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ABSTRACT 

Data distribution management (DDM) is concerned with 
the problem of efficiently distributing state information 
among the entities in a distributed simulation. While 
heavily studied in the DIS community for training 
applications using real-time synchronization, this 
problem has received considerably less attention for 
logical time simulations, and little pegormance data has 
appeared in this regard. This paper is concerned with 
evaluating the per$ormance of a logical time synchronized 

1 INTRODUCTION 
Consider a distributed simulation exercise composed of a 
collection of simulators, each modeling a vehicle moving 
over a two dimensional space. Assume each vehicle has a 
sensor that can detect other vehicles that are within a 
certain distance of its current location. Each vehicle 
should receive position update messages generated by 
other vehicles within range of its sensor. Some 
mechanism is required to determine when vehicles 
become visible to other vehicles, and to ensure each 
simulator receives messages from all vehicles within 
sensor range. The distributed simulation services that 
support this functionality are sometimes referred to as 
data distribution management (DDM) services. 

DDM takes on a somewhat different flavor in distributed 
simulations constructed by “federating” existing 
simulators compared to a traditional parallel discrete 
event simulation (PDES) program. PDES programs 
typically assume each logical process (LP) is responsible 
for determining which other LPs should receive the 
messages it generates. By contrast, federated simulation 

DDM mechanism. A DDM algorithm based on the 
services specified in the DOD High Level Architecture 
(HLA) using routing spaces is described, as well as its 
implementation on a network of workstutions 
environment. Performance measurements indicate that 
the time overhead to provide correct logical time 
synchronization of the DDM mechanisms is small relative 
to network communication overheads, suggesting that 
logical time synchronized DDM mechanisms cun perform 
as efficiently as real-time synchronized mechanisms in 
networked workstation environments. 

systems typically implement this functionality in the 
underlying distributed simulation software, referred to as 
the Run-Time Infrastructure (RTI) in High Level 
Architecture terminology rather than within the 
simulation model. Each simulator (federate) specifies via 
interest expressions what messages are of interest. 

Data distribution management (DDM) mechanisms must 
provide efficient, scalable support for large-scale 
distributed simulations. They have been extensively 
studied in distributed simulations for training. Work in 
distributed simulation environments in the SIMNET 
(SIMulator NETworking) project[l] and many DIS 
systems broadcast each state update (event) to all 
simulators in the exercise. It is well known that this 
approach does not scale because the amount of 
communications is O(N’) where N is the number of 
processors. CPUs become bogged down processing 
incoming messages, most of which are discarded (for 
large N) because they are not relevant to the simulator(s) 
within the processor. Further, communication bandwidth 
requirements become excessively large as N increases. It 
is estimated that 375 MBits per second per platform 
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would be required for a simulation exercise including 
100,000 players[Z]. 

Several approaches to attacking this problem have been 
proposed (see [3] for a survey on this subject). Virtually 
all use some mechanism to only send messages to the 
destinations that have need of the information rather than 
broadcast it. For example, in the Joint Precision Strike 
Demonstration (JPSD)[4], federates indicate what 
information they wish to receive by specifying predicates 
on entity attributes. Many simulators, e.g., ModSAF[S], 
CCTT[6], and NPSNET[2] use grid cells to filter 
information. A two-level hierarchical filtering scheme 
used in an optimistic parallel simulation is described in 
[7], and a generalization of grid cells using a construct 
called routing spaces is used in STOW[S]. The focus on 
the work described here is on the routing space approach 
that has been incorporated into the baseline definition of 
the High Level Architecture (HLA), though many of the 
techniques and mechanisms are applicable in other 
contexts. 

Thus far, most of the DDM work has focused on large- 
scale, real-time training simulations. By comparison, only 
a limited amount of work on this subject has been 
concerned with distributed logical time 
simulations[7,13,14]. Directly applying training 
simulation DDM mechanisms based on wallclock time 
semantics to logical time simulations will lead to errors, 
e.g., some simulators will not receive messages that they 
should or they will receive them in their logical time past. 
These problems are discussed in section 2, and an 
approach to efficiently solving them is described in 
sections 3 and 4. An implementation and evaluation are 
described in sections 5 and 6. 

