basic idea is one logical process LPs can only establish a
new connection to a second process LPR by receiving a
“handle” for the connection from a third logical process
LPx that already has a connection to LPR. Because LPx
cannot send messages into LPR’s past, it is
straightforward to ensure that LPs will not either. This
approach is not suitable for federated simulation sytems,

109

however, because an LP (federate) can “spontaneously”
open a new connection to another federate. For example,
in Figure 1, Tl moving into the range of T2’s sensor
causes a new connection to be established from Tl to T2,
independent of any other federates. Thus, there need not
be a third party to coordinate establishment of the new
connection, as is required in a connection transfer
protocol. We propose an approach based on a concept
called connection lookahead that is described in detail in
the next section.

3 CONNECTION LOOKAHEAD
There are several different flavors of dynamic topology
changes: sender initiated new connection, receiver
initiated new connection, transfer of a connection from
another federate, and removal of a connection. All but
sender initiated new connection are easy to handle. In the
case of receiver initiated new connection, it suffices to
define that the new connection takes effect at the current
logical time of the federate. Because the new connection
does not take effect until the federate’s current time, there
is no possibility the new connection will result in the
federate receiving messages in its past. This new
connection can simply be taken into account when
computing LBTS before allowing the federate to advance
to a new logical time. On the other hand, connection
transfer protocol mentioned above, can be used to handle
connection transfers from another federate, while
removing a connection does not require any action at all.

Sender initiated new connections appear to be the
thorniest to handle. Two approaches to preventing
causality errors are described below. The first constrains
the behavior of the receiving federate in such a way that
prevents it from advancing “too far ahead,” thereby
eliminating the possibility it will receive a new message
in its past. This is referred to as the receiver constrained
approach. The second places constraints on the sending
federate to prevent it from sending a message into the past
of a receiving federate by placing lookahead restrictions
on new connections. This is referred to the sender
constrained approach. It will be seen that the “pure”
sender constrained approach has some serious
deficiencies, so a variation on this idea utilizing a concept
called connection lookahead is proposed as an alternate
solution. To simplify the discussion, we assume each
federate specifies a single connection lookahead value.

3.1 Solution 1: Receiver Constrained
One can prevent the receiving federate from advancing
“too far” ahead of all potential sending federates in order
to ensure it does not receive messages in its past. For
example, if the receiving federate is constrained so that it
cannot advance more then Li units of time ahead of each

potential sending federate Fi, where Li is the lookahead
for Fi, then it is guaranteed that the receiving federate will
not receive any new messages in its past, no matter how
the topology changes during the execution.

In its simplest form, one may assume any federate can
establish a new connection to any other federate at any
time during its execution. For example, a federate could
indicate it can publish certain attribute values, and register
a new object instance of that class, all at its current logical
time. This will establish a new connection to every
federate subscribed to that class. Once the connection is
established, the federate can then send attribute updates
for that object with time stamp equal to its current time
plus its lookahead. To ensure no federate will receive a
message in its past, any federate is prevented from
advancing more the Lmin units of logical time ahead of any
other federate, where Lti,, is the minimum lookahead of
any federate in the federation.

The main disadvantage of this approach is it is somewhat
restricting in that it does not allow federates to advance
more than the federation’s minimum lookahead amount
(L,in) ahead of any other federate. In effect, this approach
conservatively assumes a fully connected topology among
federates, so any changes in the federation topology are of
no consequence. An improvement is possible if federates
could deduce in advance all possible channels of
communication. However, the same shortcoming of
taking into account those connections on which the
communication never or rarely takes place remains.

3.2 Solution 2: Sender Constrained
One can constrain the sending federate so that it cannot
send messages in the past of the receiving federate.
Suppose the sending federate Fs is at simulation time Ts
and the receiving federate FR be at simulation time TR
when a new connection is established from Fs to FR (see
Figure 2). If one specifies that the new connection does
not take effect at the sender until it reaches logical time
TR - Ls, where Ls is the lookahead of Fs, one can ensure
the receiver will not receive messages in its past.

LP, I- - - - - _ _ - -

LPR \

e* ‘%&~I

TS T&S TH

Figure 2. Sender constrained approach to establishing
a new connection.

