Probabilistic Adaptive Direct Optimism Control in Time Warp

Alois Ferscha
Institut fiir Angewandte Informatik
Universitat Wien
Lenaugasse 2/8, A-1080 Vienna, AUSTRIA

ferscha@ani.univie.ac.at

Abstract

In a distributed memory environment the communica-
tion overhead of Time Warp as induced by the rollback
procedure due to “overoptimistic” progression of the sim-
ulation is the dominating performance factor. To limit op-
timism to an extent that can be justified from the inherent
model parallelism, an optimism control mechanism is pro-
posed, which by maintaining a history record of virtual
time differences from the time stamps carried by arriving
messages, and forecasting the timestamps of forthcoming
messages, probabilistically delays the execution of sched-
uled events to avoid potential rollback and associated com-
munication overhead (antimessages). After investigating
statistical forecast methods which express only the central
tendency of the arrival process, we demonstrate that ar-
rival processes in the context of Time Warp simulations
of timed Petri nets have certain predictable and consis-
tent ARIMA characteristics, which encourage the use of
sophisticated and recursive forecast procedures based on
those models. Adaptiveness is achieved in two respects:
the synchronization behavior of logical processes automat-
ically adjusts to that point in the continuum between opti-
mistically progressing and conservatively blocking, that is
the most adequate for (¢) the specific simulation model and
(#4) the communication/computation speed characteristics
of the underlying execution platform.
Keywords: Time Warp, Optimism Control, Forecast
Models, Petri Nets, CM-5, RS6000 Cluster, PVM.

1 Introduction

The distributed simulation of event occurrences by a
set of logical processes (LPs) executing asynchronously in
parallel generates the same sequence of event occurrences
that a sequential simulator would have praduced, provided
that every LP simulates events in nondecreasing times-
tamp order only. Although sufficient, it is not always nec-
essary to obey this “local causality constraint” (lec) [13]
because events may be independent of each other with re-
spect to their impact on the simulation future (concurrent
events). Generally, therefore, a distributed discrete event
simulation (DDES) insures correctness if the partial event
ordering produced by the LPs executing concurrently is
consistent with the total event ordering generated by a
(hypothetical) sequential, discrete event simulation [17].

0-8186-7120-3/95 $04.00 © 1995 IEEE

The Time Warp (TW) [16] DDES protocol, as opposed
to the conservative Chandy-Misra-Bryant (CMB) proto-
cols [20], optimistically ignores Icc by letting causality er-
rors occur, but employs a rollback mechanism to recover
from causality violations immediately upon or after their
detection. The rollback procedure relies on the recon-
structability of past states, which can be guaranteed by a
systematic state saving policy and corresponding state re-
construction procedures. Performance inefficiencies caused
by potentially excessive amounts of memory consumption
for storing state histories, or by the waste of CPU cy-
cles due to overoptimistically progressing simulations that
eventually have to be “rolled back” are not present in CMB
protocols. On the other hand, while CMB protocols need
to verify whether it is safe to process an event (with re-
spect to lec), TW is not reliant on any information coming
from the simulation model (e.g. lookahead). Furthermore,
the severe performance degrade imposed on CMB by the
mandatory deadlock management strategy is relieved from
TW in a natural way, since deadlocks due to cyclic waiting
conditions for messages able to make “unsafe” events safe
to process by exploiting information from their timestamps
can never occur. Another argument for the relaxation of
lcc and TW is the hope for better model parallelism ex-
ploitation and an acceleration of the simulation over CMB
since blocking is avoided.

Despite convincing advantages, TW is not devoid of
shortcomings. The rollback mechanism is known to be
prone to inefficient behavior in situations where event oc-
currences are highly dispersed in space and time. Such
“imbalanced” event structures can yield recursive rollback
invocations over long cascades of LPs which will eventually
terminate. An excessive amount of local and remote state
restoration computations is the consequence of the anni-
hilation of effects that have been diffused widely in space
and too far ahead in simulated time, consuming consid-
erable amounts of computational, memory and commu-
nication resources while not contributing to the simula-
tion as such. This pathological behavior is basically due
to the “unlimited” optimism assumption underlying TW,
and has often been referred to as rollback thrashing. In
distributed memory multiprocessor environments or clus-
ters of RISC workstations, i.e. environments where CPU

performance is significantly tempered by the communica-
tion performance, rollback thrashing can cause excessively
higher performance degrades (in absolute terms) as com-
pared to shared memory or allcache systems [5]. Of out-
standing practical interest for TW implementations in such
environments is therefore the reduction of communication
overhead induced by the protocol.

After presenting related work on optimism control for
TW in Section 2, empirical observations from a distributed
memory environment (CM-5) demonstrate that the com-
munication behavior of TW is the dominating performance
factor (Section 3). We show how the optimism in TW can
be related to the parallelism available in the simulation
model, which is extracted from observing message arrival
patterns along the input channels of LPs. After discussing
straightforward statistical methods for forecasting the next
message’s timestamp, a self-adaptive characterization pro-
cedure js worked out based on ARIMA (autoregressive-
integrated moving average) stochastic processes to enable
a direct, probabilistic and self-adaptive optimism control
mechanism.

2 Background

Attempts to “limit the optimism” in TW in order to
overcome rollback overhead potentials have appeared in
the literature. Sokol, Briscoe and Wieland [26] propose to
restrict optimistic simulation advancements to time win-
dows that move over simulated time. In their moving tzme
window (MTW) protocol, events e with an occurrence time
ot(e) > t + & are not allowed to be simulated in the time
window [t,t + A), but are postponed for the next time
window [t + A, t + 2A). Two events € and ¢’ with ot(e)
and ot(e') can therefore only be simulated in parallel if
| ot(e) — ot(e’) |< A. Naturally, the protocol favors sim-
ulation models with a low variation of event occurrence
distances relative to the window size. The implicit as-
sumption that event occurrence times are distributed ap-
proximately uniformly in space, the obliviousness with re-
spect to potentially “good” optimism beyond the upper
window edge, as well as the difficulty to determine A such
that enough events are admitted to make the simulation
efficient have been the main criticisms of this approach.