The distributed simulation is referred to as a federation, 
and consists of a collection of individual simulators, 

termed federates. A federate is essentially equivalent to a 
logical process in PDES terminology. If one federate can 
generate messages that will be received by a second, a 
connection is said to exist from the first to the second. 
The network formed by federates and their connections is 
referred to as the federate topology. Also, the “sending 
federate” refers to the federate on the sending side of the 
connection, and the “receiving federate” be the federate 
on the receiving side. 

2 PROBLEM DESCRIPTION 
Two issues must be addressed: 
. each federate must receive all messages it has 

specified through its interest expressions. 
. no federate should receive any messages in its 

(logical time) past. 

By contrast, these issues can usually be relaxed in training 
applications. 

To illustrate the first situation, consider two tanks Tl and 
T2. If Tl’s sensors indicate awareness of an enemy tank 
T2 in a certain time interval, all events generated by tank 
T2 with time stamp in that interval must be received by 
tank Tl. It may happen that tank T2 generated events in 
this interval before (in wallclock time) Tl had specified 
interest in receiving these events. The RTI must ensure 
these previously generated events are sent to Tl. 

To address this problem a log of previously generated 
messages is maintained (see Figure 1). Those messages 
that are not sent to the federate when the event had been 
generated are retrieved from the log, and sent to the “late” 
federate, e.g., tank Tl in the example above. This 
approach is described in greater detail in[l3,14]. A 
variation on this approach was implemented in this study, 
and is described in Section 4. 

Fed,A:tankT2 72 , 

Fed. B: tank Tl 11111; 
) federate time 

16 (= logical time) 

Fed. A: f,mk T2 

Fed. B: tank Tl 
federate time 

ld (= logml ttme) 

Figure 1. Use of a log to avoid losing messages. 

The second issue is concerned with preventing federates 
from receiving messages in their past. This issue is 
concerned with ensuring proper synchronization of 
changes in the federate topology. For example, suppose 
in the previous example T2 is at logical time 10. Suppose 
Tl advances beyond logical time 10 because there is no 
connection from T2 to Tl. Suppose T2 now establishes a 
new connection to Tl at logical time 10, and sends a 
message with time stamp 10, in Tl’s logical time past. 
Situations such as this must be prevented. 

This problem is typically addressed in parallel simulation 
systems by a connection transfer protocol [9,12]. The 
basic idea is one logical process LPs can only establish a 
new connection to a second process LPR by receiving a 
“handle” for the connection from a third logical process 
LPx that already has a connection to LPR. Because LPx 
cannot send messages into LPR’s past, it is 
straightforward to ensure that LPs will not either. This 
approach is not suitable for federated simulation sytems, 
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however, because an LP (federate) can “spontaneously” 
open a new connection to another federate. For example, 
in Figure 1, Tl moving into the range of T2’s sensor 
causes a new connection to be established from Tl to T2, 
independent of any other federates. Thus, there need not 
be a third party to coordinate establishment of the new 
connection, as is required in a connection transfer 
protocol. We propose an approach based on a concept 
called connection lookahead that is described in detail in 
the next section. 

3 CONNECTION LOOKAHEAD 
There are several different flavors of dynamic topology 
changes: sender initiated new connection, receiver 
initiated new connection, transfer of a connection from 
another federate, and removal of a connection. All but 
sender initiated new connection are easy to handle. In the 
case of receiver initiated new connection, it suffices to 
define that the new connection takes effect at the current 
logical time of the federate. Because the new connection 
does not take effect until the federate’s current time, there 
is no possibility the new connection will result in the 
federate receiving messages in its past. This new 
connection can simply be taken into account when 
computing LBTS before allowing the federate to advance 
to a new logical time. On the other hand, connection 
transfer protocol mentioned above, can be used to handle 
connection transfers from another federate, while 
removing a connection does not require any action at all. 

Sender initiated new connections appear to be the 
thorniest to handle. Two approaches to preventing 
causality errors are described below. The first constrains 
the behavior of the receiving federate in such a way that 
prevents it from advancing “too far ahead,” thereby 
eliminating the possibility it will receive a new message 
in its past. This is referred to as the receiver constrained 
approach. The second places constraints on the sending 
federate to prevent it from sending a message into the past 
of a receiving federate by placing lookahead restrictions 
on new connections. This is referred to the sender 
constrained approach. It will be seen that the “pure” 
sender constrained approach has some serious 
deficiencies, so a variation on this idea utilizing a concept 
called connection lookahead is proposed as an alternate 
solution. To simplify the discussion, we assume each 
federate specifies a single connection lookahead value. 