The problem with this approach is there is no restriction
on how long a federate must wait before the new
connection is established, because there is no a priori

110

restriction on how far one federate can advance ahead of
another. For example, if there are two “sub-federations”
within a single federation defined so that no messages
pass between them, one sub-federation could advance
arbitrarily far ahead of the other. If a connection between
the two sub-federations must now be established, there is
no a priori limit on how much logical time must elapse
before the new connection can be established.

Update Attribute
Values and Send
Interaction requests

3.3 Solution 3: Connection Lookahead
A third approach is to use a combination of the sender and
receiver constrained approaches. Each federate specifies
a new lookahead, called its connection lookahead, that
specifies the minimum amount of time into the future the
federate can establish a new connection with another
federate. Again, assume we wish to establish a new
connection from federate Fs at logical time Ts to federate
Fn. Let Ls be the lookahead of Fs. The smallest time
stamp of any message Fs can send over a new connection
to FR is Ts + CLs + Ls. This allows Ta to advance up to
CLs + Ls units of logical time ahead of Fs. The
connection lookahead must be greater than or equal to
zero. The receiver constrained approach, in effect,
assumes CLs is zero.

Just as lookahead restricts how far one federate may
advance ahead of another federate, connection lookahead
also imposes a similar constraint. Specifically, if no
connection exists from Fs to Fa, then FR cannot advance
more than CLs + Ls units of logical time ahead of Fs in
case a new connection is established. Assuming no
constraint on which federates may begin communicating
with which other federates, this effectively says no
federate can advance more than W units of simulation
time ahead of any other, where W is defined as max (CLi
+ Li) over all federates Fi in the federation.

4 A DDM LAYERED ARCHITECTURE
An approach that assures federates will receive all the
messages they are supposed to receive is convenient to
view as two layers of software (see Figure 3). The upper
interest management layer (IM) is providing a federate
with a simple interface for expressing its interest
expressions and maps them to the lower distribution list
layer (DL) which is analogous to a collection of
newsgroups, where users (e.g. federates) either subscribe
(Add operation) or unsubscribe (Delete operation) to them
at desired times. This approach was initially proposed in
[14], and now we extend it by refining the IM layer, so
that multiple overlapped regions per federate may coexist.

Figure 3. DDM Organization.

4.1 INTEREST MANAGEMENT LAYER
The fundamental concept underlying interest expressions
is the routing space. A routing space is a normalized
multidimensional coordinate system in which federates
indicate interest in receiving or providing updates via
subscription and update regions. Regions are rectangular
(in N dimensions) and are specified by indicating extents,
with one extent for each dimension. Each extent indicates
the portion of that dimension covered by the region. A
federate may issue ModifyRegion for changing region
extents and UpdateAttributeValue to the IM layer (see
[IO] for the complete reference). When an attribute is
updated, a message is sent only to those federates whose
subscription region overlaps with the update region.

Here, we describe one approach to implementing the IM
based on partitioning the routing space into fixed non-
overlapping cells and creating a distribution list for each
cell. We will assume identical cells here to simplify the
presentation.

When the UpdateAttributeValue service is invoked, it
causes an invocation of Update in the DL layer for each
cell that includes a portion of the update region for the
modified attribute. This may result in some messages
being sent to federates whose subscription region lies
outside the update region (but includes one or more cells
in common with the update region). However, such
messages can be filtered at the destination.

ModifyRegion for an update region requires only the IM
to record the new extents. ModifyRegion for a
subscription region at logical time T, requires the IM to
determine what Add/Delete operations are to be passed to
the DL. Actually, as will be described momentarily, the
mechanism is more complex than it would initially
appear, so we define two operations internal to the IM
layer, Subscribe and Unsubscribe, that can be viewed for
now as being synonymous with Add and Delete,
respectively.

If there is no ModifyRegion for the same region at logical
times greater than T, the IM invokes

111

SubscribeKJnsubscribe operations on cells to define the
new region (see example in Figure 4-a).

(+ T.

-
prcw,u\ suhwaplwn rcp,r,n

(a) (b)

Figure 4. New subscription region extents, if this is the
latest or not (in logical time) change for that region
(situations (a) and (b) respectively).

If a version of a given region already exists at time t2
(t2>T, Figure 4-b), the set of SubscribeKJnsubscribe
operations depend on the cell status at tl, t2, and T, as
shown in Table 1, where tl is the logical time of the most
recent (in logical time) ModifyRegion operation earlier
than T (tl < T < t2). A ‘1’ in this table indicates the
federate is subscribed at the specified time, and a ‘0’
indicates it is not subscribed. For example, the third row
in the table indicates that if the federate is not subscribed
to a cell at t 1 and t2, and a subscription is made at T, the
IM will issue Subscribe@T, Unsubscribe@t2.