Opposed to MTW, the Breathing Time Bucket (BTB)
[27] employs adaptable “breathing” time cycles of variable
widths (time buckets). Each time bucket contains the max-
imum number of causally independent events determined
by the event horizon, i.e. the minimum occurrence time of
any event scheduled in the previous bucket in some LP.
“Risk-free” executions are attained by combining an opti-
mistic windowing mechanism with a conservative message
sendout policy, where the necessity of any antimessage is
avoided by restricting potential rollback to affect only local
history records (as in SRADS [8]). The Breathing Time
Warp (BTW) {28] protocol combines features of MTW and
BTB, based on the belief that the likelihood of an opti-
mistically processed event being subject to a future cor-
rection increases with the distance of its timestamp from
the global virtual time (GVT). Therefore, the sendout of

121

event messages with timestamps ‘distant’ from GVT are
delayed.

Other window-based optimism control mechanisms that
appeared in the literature are the Bounded Time Warp
(BTW) [30], which similar to MTW divides virtual time
into equally sized intervals, but depletes all events from ev-
ery interval before a new intervall is started, and MIMDIX
[19], which probabilistically invokes resynchronization of
LPs at regular time intervals to prevent LPs from exces-
sive virtual time advancement. Window-based throttling
[25] has also been used with the intent of preventing LPs
from executing too far, but in addition, aggressive objects
whose work has to be rolled back frequently are penal-
ized with temporary suspension (penalty-based throttling).
As such, the protocol described by Reiher and Jefferson is
adaptive in the sense that it reacts in a selfcorrecting way
to observed execution behavior.

The possibility of “adapting” the synchronization be-
havior of a DDES protocol to any desirable point within
the spectrum between pure optimistic and pure conser-
vative approaches has already been seen in [24]. Sev-
eral contributions appeared along those ideas, one of the
earliest being the Adaptive TW concurrency control al-
gorithm (ATW) proposed by Ball and Hyot [3]. ATW
temporarily suspends event processing if it has observed
a certain number of lcec violations in the past, ie. stop
LVT advancement for a time period called the blocking
window (BW). The size of BW is determined based on
the minimum of a function describing wasted computa-
tion in terms of time spent in a (conservatively) blocked
mode or a fault recovery mode as induced by the TW roll-
back mechanism. [n [12], an optimal CPU delay interval
is computed from an explicit cost model for the trade-
off between optimistically progressing and conservatively
blocking the local simulation, established from a topolog-
ical message arrival history map encoding the real-time —
virtual-time increments (decrements) per message arrival
as empirically observed during the simulation. The prob-
abilistic DDES protocol [10] makes use of event causality
probabilities to avoid communication overhead in TW by
probabilistic throttling. Assuming that the occurrence of
e in some LP; is probabilistically causal for a future event
¢’ with ot{e') = ot(e) + § in LP,, i.e. ¢ with Ple = €]
changes the state variables read by €, then in cases where
Ple — €'] < 1, conservatively blocking until it is safe to
process € in LP; hinders producing potentially “good”
simulation work. Clearly, in repeated executions of €, ¢’ se-
quences with Ple — €] < 1, an optimistic strategy could
have gained from a concurrent execution of ¢’ and e most
of the time. The protocol not only exploits locally (on a
per channel basis in every LP) the probability of the forth-
coming message being a straggler by taking into account
the implicit probabilistic causalities, but also the architec-
tural characteristics of the target platform like CPU speed
and communication latencies. The local adaptive proto-
col (LAP) proposed by Hamnes and Tripathi [14], based
on average LVT increments and average interarrival times

LP1
Figure 1: LP Simulation of a Stochastic Petri Net

(CPU time and simulated time) tries to estimate a real
time blocking window. In order to prevent deadlocks, but
also to break blocking conditions early, null messages are
needed in LAP. According to Rajaei et. al. ’s [23] classifi-
cation of possibilities to regulate the degree of “aggressive-
ness” and “risk” in a DDES, LAP falls into the category
swilching seamlessly between oplimistic and conservative
schemes, whereas the previously described adaptive proto-
cols are limiting optimism in TW.

Both ATW and the probabilistic protocol can be catego-
rized as direct optimism control mechanisms, as opposed to
indirect optimism control, where the individual LP’s LVT
progression is throttled via the availability of free memory.
The adaptive memory management (AMM) scheme pro-
posed by Das and Fujimoto [7] attempts a combination of
controling optimism and an automatic adjustment of the
amount of memory in order to optimize fossil collection,
Cancelback [15] and rollback overheads. The Cancelback
memory management scheme allows those memory spaces
that are used for storing the most recent state and input-
/output-history of some LP to be reclaimed selectively af-
ter TW has exhausted all available storage resources. Fos-
sil collection relocates memory used for storing state infor-
mation that will definitely not be reused by the rollback
procedure due to GVT progression. It has been shown [1]
that fossil collection in TW with Cancelback can always re-
locate enough memory for continuation of the simulation,
given that a certain minimum amount of memory is phys-
ically available [18]. At this point, TW performance will
be very poor due to frequent Cancelbacks. Increasing the
amount of available memory will reduce the Cancelback
frequency, such that absolute performance will have pos-
itive increments. But this at the same time will increase
the rollback frequency, such that the rollback overhead
will eventually start overwhelming the gain from reduced
Cancelback overheads. AMM, by controling the amount
of available memory, automatically adjusts to the “knee-
point” of optimal TW performance.

3 Reducing Communication Overhead in TW

To demonstrate the potential gain of an adaptive di-
rect optimism control mechanism for TW, we consider
the Stochastic Petri Net (SPN) simulation model that has
been used in [10]. The SPN (Figure 1) comprises two
places {(P1, P2) and two transitions (T1, T2) with expo-
rentially distributed enabling delays 7(T1) ~ exp(A1) and
7(T2) ~ exp(Az). Together with infinite server (enabling)

122

semantics, the SPN describes a continuous time, discrete
event dynamic system with inherent model parallelism [9].
(The occurrence time ot(T1(e;}) of T1 with the i-th token
is determined by t + X: where X; ~ exp(X:) is an expo-
nential variate with pdfx = Aie™*°. ot(T1(e;)) does not
depend on the presence or absence of any other token and
T1 can “serve” multiple tokens simultaneously, thus ex-
pressing a notion of parallelism among individual tokens.)
This example has been chosen since it is the smallest pos-
sible SPN structure able to express concurrency among
event occurrences, where the degree of model parallelism
can be scaled arbitrarily by simply adding tokens to the
SPN, while at the same time arbitrary load imbalance can
be imposed by mismatching timing parameters for T1 and
T2.