3.1 Solution 1: Receiver Constrained 
One can prevent the receiving federate from advancing 
“too far” ahead of all potential sending federates in order 
to ensure it does not receive messages in its past. For 
example, if the receiving federate is constrained so that it 
cannot advance more then Li units of time ahead of each 

potential sending federate Fi, where Li is the lookahead 
for Fi, then it is guaranteed that the receiving federate will 
not receive any new messages in its past, no matter how 
the topology changes during the execution. 

In its simplest form, one may assume any federate can 
establish a new connection to any other federate at any 
time during its execution. For example, a federate could 
indicate it can publish certain attribute values, and register 
a new object instance of that class, all at its current logical 
time. This will establish a new connection to every 
federate subscribed to that class. Once the connection is 
established, the federate can then send attribute updates 
for that object with time stamp equal to its current time 
plus its lookahead. To ensure no federate will receive a 
message in its past, any federate is prevented from 
advancing more the Lmin units of logical time ahead of any 
other federate, where Lti,, is the minimum lookahead of 
any federate in the federation. 

The main disadvantage of this approach is it is somewhat 
restricting in that it does not allow federates to advance 
more than the federation’s minimum lookahead amount 
(L,in) ahead of any other federate. In effect, this approach 
conservatively assumes a fully connected topology among 
federates, so any changes in the federation topology are of 
no consequence. An improvement is possible if federates 
could deduce in advance all possible channels of 
communication. However, the same shortcoming of 
taking into account those connections on which the 
communication never or rarely takes place remains. 

3.2 Solution 2: Sender Constrained 
One can constrain the sending federate so that it cannot 
send messages in the past of the receiving federate. 
Suppose the sending federate Fs is at simulation time Ts 
and the receiving federate FR be at simulation time TR 
when a new connection is established from Fs to FR (see 
Figure 2). If one specifies that the new connection does 
not take effect at the sender until it reaches logical time 
TR - Ls, where Ls is the lookahead of Fs, one can ensure 
the receiver will not receive messages in its past. 

LP, I- - - - - _ _ - - 

LPR \ 

e* ‘%&~I 

TS T&S TH 

Figure 2. Sender constrained approach to establishing 
a new connection. 

The problem with this approach is there is no restriction 
on how long a federate must wait before the new 
connection is established, because there is no a priori 
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restriction on how far one federate can advance ahead of 
another. For example, if there are two “sub-federations” 
within a single federation defined so that no messages 
pass between them, one sub-federation could advance 
arbitrarily far ahead of the other. If a connection between 
the two sub-federations must now be established, there is 
no a priori limit on how much logical time must elapse 
before the new connection can be established. 

Update Attribute 
Values and Send 
Interaction requests 

3.3 Solution 3: Connection Lookahead 
A third approach is to use a combination of the sender and 
receiver constrained approaches. Each federate specifies 
a new lookahead, called its connection lookahead, that 
specifies the minimum amount of time into the future the 
federate can establish a new connection with another 
federate. Again, assume we wish to establish a new 
connection from federate Fs at logical time Ts to federate 
Fn. Let Ls be the lookahead of Fs. The smallest time 
stamp of any message Fs can send over a new connection 
to FR is Ts + CLs + Ls. This allows Ta to advance up to 
CLs + Ls units of logical time ahead of Fs. The 
connection lookahead must be greater than or equal to 
zero. The receiver constrained approach, in effect, 
assumes CLs is zero. 

Just as lookahead restricts how far one federate may 
advance ahead of another federate, connection lookahead 
also imposes a similar constraint. Specifically, if no 
connection exists from Fs to Fa, then FR cannot advance 
more than CLs + Ls units of logical time ahead of Fs in 
case a new connection is established. Assuming no 
constraint on which federates may begin communicating 
with which other federates, this effectively says no 
federate can advance more than W units of simulation 
time ahead of any other, where W is defined as max (CLi 
+ Li) over all federates Fi in the federation. 