Table 1. IMl actions for a new subscription region at
time T.

region@ tl region@T region@ t2 IMl actions
0 0 0 No-action
0 0 I No-action
0 I 0 Sub@T.

Unsub@t2
0 I I I I 1 Sub@T.

Unsub&
0 I 0 1 Unsub@T

Sub8t2
0 I Unsub@T

Sub@t2
I 0 No-action
I I No-action

The IM layer is complicated by the fact that a federate
may subscribed to a cell multiple times, e.g., if more than
one entity within the federate have indicated subscriptions
to regions overlapping the same cell. For this reason,
counters are used to indicate the number of times a
federate is subscribed to a cell. Each counter shows the
number of subscription regions that are overlapping a
specific cell (denoted as Counter:value@time).
Subscribe/Unsubscribe@t will increase/decrease by 1 the
counters with time stamps greater than or equal to t,
respectively (see Figure 5). When the counter value
increases to 1, an Add is generated, and when it drops to
0, a Delete is generated. Improvements are possible if
Subscribe/Unsubscribe operations are issued for a

specified interval (see Subscribe-in-interval), because it
limits searching through a sequence of counters.
Unsubscribe-in-interval is similar.

Subscribe(T){
find closest counter C:n@t such that t<=T;
if(t<T) create new counter C-new:n@T;

for every counter C:n@?t such that t>=T(
C.n=C.n+ I ;
if(C.n==l) issue ADD@t;
else if(C.n==O) issue DELETEat;

Unsubscribe(T)(
find closest counter C:n@t such that t<=T;
if(t<T) create new counter C-new:n@T;

for every counter C:n@t such that t>=T(
C.n=C.n- I ;
if(C.n==O) issue DELETE@t;

Subscribe_in_intervaI(start_time:Ts,stop-~ime:Tu)(
find closest counter C:n@t such that t<=Ts;
if(t<Ts) create new counter C-new:n@Ts;
find closest counter C:n@t such that t<=Tu;
if(t<Tu) create new counter C-new:n@Tu;

for every counter C:nBt such that Ts<=t<Tu(
C.n=C.n+ I ;
if(C.n==l) issue ADD@t;
else if(C.n==O) issue DELETEat;

1

Figure 5. Counters are used to generate Add/Delete
operations.

4.2 DISTRIBUTION LIST LAYER
DDM can be viewed as maintaining a collection of
distribution lists indicating which federates should receive
attribute updates at what times. If operations were issued
in time stamp order, data distribution would be trivial. In
that case, Add/Delete operations would simply update the
distribution list, and Update operations would transmit
messages to the destinations in the list. Because the
operations do not arrive in time stamp order, different
versions of the distribution list corresponding to different
points in logical time have to be maintained. It is also
necessary to keep a log of updates in order to furnish
“late” subscribers with updates that are being issued but
not sent to them, as was described in section 2.

For the completeness of this approach we must address
fossil collection issues as well. Having in mind that
UpdateAttributeValue and ModifyRegion and
consequently appropriate IM and DL layer operations
adhere to lookahead constraints, memory reclamation can

112

be performed for distribution lists and logs that are older
than the Global Virtual Time (GVT). Complete details on
design of the DL layer can be found in [141.

5 IMPLEMENTATION
Multiple versions of different data structures are needed
to correspond to different logical times. In our
implementation we are using double linked lists, sorted by
version time stamps. The data structures each federate has
to maintain are shown in Figure 6. There is a multiple
version data structure for each of the regions (u/s denote
update/subscription regions) defined by the federate. Each
element represents a set of extents for the region at a time
given by the time stamp. Each of the cells in the routing
space has a counter with its associated versions, as well as
logs for Add/Delete operations, received from other
federates. Instead of having one log, we have a log for
every federate. This will speed up recording a new
Add/Delete entry from a federate by not having to
traverse log elements of other federates. More
importantly, it will speed up finding a distribution list at a
given time t, by not having to traverse irrelevant elements
from some federates (i.e. elements whose time stamps are
less than t).

Regions and corresponding versions of extents.