In order to exploit this model parallelism in a dis-
tributed discrete event simulation, the SPN model is de-
composed into two spatial regions which are assigned to
two LPs (LP; and LP;) as depicted in Figure 1. Two
directed communication channels replacing the SPN arcs
(T1, P2) and (T?2, P1), thus interconnecting LP, and LP>,
are required to carry messages containing time stamped
tokens m = (k,P,t) that were generated by the firing of
a transition. k& is the number of tokens, P the destina-
tion place, and t a copy of the local virtual time (LVT) of
the LLP at the instant of that firing of the transition that
produced the token. We call m a tokenmessage, since its
purpose - much like an SPN arc - is to propagate tokens
together with their timestamp from one spatial SPN re-
gion into another one that resides in a remote LP. In the
sample SPN, the firing of a scheduled transition (internal
event) always generates an external event, namely a mes-
sage carrying a token. On the other hand, the receipt of
an event message (external event) always causes a new in-
ternal event in the receiving LP, namely the scheduling
of a new transition firing in the local event list EVL. De-
positing tokens in a time consistent way into the target
places requires the employment of a DDES synchroniza-
tion protocol. Both, CMB and TW based protocols have
been studied in the literature to synchronize the execution
of spatially decomposed PNs [29, 2, 22, 6, 21].

3.1 TW Simulation of the SPN on the CM-5

We have implemented TW with the lazy cancella-
tion rollback mechanism for the concurrent execution of
PNs on the CM-5 using the CMMD message passing li-
brary.Executing the SPN simulation model in Figure 1
on the CM-5 empirically explains that communication is
the major performance pitfall of TW implementations on
distributed memory multiprocessors (Figure 2): The SPN
with one token initially assigned to a place does not con-
tain any model parallelism; the two LPs are blocked half
of the time. With two tokens in the SPN we have very lit-
tle model parallelism, and the LP simulation engines are
overwhelmed with communication (when A, = 1), the ra-
tio of execution time used for processing events is less than
12%; the rest is wasted for communication, data struc-
ture manipulations and blocking due to the lack of events

07

0.85

0.4

.36

°3

04

0.38

0.05

0.3

0.25

0.2

0.1

0.06

05

Percantage of CPU Time spent for Communkeation: LP1
T T *

T
lambda_1 1 4
Tambda_1 = 1/2 ==
lambda "1 = 1/4 -a--
lambda_1 = {/8 -

() 3

4 8
Number of Tokena (= Degree of Paralafism)
Parcontage of CPU Tims spent for Event Simulation: LP1
Y T

16 32

Ly
lamibda 1 = 1/8 ~— 7

I "

lambda_¥ =1 o

~r

4 8
Number of Tokens (= Degres of Paralelism)
Percertage of CPU Time spent for Rolback LP1
v Y

4 8
Number of Tokens (w Degree of Patakelism)

Py ge ol Time Waiting for gex LP1
Y

T

lambcla_l @ 1/2 ——
lambda_1 w 1/4 -a.-
lambds_t = 1/8 w—

1. L L

T
lambde_§ = 1 +—

4 g
Number of Tokens {w Degree of Parateliom)

16 32

07

0.36

03

0.4

0.36

03

028

(-]

0.45

Percertage of CPU Time spent for Communication: LP2
v T

T

L " 1 1

4 8
Number of Tokens (= Degres of Paraelism}
Parcantage ot CPU Time spent tor Event Simulation: LP2
T T

i " " X

4 8
Numbar of Tokens (= Degree of Paralelism)
Parcentage ol CPU Time spent for Rollback LP2

L 1 5 "

hlm\ba‘,‘ -ll -—
imbda 1 w1/2 ===
lambde_t = 1/4 -a--
lambda_y = 1/8 -#—

4 8
Number of Tokens (= Degree of Parallelism)
P ge of Time Waiting lor M. P2
T

4 T

lambda_1 w ¥/4 8-
lambda_1 = 1/8 -

4 8
Number ol Tokens (= Degree of Paraleliam)

Figure 2: TW Performance (lazy cancellation) of LP; and LPz on CM-5

scheduled in the local EVL. The situation improves when
twore tokens are in the system: with a parallelism degree
of 32 (32 tokens), about 25% of the CPU time can be used
for executing internal events, but still the communication
overhead is above 40%.

To investigate the impact of lec violations due to in-
homogeneons LYT increments in the communicating LPs
on communication overhead induced by rollback we can
{in our example) control the balance of LV T progress by
the parameter dy: with X = l{= Ay) we have a balanced
situation. Service at T1 takes on average as long as at
T2 . Setting A = 1/2 makes T1 twice as fast (with re-
spect to LYT progression) than T2, i.e. the enabling time
is twice as long; the higher the expected enabling time of
T1 {which is ;L), the more tokens will reside in P1 (in
steady state) enabling T1. The charts for rollback costs in
empirically show that the smaller A, the more
rollbacks are induced in LP;, imposing increasing roliback
overhead on the CPU executing LP,. Clearly, an LP with
small IVT increments followed by an LP with high LVT
increment will frequently force its successor to rollback,
given they work at the same event processing speed. From
the waiting time charts in Figure 2 it is observed, that a
shift of load happens from LP; to LP; with increasing Ay,
giving LP; the chance to spend more CPU time on event
execution. This is, unfortunately, at the expense of LPy,
which is forced to idle for load (tokens).

A consequence, in order to improve overall TW perfor-
mange, is that rollback (and consequently communication-
) overhead has to be avoided as far as possible. Reduc-
ing the absolute number of rollbacks/communications is
the main issue of an optimism control mechanisin in this
context. Moreover, since the event structure of general
simulation problems cannot be assumed to be stationary
over the whole simulation interval, the capability of LPs to
adapt to phases (where different degrees of optimism are
advisable) emerging at runtime is demanded.