4 A DDM LAYERED ARCHITECTURE 
An approach that assures federates will receive all the 
messages they are supposed to receive is convenient to 
view as two layers of software (see Figure 3). The upper 
interest management layer (IM) is providing a federate 
with a simple interface for expressing its interest 
expressions and maps them to the lower distribution list 
layer (DL) which is analogous to a collection of 
newsgroups, where users (e.g. federates) either subscribe 
(Add operation) or unsubscribe (Delete operation) to them 
at desired times. This approach was initially proposed in 
[14], and now we extend it by refining the IM layer, so 
that multiple overlapped regions per federate may coexist. 

Figure 3. DDM Organization. 

4.1 INTEREST MANAGEMENT LAYER 
The fundamental concept underlying interest expressions 
is the routing space. A routing space is a normalized 
multidimensional coordinate system in which federates 
indicate interest in receiving or providing updates via 
subscription and update regions. Regions are rectangular 
(in N dimensions) and are specified by indicating extents, 
with one extent for each dimension. Each extent indicates 
the portion of that dimension covered by the region. A 
federate may issue ModifyRegion for changing region 
extents and UpdateAttributeValue to the IM layer (see 
[IO] for the complete reference). When an attribute is 
updated, a message is sent only to those federates whose 
subscription region overlaps with the update region. 

Here, we describe one approach to implementing the IM 
based on partitioning the routing space into fixed non- 
overlapping cells and creating a distribution list for each 
cell. We will assume identical cells here to simplify the 
presentation. 

When the UpdateAttributeValue service is invoked, it 
causes an invocation of Update in the DL layer for each 
cell that includes a portion of the update region for the 
modified attribute. This may result in some messages 
being sent to federates whose subscription region lies 
outside the update region (but includes one or more cells 
in common with the update region). However, such 
messages can be filtered at the destination. 

ModifyRegion for an update region requires only the IM 
to record the new extents. ModifyRegion for a 
subscription region at logical time T, requires the IM to 
determine what Add/Delete operations are to be passed to 
the DL. Actually, as will be described momentarily, the 
mechanism is more complex than it would initially 
appear, so we define two operations internal to the IM 
layer, Subscribe and Unsubscribe, that can be viewed for 
now as being synonymous with Add and Delete, 
respectively. 

If there is no ModifyRegion for the same region at logical 
times greater than T, the IM invokes 
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SubscribeKJnsubscribe operations on cells to define the 
new region (see example in Figure 4-a). 

(+ T. 

- 
prcw,u\ suhwaplwn rcp,r,n 

(a) (b) 

Figure 4. New subscription region extents, if this is the 
latest or not (in logical time) change for that region 
(situations (a) and (b) respectively). 

If a version of a given region already exists at time t2 
(t2>T, Figure 4-b), the set of SubscribeKJnsubscribe 
operations depend on the cell status at tl, t2, and T, as 
shown in Table 1, where tl is the logical time of the most 
recent (in logical time) ModifyRegion operation earlier 
than T (tl < T < t2). A ‘1’ in this table indicates the 
federate is subscribed at the specified time, and a ‘0’ 
indicates it is not subscribed. For example, the third row 
in the table indicates that if the federate is not subscribed 
to a cell at t 1 and t2, and a subscription is made at T, the 
IM will issue Subscribe@T, Unsubscribe@t2. 

Table 1. IMl actions for a new subscription region at 
time T. 

region@ tl region@T region@ t2 IMl actions 
0 0 0 No-action 
0 0 I No-action 
0 I 0 Sub@T. 

Unsub@t2 
0 I I I I 1 Sub@T. 

Unsub& 
0 I 0 1 Unsub@T 

Sub8t2 
0 I Unsub@T 

Sub@t2 
I 0 No-action 
I I No-action 

The IM layer is complicated by the fact that a federate 
may subscribed to a cell multiple times, e.g., if more than 
one entity within the federate have indicated subscriptions 
to regions overlapping the same cell. For this reason, 
counters are used to indicate the number of times a 
federate is subscribed to a cell. Each counter shows the 
number of subscription regions that are overlapping a 
specific cell (denoted as Counter:value@time). 
Subscribe/Unsubscribe@t will increase/decrease by 1 the 
counters with time stamps greater than or equal to t, 
respectively (see Figure 5). When the counter value 
increases to 1, an Add is generated, and when it drops to 
0, a Delete is generated. Improvements are possible if 
Subscribe/Unsubscribe operations are issued for a 

specified interval (see Subscribe-in-interval), because it 
limits searching through a sequence of counters. 
Unsubscribe-in-interval is similar. 