Federates and corresponding versions of ADD/DELETE operations, used j

bY.!.!!e.Q!&Yv, .._. .._

Data structures for every cell in eat-h of the routing spare.

Figure 6. Data structures for federate:FO.

An UpdateAttributeValueQ7 issued for an attribute
associated with an update region that is equal to a cell
depicted above, causes a backward search through the
Add/Delete logs. Traversed elements are :
F4:8,5;F3:9,2;F2:3;Fl:S. The distribution list for this
update is { F3}, and a message containing the update is
being sent to F3. Note that we could have many log
elements for F4 between (2,5), that would have to be
searched in the case of a unique log, but not in our case.

Issuing a ModifyRegion for an update region causes a
new set of extents to be recorded, while the same
operation for a subscription region requires additional
actions as explained in section 4.1.

There is an optimization where the search starts from the
last log’s entry that has previously been accessed, which
could eliminate the influence of distance between
federates in searching through the log. Instead, we would
have either constant time or time proportional to the log
density ratios of different federates.

6 PERFORMANCE EVALUATION

6.1 WORKLOAD
The benchmark application for our synchronized DDM
(SDDM) system is a distributed simulation of moving
entities (tanks/aircraft) across a simulated world (routing
space(s)). Entities are simulated by federates that may
reside on different processors. Each entity is associated
with update and subscription region (1 cell for update, and
6x6 cells for subscription regions). The path of each
entity follows a random walk, with the entity equally
likely to move in any new direction
(north/south/east/west). Logical time stamps for
ModifyRegionKJpdateAttributeValue are taken from an
exponential distribution with mean of O.lsec and 0.2sec
for update and subscription regions, respectively. Events
are fired when the corresponding wall clock time (logical
time + constant) is reached.

The hardware platform we used was a cluster of Sun-
Ultra1 workstations with 167 MHz SpareUltra processors
connected by the 100 Mbps Ethernet. All messages are
transmitted using (unicast) TCP/IP message sends.

6.2 OVERHEADS
According to algorithms presented in section 4, it is easy
to conclude that SDDM overheads depend directly on DL
and IM layer logs densities as well as on the distance
between federates. Although they are highly application
specific, our experiments were designed to give an upper
bound like behavior by taking measurements at the
federate which is trailing all other federates in logical
time. In this way, the search through the logs is the most
expensive for that federate, and represents an upper bound
performance at the other federates. We will also see that
SDDM scales well with the number of entities (upper
bound is assumed again by associating a region with each
object). More importantly, the overheads tend to
asymptotically decrease toward unsynchronized DDM
(UDDM) overheads.

Figure 7 shows the number of entries traversed in the DL
log as a function of the number of regions. That is easily
translated to total search time during updates, using
Figure 8 (this time includes recording a new update which
takes 1 lus; we believe the irregular behavior of this

113

curve is due to variations in the time required by the C++
memory allocator). Since in our benchmark application all
federates, except the one whose measurements are shown,
have the same execution characteristics, the overhead for
four/eight federates (three/seven DL logs) are
approximately three/seven times larger than for two
federates (one DL log). The UDDM’s behavior is
equivalent to SDDM searching through 1 log element, as
depicted. The search time initially increases as the
number of objects (entities) increases because the number
subscribed to a cell increases. However, after some
number of objects, the curve starts to descend, since IM
generates fewer Add/Delete operations due to the
increased probability that the federate is already
subscribed to the cell.

Figure 7. Search time in the DL’s log as a function of
the number of regions.

Figure 8. Time to do an update as a function of the
number of entries in the DL’s log traversed.

There is no additional communication overhead to do
updates in SDDM relative to UDDM, because operations
on the distribution lists can be done locally. However,
network traffic caused by the update messages themselves
(as opposed to overhead messages) will, in general, differ
between the two. SDDM may generate either more or less
messages than UDDM, since SDDM and UDDM may be

utilizing different distribution lists in order to determine if
it is necessary to send an update. Figure 9 shows
communication time during updates, and as for searching
time, it increases in proportion to the number of federates.

Figure 9. Communication time during updates.

Figure 10 shows the overall time required to perform
update operations for synchronized and unsynchronized
DDM. It is apparent that SDDM performs almost as well
as UDDM in this implementation. This is because
communication overheads dominate the execution time.

Figure 10. Total UpdateAttributeValue time.