Figure 2

3.2 Gaining from Direct Optimism Control

The (synchronous) parallel execution of the sample
SPN is illustrated in Table 1. In step 0, both LPs use
precomputed random variates from their individual fu-
ture lists and schedule events (EVL). (Let the future
lists be FL(T1) = (0.37,0.17,0.22,0.34,...) and FL(T2)
= {0.51,0.39,0.42,0.05, ..) respectively.) In step 1, LP;
and LP; execute their respective earliest internal events,
generating external events (messages with copies of LVT)
to be sent to the other LP, etc. At the beginning of step 3,
LPz at LVT = 0.56 (= LVT at the end of step 2) faces the
straggler {out-of-timestamp-order message) (1;P2;0.37) in
its input queue IQ; the next element in LP, s future list is
0.42. Since the effect of the straggler is in the local future
of LPy, ie. (T2@(0.37 + 0.42)), the lazy rollback strategy
applies and rollback is avoided at all. The event {T2@0.79)
is executed in that step, setting LVT = 0.79, and the out-
putmessage (1;P1;0.79) is generated (output queue, 0Q)
and sent at the end of the step. U nfortunately in step 4, a
new straggler (1;P2;0.73) is observed in 1Q of LP;, but now

124

with the effect that at time t = 0.73 +0.05 < LVT = 0.79
LP, is forced to roll back (Figure 1, top). Indeed, LP»
in step 3 generated and sent out (1;P1;0.79) without con-
sidering any information whether the implicit optimism is
justified or not. If LP; would have observed that it received
“on the average” one input message per step, with an “av-
erage” timestamp increment of 0.185, it might have estab-
lished a hypothesis that in step 4 a message is expected
to arrive with an estimated timestamp of 0.37+0.185 =
0.555 (= timestamp of previous message + average in-
crement). Taking this as an alarm for potential rollback,
LP; could have avoided the propagation of the local opti-
mistic simulation progression by e.g. delaying the sendout
of (1;P1;0.79) for one step. This is illustrated in Figure 1,
bottom: LP; just takes the input message from [Q and
schedules the event (T2€0.79) in EVL, but does not pro-
cess it. Instead, the execution is delayed until the hy-
pothesis upon the next message’s timestamp is verified.
The next message is (1;P1;0.73), the hypothesis can be
dropped, and a new event {T2@0.78) is scheduled and pro-
cessed next. Apparently two rollbacks and the correspond-
ing sending of antimessages could be avoided by applying
a direct optimisim control scheme, that employs blocking if
there is empirical evidence (in the statistical sense) for a
potential future rollback. In the next section we develop
an adaptive optimism control mechanism, that by monitor-
ing the arrival process of messages “on-the-fly” determines
whether to let the simnulation make full use of the available
parallelism, or whether to throttle the optimism in order
to prevent from costly rollbacks.

4 Probabilistic Direct Optimism Control

An indirect optimism control mechanism like AMM,
although successful in shared memory environments, ap-
pears inappropriate for distributed memory systems since
it potentially increases the number of rollbacks and thus
the communication overhead. Instead, optimism control
directly via throttling the simulation engine is advisable
for distributed memory multiprocessors.

To be able to directly control the optimism in TW,
each LP in our approach monitors the LVT progression
on each of its incident channels, i.e. logs the timestamps
of messages as they arrive. From the observed message
arrival patterns, each LP formulates a hypothesis on the
timestamp of the next message expected to arrive, and
~ related to statistical confidence in the forecast value -
by means of throttling adapts to a synchronization behav-
ipr that is presumably the best tradeoff among blocking
(CMB} and optimistically progressing (TW) with respect
to this hypothesis in the current situation. Throttling is
done probabilistically in the sense that blocking is induced
with a certain probability.

Assume that the history over the last n message arrivals
Ak = (L3(Micnt1), E8(Mimnt2), ... ts(m;)) is maintained
in LP; for every (input) channel chy,, and that £s(mi41))
1s an estimate for the timestamp of the forthcoming mes-
sage mit1. Let the confidence 0 < ((f3(miyy))) < 1.
express the “trust” in this estimate. Then LP; having

TW with unlitaited optimism
Sisp TPy LFa

i3] VT P} EVL OB RB B VT P2 EVL OB HE

) - G.00 2 Ti@o.17; - = .06 1 TIBOET -
TAE0.AT
1 - 17 1 T1@0.37 1;)] — .51 0 - T Pliosy
2 {0 0.37 1 T1®D.73 1 3 (1, P3;, 017 3 0,58 o - { 13 P1; 0.88
3 {3 9.73 1 T1H0.90 ,1; B D) {1; Pa;037) 0.79 0 e {1; P1; 0.78
E) {13 4,90 1 TI®1.72 ; P am) {4, P2 073y D.73 2 Ti®0.78; {1 Py 079 Y
T2@0.7%
5 { -4 PLLOTe) 0.90 B . - . (1 P2 090) 0.78 2 T2@0.7w; {13 P1; 0.7R)
TA®1.7TR
TW with “controiled” optimism 7
Step LPY Py

1B VT Pi BVL OB RB 18 [[F] BEVL OB RE

i — 0.00 2 Ti@n.17; — — 0.00 1 EE TR N S,
| T1@o.37
i

i . 5.17 1 T1&0.37 1 P2 0,17y o~ 0.81 [= {1; PL; 0813
) {1 .37 1 TIR0.TY i; P2 0.37) (1 P30Ty 0.56 0 e (1 P13 0.56)
ES [0.73 1 Ti190.90 1; P2; 0.73) {1 P2 G377 056 1 TIRo .79 -
4 — 9.90 0 -~ 1; P2 0.90 3 (1 P23 073) .78 1 TIWO.TR (1 Py 0.78)

Table 1: Reducing Communication Overhead with Probabilistic LP Simulation

program PADOC Simulation.Engine()

1 initialize();
2 while GVT < endtime do
2.1 for all arriving messages m do

update{arrivalstatistics, m);

if ts(m) < LVT /* m affects local past */

then /* rollback */
restore.earliest state before{ts(m});
generate_and.sendout (antimessages);
else chronologicalinsert{m, IQ});
endil;
od;
2.2 ts = forecast{arrivalstatistics);
2.8 ¢{ts) = confidence.in forecast(arrivalstatistics);
2.4 if ts(first{(EVL)) < ts(first_nonnegative(IQ})
then
it {1 = Pelexec first(EVL)}) < rand()
then /™ delay execution */
delay(5);
else process(first(EVL));
endif;
else process(first_nonnegative(1Q)};
endif;

2.5 sendout{outputinessages);
2.8 fossil.collection{advance GVT(});

od while;
Figure 3: PADOC Simulation Engine.

scheduled ¢, as the transition to fire next, say at of(t,),
would execute the occurrence of £, with some probability
Plexecute (t,@ot(t,})], but would block for the average
amount of CPU time 5 (used to simulate one transition
firing) with probability 1 — P;. The algorithm sketch of
the PADOC (Probabilistic Direct Optimism Control) LP
simulation engine in Figure 3 explains further details.
Note that in contrast to other adaptive TW mecha-
nisms that compute an optimal delay window for blocking
the simulation engine [3, 14, 12], the PADOC engine blocks
for a fixed amount of real time (i.e. 5), but loops over the
blocking decision, incrementally establishing longer block-
ing periods. By this discretization of the “blocking win-
dow” PADOC preserves the possibility to use information
on the arrival process encoded in the timestamps of mes-

125

LVT™ tslm)
3, 8. : T Bl)» sbn 0BG .. 5,)

w-—f;u—? MM:——L——EO—M%

Simutated Tino

¥ Brecwied Transition Fisiag [Scbedulod Transition Firings ‘ Tokenmessage Arrival

Figure 4. Message Timestamp Forecast

sages that arrive in between blocking phases. Algorithms
based on variable size blocking windows fail to make use
of intermediate message arrivals.