Subscribe(T){ 
find closest counter C:n@t such that t<=T; 
if(t<T) create new counter C-new:n@T; 

for every counter C:n@?t such that t>=T( 
C.n=C.n+ I ; 
if(C.n==l) issue ADD@t; 
else if(C.n==O) issue DELETEat; 

Unsubscribe(T)( 
find closest counter C:n@t such that t<=T; 
if(t<T) create new counter C-new:n@T; 

for every counter C:n@t such that t>=T( 
C.n=C.n- I ; 
if(C.n==O) issue DELETE@t; 

Subscribe_in_intervaI(start_time:Ts,stop-~ime:Tu)( 
find closest counter C:n@t such that t<=Ts; 
if(t<Ts) create new counter C-new:n@Ts; 
find closest counter C:n@t such that t<=Tu; 
if(t<Tu) create new counter C-new:n@Tu; 

for every counter C:nBt such that Ts<=t<Tu( 
C.n=C.n+ I ; 
if(C.n==l) issue ADD@t; 
else if(C.n==O) issue DELETEat; 

1 

Figure 5. Counters are used to generate Add/Delete 
operations. 

4.2 DISTRIBUTION LIST LAYER 
DDM can be viewed as maintaining a collection of 
distribution lists indicating which federates should receive 
attribute updates at what times. If operations were issued 
in time stamp order, data distribution would be trivial. In 
that case, Add/Delete operations would simply update the 
distribution list, and Update operations would transmit 
messages to the destinations in the list. Because the 
operations do not arrive in time stamp order, different 
versions of the distribution list corresponding to different 
points in logical time have to be maintained. It is also 
necessary to keep a log of updates in order to furnish 
“late” subscribers with updates that are being issued but 
not sent to them, as was described in section 2. 

For the completeness of this approach we must address 
fossil collection issues as well. Having in mind that 
UpdateAttributeValue and ModifyRegion and 
consequently appropriate IM and DL layer operations 
adhere to lookahead constraints, memory reclamation can 
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be performed for distribution lists and logs that are older 
than the Global Virtual Time (GVT). Complete details on 
design of the DL layer can be found in [ 141. 

5 IMPLEMENTATION 
Multiple versions of different data structures are needed 
to correspond to different logical times. In our 
implementation we are using double linked lists, sorted by 
version time stamps. The data structures each federate has 
to maintain are shown in Figure 6. There is a multiple 
version data structure for each of the regions (u/s denote 
update/subscription regions) defined by the federate. Each 
element represents a set of extents for the region at a time 
given by the time stamp. Each of the cells in the routing 
space has a counter with its associated versions, as well as 
logs for Add/Delete operations, received from other 
federates. Instead of having one log, we have a log for 
every federate. This will speed up recording a new 
Add/Delete entry from a federate by not having to 
traverse log elements of other federates. More 
importantly, it will speed up finding a distribution list at a 
given time t, by not having to traverse irrelevant elements 
from some federates (i.e. elements whose time stamps are 
less than t). 

Regions and corresponding versions of extents. 

Federates and corresponding versions of ADD/DELETE operations, used j 

bY.!.!!e.Q!&Yv, .._. .._ 

Data structures for every cell in eat-h of the routing spare. 

Figure 6. Data structures for federate:FO. 

An UpdateAttributeValueQ7 issued for an attribute 
associated with an update region that is equal to a cell 
depicted above, causes a backward search through the 
Add/Delete logs. Traversed elements are : 
F4:8,5;F3:9,2;F2:3;Fl:S. The distribution list for this 
update is { F3}, and a message containing the update is 
being sent to F3. Note that we could have many log 
elements for F4 between (2,5), that would have to be 
searched in the case of a unique log, but not in our case. 

Issuing a ModifyRegion for an update region causes a 
new set of extents to be recorded, while the same 
operation for a subscription region requires additional 
actions as explained in section 4.1. 

There is an optimization where the search starts from the 
last log’s entry that has previously been accessed, which 
could eliminate the influence of distance between 
federates in searching through the log. Instead, we would 
have either constant time or time proportional to the log 
density ratios of different federates. 