7 ACKNOWLEDGMENTS
Work on this project was funded under a contract
DAKFl 1-97-D-0001 -0003 from DMSO. Comments from
the HLA time management and data distribution
management working groups are acknowledged.

8 SUMMARY
A mechanism is described to realize properly
synchronized data distribution in distributed simulations
using logical time. It includes a connection lookahead
approach that allows dynamic network topology changes
where federates can advance further away from each
other, yielding the better performance. Also, it advocates

114

a two-layer architecture that allows federates to have
multiple overlapped regions, while ensuring data is routed
to subscribers based on interest expressions and logical
time semantics at the same time. This mechanism is
applicable to a variety of data distribution schemes. An
approach to implementing the interest expression layer
(IM) for routing spaces such as those defined in the HLA
is described.

Initial performance measurements indicate the time to
perform update operations in synchronized DDM is only
slightly larger than unsynchronized DDM because
communication overheads dominate the execution time.
Moreover, the approach scales well and overheads tend to
asymptotically decrease toward unsynchronized DDM
overheads. Additional experimentation and optimization
are currently in progress.

9

[II

121

131

[41

[51

161

[71

REFERENCES

C. Kanarick, “A Technical Overview and History of the
SIMNET Project,” in Advances in Parallel and
Distributed Simulation, vol. 23: Society for Computer
Simulation, 1991, pp. 104-I Il.

M. Macrdonia, M. Zyda, D. Pratt, and P. Brutzman,
“Exploiting Reality with Multicast Groups: A Network
Architecture for Large-Scale Virtual Environments,” in
1995 IEEE Virtual Reality Annual Symposium, 1995, pp.
11-15.

K. Morse, “Interest Management in Large Scale
Distributed Simulations,” University of California,
Irvine Technical Report TR 96-27, 1996.

E. T. Powell, L. Mellon, J. F. Watson, and G. H. Tarbox,
“Joint Precision Strike Demonstration (JPSD)
Simulation Architecture,” in 14th Workshop on
Standards for the Interoperability of Distributed
Simulations. Orlando, Florida, 1996, pp. 807-8 10.

K. L. Russo, L. C. Shuette, J. E. Smith, and M. E.
McGuire, “Effectiveness of Various New Bandwidth
Reduction Techniques in ModSAF,” in Proceedings of
the 13th Workshop on Standards for the Interoperability
of Distributed Simulations, 1995, pp. 587-591.

T. W. Mastaglio and R. Callahan, “A Large-Scale
Complex Environment for Team Training,” IEEE
Computer, vol. 28, pp. 49-56, 1995.

J. S. Steinman and F. Wieland, “Parallel Proximity
Detection and the Distribution List Algorithm,” in
Proceedings of the 8th Workshop on Parallel and

PI

[91

[lOI

[Ill

[121

[I31

[I41

Distributed Simulation. Edinburgh, Scottland, 1994, pp.
3-11.

D. J. Van Hook, J. 0. Calvin, M. K. Newton, and D. A.
Fusco, “An Approach to DIS Scalability,” in
Proceedings of the I lth Workshop on Standards for the
Interoperability of Distributed Simulations, 1994, pp.
347-356.

T. D. Blanchard, T. W. Lake, and S. J. Turner,
“Cooperative Acceleration: Robust Conservative
Distributed Discrete Event Simulation,” in Proceedings
of the 1994 Workshop on Parallel and Distributed
Simulation. Edinburgh, Scotland, 1994, pp. 58-64.

Defense Modeling and Simulation Organization, “HLA
Interface Specification, V. 1.0,” U.S. Department of
Defense, Washington D.C. August 1996.

Defense Modeling and Simulation Organization, “Data
Distribution and Management Design Document, V.
0.2,” U.S. Department of Defense, Washington DC
December 1996.

R. Bagrodia and W.-T. Liao, “Maisie: A Language for
the Design of Efficient Discrete-Event Simulations”, in
IEEE Transactions on Software Engineering, 1994,
(20):4, pp. 225-238.

T. D. Blanchard and T. Lake, “A Lightweight RTI
Prototype with Optimistic Publication”, in Spring
Simulation Interoperability Workshop, Orlando, Florida,
1997, pp. 551-560.

Ivan Tacit, Richard M. Fujimoto, “Synchronized Data
Distribution Management in Distributed Simulations”,
in Spring Simulation Interoperability Workshop,
Orlando, Florida, 1997, pp. 303-312.

115