4.1 Incremental Forecast Methods

Predicting the timestamp of the forthcoming message
4 after having observed n arrivals is explained in Fig-
ure 4. Basically, by statistically analyzing the arrival
instants ts{mi_n41), t8{Mi—ns2),.. . ts(m;), an estimate
a(mgﬂ) = ts(mi) + 8(61,63,”.5,,) is generated, where
Ok = ts(mipngr) —ts(mi—nyr—r) is the difference in times-
tamps of two consecutive messages. (Note that §x is neg-
ative if m;_n4x is a straggler.)

The choice of the size of the observation history n as
well as the selection of the forecast procedure is critical for
the performance of the PADOC engine for two reasons:
(i) the achievable prediction accuracy and (ii) the com-
putational and space complexity of the forecast method.
Generally, the larger n, the more information on the ar-
rival history is available in the statistical sense. Consider-
ing much of the arrival history will at least theoretically
give a higher prediction precision, but will also consume
more memory space. ntuitively, complex forecast meth-
ods could give “better” predictions than trivial ones, but
are liable to intrude on the distributed simulation protocol
with an unacceptable amount of computational resource
consumption. Therefore, incremental forecast methods of
low memory complexity are recommended, i.e. procedures
where £3(mis2) can be computed from the previous fore-
cast £3(mi41) and the actual observation ts(mi41) in O(c)
instead of O(cn) time.

Arithmetic Mean If no observation window is imposed
on the arrival history, but all observed §;’s are considered,

Tta1.0(del) T2=3.0(det) NoTokens=4 T1-0xp(1.0) (oxp.) T2=8.0 (det) NoTokens «4

2 T1=1.0 (dot) T2-0xp(1/8.0) (0xp.) No Tokens = 4

T1-exp(10) (mxp) T2-0xp{1/2.0)(0xp) NoTokens=4
A A A

30
Anivals a1 LP2 — Amivals MLP2 — Artivals at LP2 ~ {

20 20 20
10
o
10
20 20 20

[T S——— 30 . - a0

50 100 150 200 250 300 50 108 150 200 250 300 50 100 150 200 250 300
Message number number number

Figure 5: Arrival Processes as observed at LP; (CM-5)

-~ " .
then the observed mean A; = ;l; =1 d; as an estimate of

the timestamp of the forthcoming message has a recursive
form. Upon the availability of the next time difference
Snt1, ts(migy) can be computed incrementally as:

—~

Dn + 6n
Ay = 2ont ont1

n+1

Exponential Smoothing The arithmetic mean based
forecast considers all observations é; as equally “impor-
tant”. A possibility to express the history as an exponen-
tially weighted sum {e.g. give recent history higher “im-
portance” than past history) is the exponential smooth-
ing of the observation vector by a smoothing factor o
(]l —a| < 1). A in this case has the incremental form

8n-f—l = C\“Sn—fl -+ (1 - Cy)zn

o~
-

1 gives a high weight to the last observation, and
potentially yields a high variation in the forecasts. o ~ 0
causes intense smoothing, making forecasts less reactive to

shocks in the arrival process. We use the smoothing factor

o

n—1

o= mi"ﬁe(m,o.z,..,,0.9)(2[5i+1 - A (@),

=1

which is periodically readjusted during the simulation.
Median Approximation The virtual time increments in
general cannot be assumed to yield a nonskewed, unimodal
distribution of values, as is implicitly assumed when the
arithmetic mean is used as an index of central tendency.
Particularly, if the frequency of time increments has a pdf
skewed to the left, then the arithmetic mean is higher in
value than the median, and would thus overestimate the
next message's timestamp. A consequence would be “over-
pessimism” in the blocking policy. Forecast based on the
median would use the estimate

5 n—=1 n ()dd
3
30(3) +o(2gn)) ehe

b

which cannot be computed incrementally, as new times-
tamp increments have. to be inserted in a sorted list of ;s
to find the value of the median afterwards. As an approx-
imation for the median we have developed the following

126

I Exazculion | FSimulation Zo-Rollback
Time [LPi | LP2 LP1 TP2
DD TW 0.46 12.7 13.7 5.8 16.1
TWEM G.60 12.5 33.4 12.1 5.7

| TWES C.65 16,4 359 115 53
TWEEA 052 2.7 1.0 6.8 5.4

sSD TW 0.68 109 13.8 5.8 17.2
TWFM .84 19.2 3.0 6.8 8.9
TWES 0.96 15.4 37T 6.8 8.4
TWFA 0.64 19.8 41.8 5.8 6.8

DS TW 0.64 10.7 13.8 8.4 17.9
TWEM 1.51 22,1 356 8.2 BT
TWES 0.66 17.1] 6.0 8.2
TWHA 117 24.3 43.5 5.8 95

S8 TW 0.91 11.0 15.0 11.7 15.0
TWEM 0.57 16.6 37.6 7.3 6.9
TWAS 1.03 i5.8 7.9 7.4 9.6

A 0.91 FEN] 41.6 6.8 9.5

Table 2: TW with M, S and A for CM-5.

supplement. Let M = %‘%—‘}‘f—‘, which is a constant for

every distribution (e.g. for the exponential distribution we
have (+1n2)/% =In2). Then with

5y _ Median(és + ds—1+.. .+ bsnt1)
M(S)- %(Js+6<s—l+---+6.9—n+l)

we find a forecast based on a median which is approxi-
mated by the arithmetic mean as

A =/TI;1;(6, + 4 6)