6 PERFORMANCE EVALUATION 

6.1 WORKLOAD 
The benchmark application for our synchronized DDM 
(SDDM) system is a distributed simulation of moving 
entities (tanks/aircraft) across a simulated world (routing 
space(s)). Entities are simulated by federates that may 
reside on different processors. Each entity is associated 
with update and subscription region (1 cell for update, and 
6x6 cells for subscription regions). The path of each 
entity follows a random walk, with the entity equally 
likely to move in any new direction 
(north/south/east/west). Logical time stamps for 
ModifyRegionKJpdateAttributeValue are taken from an 
exponential distribution with mean of O.lsec and 0.2sec 
for update and subscription regions, respectively. Events 
are fired when the corresponding wall clock time (logical 
time + constant) is reached. 

The hardware platform we used was a cluster of Sun- 
Ultra1 workstations with 167 MHz SpareUltra processors 
connected by the 100 Mbps Ethernet. All messages are 
transmitted using (unicast) TCP/IP message sends. 

6.2 OVERHEADS 
According to algorithms presented in section 4, it is easy 
to conclude that SDDM overheads depend directly on DL 
and IM layer logs densities as well as on the distance 
between federates. Although they are highly application 
specific, our experiments were designed to give an upper 
bound like behavior by taking measurements at the 
federate which is trailing all other federates in logical 
time. In this way, the search through the logs is the most 
expensive for that federate, and represents an upper bound 
performance at the other federates. We will also see that 
SDDM scales well with the number of entities (upper 
bound is assumed again by associating a region with each 
object). More importantly, the overheads tend to 
asymptotically decrease toward unsynchronized DDM 
(UDDM) overheads. 

Figure 7 shows the number of entries traversed in the DL 
log as a function of the number of regions. That is easily 
translated to total search time during updates, using 
Figure 8 (this time includes recording a new update which 
takes 1 lus; we believe the irregular behavior of this 
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curve is due to variations in the time required by the C++ 
memory allocator). Since in our benchmark application all 
federates, except the one whose measurements are shown, 
have the same execution characteristics, the overhead for 
four/eight federates (three/seven DL logs) are 
approximately three/seven times larger than for two 
federates (one DL log). The UDDM’s behavior is 
equivalent to SDDM searching through 1 log element, as 
depicted. The search time initially increases as the 
number of objects (entities) increases because the number 
subscribed to a cell increases. However, after some 
number of objects, the curve starts to descend, since IM 
generates fewer Add/Delete operations due to the 
increased probability that the federate is already 
subscribed to the cell. 

Figure 7. Search time in the DL’s log as a function of 
the number of regions. 

Figure 8. Time to do an update as a function of the 
number of entries in the DL’s log traversed. 

There is no additional communication overhead to do 
updates in SDDM relative to UDDM, because operations 
on the distribution lists can be done locally. However, 
network traffic caused by the update messages themselves 
(as opposed to overhead messages) will, in general, differ 
between the two. SDDM may generate either more or less 
messages than UDDM, since SDDM and UDDM may be 

utilizing different distribution lists in order to determine if 
it is necessary to send an update. Figure 9 shows 
communication time during updates, and as for searching 
time, it increases in proportion to the number of federates. 

Figure 9. Communication time during updates. 

Figure 10 shows the overall time required to perform 
update operations for synchronized and unsynchronized 
DDM. It is apparent that SDDM performs almost as well 
as UDDM in this implementation. This is because 
communication overheads dominate the execution time. 

Figure 10. Total UpdateAttributeValue time. 
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8 SUMMARY 
A mechanism is described to realize properly 
synchronized data distribution in distributed simulations 
using logical time. It includes a connection lookahead 
approach that allows dynamic network topology changes 
where federates can advance further away from each 
other, yielding the better performance. Also, it advocates 

114 



a two-layer architecture that allows federates to have 
multiple overlapped regions, while ensuring data is routed 
to subscribers based on interest expressions and logical 
time semantics at the same time. This mechanism is 
applicable to a variety of data distribution schemes. An 
approach to implementing the interest expression layer 
(IM) for routing spaces such as those defined in the HLA 
is described. 

Initial performance measurements indicate the time to 
perform update operations in synchronized DDM is only 
slightly larger than unsynchronized DDM because 
communication overheads dominate the execution time. 
Moreover, the approach scales well and overheads tend to 
asymptotically decrease toward unsynchronized DDM 
overheads. Additional experimentation and optimization 
are currently in progress. 
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