The performance of the three “straightforward” forecast
methods (arithmetic mean (M}, exponential smoothing (S)
and approximated median (A)) applied to the SPN in Fig-
ure 1 with 4 tokens in the initial marking and different tim-
ing scenarios is summarized in Table 4.1 (generated using
the N-MAP virtual processor simulation tool with CM-5
performance settings [11]). In the scenario referred to as
DD both T1 and T2 obey deterministic, but imbalanced
timing (7(T1) = 1, 7(T2) = 8). In the second case, SD, T1
has stochastic timing with 7(T1) ~ exp(1), but T2 is deter-
ministically timed as 7(T2) = 8. Similarly, DS represents
7(T1) = 1 and 7(T2) ~ exp(1/8), whereas SS represents
7(T1) ~ exp(1), 7(T2) ~ exp(1/8). Note that in any case
LVT progression in LP2 is (on average) eight times higher
than in LP; causing significant load imbalance and roll-
back (communication) overhead. (All forecast confidences
are kept constant at (= 0.9 for comparability, (TW) refers
to TW with unlimited optimism.) Sample arrival process
traces as collected on the CM-5 are depicted in Figure 5 for

2 2 2
- =2
=3 I © i “
5 S - =
o 1 g - o L P L 1 g }
T T T T T M et] e LA *
o 1T I T ™ 1 . '
s TR T & 9 =1 S
o 16 20 30 40 0 10 20 30 40 o 0 L 3
2 . 2 L:g) 40 ° 10 Lg:@g an 40
i ° i s
o 2 Aot hor f} 1) 1
B - i’ { i o]’ pid T ‘“- AT "']l
Qe LI o TUTTIN L !»‘1 b d i l' l\]
§id °] 1 R i ™ by '
£ o«
i i = 7
D.(? ™~
- °
L= -3
< * Q@ @
- Q@
o 1 20 30 40 9 10 20 30 40 [} ® 20 30 4 o 1 0
2 2, &, o o 2, 30 40

Figure 6: Autocorrelation and Partial Autocorrelation

the two LPs for DD (left), 8D [balf-left), DS (half-right)
and SS (right).

Since the timestamp differences in DD toggle between
4 = 0and § = 9 = 8+ 1, this deterministic behavior repre-
sents a neutral case for all methods, e.g. method M repeat-
edly overestimates and underestimates the next timestamp
and thus cannot gain over TW in the long run. Overall ex-
ecution time grows, however, since forecasting intrudes the
simulation engine (stalls CPU cycles). The first quartuple
of lines in Table 4.1 explains the order of intrusion induced
by the various methods. In the case SD (second quartuple
of lines in Table 4.1), method A finds the highest chances
to avoid rollbacks and can outperform U. For DS, method
M finds an absolute stress case, yielding a slowdown as
compared to U. If the arrival process has two stochastic
components {SS) both M and A can outperform U. The
most important observation from Table 4.1 is, that all
the methods are able to increase the percentage of overall
execution time spent for simulating events over the com-
munication overhead induced. Thus the optimism control
schemes are even more promising for distributed memory
environments, for which the communication/computation
speed ratio is smaller than on the CM-5, e.g. a cluster of
RISC workstations.

The main drawback of the forecast schemes M, S and
A are that they cannot cope with transient “patterns” of
arrivals, but do respect only a central tendency of times-
tamp increments. Arrival patterns that show certain regu-
larities, or at least some correlation in the time increrments,
can vield to stress cases as was seen above. Therefore fore-
cast methods able to identify correlations and to predict
next events at the maximum likelihood of those correla-
tions are demanded.

4.2 ARIMA Forecasts

In this section we follow the idea of considering the ar-
rival process as an unknown stochastic processes {X} =
(X1, X2,...X5), where X1, X>,...X» are a series of in-

127

5)

Function of Arrival Processes at LPy (CM-

DD

™™W ™W
A R‘{VM A

SD

T™W W
AF ’{{M A

sy

§E BE 5 & B

- Stemication

@ communication . Rolfback {:,] Blocking

Figure 8: TW with ARIMA for RS6000 Cluster

stances of a random variable. Specifically X, == § — &
are the empirically observed timestamp differences, trans-
formed by the series mean 4. If {X,} are statistically
dependent variables, the arrival process can be modeled
by an integrated autoregressive moving average process

ARIMA[p, d, q] (see e.g. [4])

H(B)VX, = 0(B)e. (1)
where V4 = (1 — B)? is the d-fold differencing operator,
and B the backward shift operator defined by B'X,
X¢wi 2 =0,41,42, ..., This means that fore.g. d = 2, the
process Y; = V2 X, = X, —2X,_; + X, is assumed to be
a stationary ARMA[p, q] (=ARIMA[p,0, ¢]), composed by
a pure autoregressive process of order p (AR[p]} explaining
Y, as a dependency Y; = ¢ Vi1 +¢2Yiez+. . .+ ¢p Yipter,
€: being a white noise random error, and a pure moving
average process of order ¢ (MA[q]) that explains Y; as a
series of i.1.d. white noise errors Y; = €y + 01€¢~1 +02€c2 +
oo+ Bg60—q with E(e;) = 0, Var(e;) = ¢ and E(Y:) = 0.

Looking at the arrival process as obtained on the CM-5
for LPy of the SPN in Figure 1 (Figure 5) and the cor-
responding autocorrelation (ACF) and partial ACF (Fig-

LVT

20 125 130 135 140 145 150 155 160

LvY
ts (Illz) tsGniy) tslm;) ﬁ(mh,) Blm)
2 A B
k —H—+—r—t -t t+—t—H—1 b ‘==l= ‘: =1l.=== # +— i
0 H
H
1 1
> 0.9
£} | P 0.9
3 :.: i 0.8 :
o . 0.7 !
ke 0.6 3 0.6 '
B 0.5 Fel 0.6 p
= 0.4 a3 .4 5
:§ 0.3 E 9.3 H
E‘: 0.2 o 0.2 H
0.1 chnfidance = 0.95 —— & 0.4 donfidenca = 0.30 ~—m
o H
, /

20 125 130 135 140 145 150 1585 150

Figure 7: Probabilistic Direct Optimism Control with ARIMA Forecasting

ure 6), we find high positive correlation after every fourth
lag for DD (Figure 6, left) obviously due to the four to-
kens in the SPN. The case SD (Figure 6, half-left) leads
us to hypothesize that the arrival process is AR, since we
find ACF dying down in an oscillating damped exponen-
tial fashion. This is also intuitive because the determinis-
tic component in the process (7(T2) = 8) dominates the
stochastic one (7(T1) ~ exp(1)). DS (Figure 6, half-right)
gives evidence for a suitable representation of the the ar-
rivals as a MA process, becuase ACF has a single spike at
lag 1, and PACF dies down, etc.

For the automated characterization of the arrival pro-
cess as an ARIMA[p,d, q] process, the classical Box-
Jenkins procedure can be adapted:

1. Model Order Identification First, the order of
the ARIMA model, [p,d,q] is identified. Since the the-
oretical partial autocorrelations gk—1(k) to the lag k van-
ish after some k > p for a pure AR[p], the order of
such a process can be approximated from the empirical
partial autocorrelations ri_i(k). Similarly, for a pure
MA[g], the theoretical autocorrelations g(k) vanish after
some k > gq, such that again the empirical data (auto-
correlations r(k)) can be used to approximate the order.
For a combined ARMA[p, q] process, the Akaike-criterion,
ie. the combination (p,q) that minimizes AIC(p,q) =
log 73, + 2(p + ¢) approximates the order. (o2, is a
Maximum- kaellhood estimate of the variances o; of the
underlying white noise error.) The Akaike-criterion has a
more general form for ARIMA[p,d, q] processes. Indeed,
as intuitively recognized, we find best order fittings e.g.
for SD as ARIMA([3,0, 0] or for DS as ARIMA[0, 0, 4].

2. Model Parameter Estimation In the next step,
the parameters in (1) (¢1,...,ép and 01,.. .,0,) are de-
termined as maximum likelihood estimates from the em-
pirical data, i.e. the estimates ¢1,. ,eﬁp and 91, 9q
that mmlmlze the square sum S’ (¢1, . ,¢p, by,.. Bq) =

oo &2 of the residuals & = S —p1ds—1—.. -¢p5c_p
16¢—1 — ... — B48¢—q are used as the model parameters.
3. Model Diagnostics/Verification A well know
method to validate the model with the estimates ¢1,...,¢p
and 0],...,0:, is the Portmonteau lack-of-fit-test, which

128

tests whether the residuals £; are realizations of a white
noise process. The confidence level (1 — a) of the test can
be used as a measure to quantify the “trust” in the model
and, as a consequence, in the forecast.
4, Forecast Finally, the (recursive) Durbin-Levinson
method provides an algorithm for the one-step (or k-step)
best linear prediction for X 1

At a confidence level { = (1 — a), the PADOC sim-
ulation engine (Figure 3, in Step 2.4) executes the next
scheduled a transition firing with probability

—(AYI=te
Pelexec first(EVL)] = 1 — (1 + ¢ T0-01007)~ (2)
otherwise the CPU is blocked for 3 time units. Figure 7

explains the blocking probability (2) related to the confi-
dence level ¢ = (1 — o): The higher the confidence ¢, the
steeper the ascent of the delay probability as LVT pro-
gresses towards ts. (Steepness of the sigmoid function in
Figure 7 (left) with ¢ = 0.95 is higher than in Figure 7
(right) ¢ = 0.90). Note also that after LVT progression in
LP; has surpassed the estimate ts (Flgure 7, right), delays
become more and more probable, expressing the increasing
rollback hazard the LP runs into. A general observation
is that with ¢ &~ 1, PADOC imposes a synchronization
behavior close to CMB, whereas with ¢ = 0, optimism is
as unlimited as in (plain) TW. Moreover, by periodically
rebuilding the ARIMA model, the PADOC scheme adapts
the LP to a synchronization behavior directly reflecting the
inherent model parallelism, and also copes with transient
arrival processes.

Clearly, the ARIMA approach for optimism control is
much more expensive in space and execution time than the
previous methods M, S and A. Since the implementation
of steps 1. — 3. of the Box Jenkins procedure is still un-
der way, we have provided the simulator with an ARIMA
model computed off-line for the performance comparison
reported in Figure 8. For the SPN in Figure 1 with a model
parallelism of 100 (i.e. 50 tokens in P1 and P2) and an N-
MAP execution with RS6000 and PVM 3.2 performance
characteristics, we find the ARIMA based method able to
(significantly) outperform TW (and all other approaches
not shown), while being at least as good as those in stress

cases like DD. The same scenaric executed for the CM-
5 revealed about the same performance characteristics for
the ARIMA method, whereas M, 8, and A gained less. M
and 8 tend to more consistent forecasts and therefore bet-
ter performance as model parallelism increases, whereas
ARIMA is not significantly sensitive to model parallelism.

5 Conclusion

A probabilistic direct optimism control {PADOC)
mechanism for the TW distributed discrete event simula-
tion protocol has been presented. Our simulation engine,
by temporarily blocking the processing of internal events,
avoids the generation and sendout of messages in states for
which it is likely that they will have to be “rolled back”.
Vice versa, every LP tends to await messages that influence
the local causality among events with high probability, in
order to avoid causality violations. A statistical analysis
of the message arrival history is used to make forecasts
for the timestamps of future messages, thus enabling ev-
ery LP to adapt its local synchronization behavior to the
most efficient strategy with respect to the anticipated fu-
ture. Two classes of forecast methods are studied: (1) for
estimates based on (weighted) means, efficient (incremen-
tal) procedures can be implemented causing negligible or
minor intrusion on the simulation engine. Those meth-
ods {arithmetic mean, exponential smoothing and median
approximation) however cannot cope well with seasonal,
nonstationary arrival process, and are thus prone to patho-
logical behavior. (i) at the cost of higher computational
complexity, more sophisticated forecast methods with a
much higher prediction precision in the case of periodic or
seasonal {correlated) channel (virtual) time increments can
be used. Specifically, the time increment process can be
modelled as an integrated autoregressive moving average
process (ARIMA[p.d,q]), and the probabilities for delay-
ing the execution of the next internal event can be directly
related to the confidence in the model approximation.

The PADOC mechanism gains adaptiveness in the sense
that, independent of the ratio of the communication and
computation speed of the target platform, the synchroni-
sation policy is adjusted automatically to that point in
the continuum between TW and CMB protocols, that is
most appropriate for the parallelism inherent in the simu-
Jation model. Forecasting based on ARIMA[p, d, g] models,
moreover, makes the simulation engine also able to adapt
to transient (nonstationary) arrival processes.

Acknowledgements This paper was elaborated while the
author was visiting the University of Maryland, supported
by a grant from the Academic Senate of the University
of Vienna. The use of the resources at the Computer
Science Dept. and the CM-5 at UMIACS are gratefully
acknowledged. The work was partially supported by the
Austrian Federal Ministry of Science and Research under
grant CE1 GZ 308.926 and the Oesterreichische National-
bank under grant No. 5069. The author wishes to thank
the anonymous referees for valuable comments on a pre-
liminary version of this paper.

129

References

ol

0]

)

4]

{s]

(s}

i

{8}

{9

{10}

{1y

{12]

{13}

{14]

{15}

{18)
[

{12}

[19]

fan}

21]

{22)

{23}

{24)

[35]

fz8]

(27}

fa8}
[29}
[30]

1. F. Akyiidis, L. Chen, R Das, B. M. Fujimoto, and R. F. Berfosa. The
Bffoct of Memory Capacity on Tima Warp Performance. Jowrnst of Paraiinl
and Distridsted Compuitng, 18{4):411-423, Angust 1983,

H. H. Ammar and 8. Dang. Timz Warp Simulation of Stochastic Petri
Nats. In Proc. 4th Intera, Workidop on Petrs Nais snd Porformance Modols, pages
188 ~ 195, IBEE-US Press, 1991,

. Ball and 8. Hoyt. The Adaptive Time-Warp Coancurrency Contrsl
Algorithm. Distribeied Simulation. Proc. of the SCS Mullizonfaromes on Disiribuisd
Simslation, pagas 174 — 177, 1990, Simulation Serisa, Vol 32, Mo. 1.

. 1. Brockwell and R, A. Davis. Time Series: Theory and Methods, Springer
Varlag, New York, 1991,

Ch. D, Carothers, R. M. Fujimoto, and P. England. Bffect of Communi-
cation Overheads on Time Warp Performance: An Bxparimantsl Study.
Froc.of the Bth Workshep on Peralfel and Disiriduied Simslation, pagre 118135,
1994,

G. Chiola snd A. Farscha. Distributed Simulation of Patei Nabs,
Parsllal and Disiriduied Tochnoalogy, 1{3):33 - 58, August 1993,

s8R

S. R. Das and R. M. Pujimote. An Adaptive Mamory Managemant Pro-
tocol for Time Warp Paralisl Simulation. Pree. of the 1394 ACM Sigmeirin
Confaranse on Mossurament und Modoling of Computer Systoms, pagas F01-310,
1904,

Ph. M. Dickens and P. F. Reynsids. SRADS with Local Rollback. Hras.
af $ho SC3 Multizonference on Disxiridufed Simwlalion Vol 83 (1} pagrs 181184,
1990,

A. FPerscha. Concurrant Baacution of Timad Peotri Nets. Feoa of the 1334
Winter Simulalion Conforsnce, pagns 33% ~ 356, 1904,

A. Perscha and 3. Chicla. 8atf Adaptive Logical Processes: The Proba.
bitistic Distributad Simulation Protocpl. Froa. of thn 27D Anneat Simulation
Symporiues, pages 78-88, 1994,

A. Perscha and 1. Johnson. Performancs Orionted Dovelopment of SFMD
Programs Based on Task Structure Specifications. Paralle Procsssing:
CONPARS~VAPP VI, LNCSE 854, pager 5165, Springer Varlag, 1994,

A. Perscha and J. Léthi. Estimating Roliback Qverbaad for Optimism
Contrel in Time Wacrp. Pros. of the 36h Annusl Simelation Symposivm, LOHG,
to appear,

B. M. Fojimota. Paratlel Discrets Evant Simaunlation. Comsiwnicatisns of the
ACM, 32(30)2:30-83, Ootobar 1380,

Donstd O. Hamnes and Annand Tripathi. Tovestigations in Adaptive Dis-
tributed Simulation. Prococdinge of the 8Ih Workshop an Paralts! ang Disteibuied
Simalotion (PADS '94), pagas J0-33, 1694,

0. Jefferson, Virtual Time LI The Canceiback Protocel for Storage Man.
agomant in Time Warp. Proc of the 9(h Annual ACM Symposism on Frinsiples
of Disteibuted Computing, pages 7800, 1980,

O, Jafiszson and H. Sowisesl. FPast Consurrant Bimelation Usking the Time
Warp Mechanism. Distribated Stmuintion 1985, pagns Bi-69, 1985,

D. A. Jeffarevn. Virtual Time. ACMH Tra it
and Sysloms, 7(3):404-42%, Taly 1985,

¥i-Bing Lin and Brane R, Preiss, Optimal Memory Management for Timao
Warp Paraliel Simulation, ACM Transactions sn Modeling and Computer Fim-
station, 1{4):283-307, October 1951,

V. Madisetti, . Hardaksr, and B. Fujiracto. The MIMDIX Qperating
Hystem for Parallsl Simalation, Preo. of the ath Waerkshap on Parsllel and
Distriduted Simulation, pagme 06 - 74, 19493,

1. Misra. Distributed Discreta-Evant Simuistion, ACH Compsting Swrvoys,
18(1):39-65, 1986,

D. Nicol and W. Mao. Aubomated Parallslization of Timed Petri-Nnt
Simulations, submitted for pablication, 1964,

on Progr ing L

D. M. Nicol snd 8. Roy. Parailel Simuistion of Timed Petri-Nats, Proc, of
the 1904 Winter Simulotion Caafersnce, pages 874 ~ 583, 1991,

H. Rajnoi, B. Aysni, and L. B. Thoratli. The Local Tinie Warp Approach
to Paratlel Simulation. Proc. of the gth Workshop on Farallsl and Distributed
Simulation, pages 119~128, 19%3.

P, F. Reynolds. A Spectrum of Options for Pacallal Stmnlation. Prec. of
the 1988 Wintor Simslalion Confersace, pages 335 ~ BB, 1HE8.

P. Reiher and D, Jeffarson. Limitstion of Optimism in the Time Warp
Opreating Syster. Proc. of fho 1983 Winter Simulatinn Confernnce, pages 765
~ 769, 1989,

L. M. Sokel, D. P. Briscos, and A, P. Wieland., MTW: A Su‘nteg" for
Beheduling Discrete Simnintion Events for Concnrrant Bxecution. Proc. of
fAs 5CS Multicanf. on Distribetod Simulation, pages 34 ~ 4%, 19R8,

7. Steinman, SPEBRDBES: A Multipis-Synchronization Eavirowment for
Parallot Dincrste-Bvent Simulation, Interaalional Jesrnal in Compulsr Simw-
fation, 2:251 ~ 288, 1992,

7. 8. Steinmann. Broathing Time Warp. Proc. of the 7th Workskop on Parallal
and Distributed Simslation, pages 109-118, 1993,

G. S. Thomas. Parslisl Simulation of Petri Nets. Techunical Heport TH
91-08.08, Dep. of Computer Science, University of Washington, May 1991,
St. Turner and M, Xu. Performance Evatuation of the Bounded Time
Warp Algorithm. Procoodings of the 61" Workshop on Porallel and Distributed
Simuiafion, pages 117-128, 1993,

