
Session 10

Risk

Session Chair
Aiois Ferscha

Universitit Wien, Austria

The Dark Side of Risk
(What your mother never told you about Time Warp)

D. M. Nicol X. Liu

Department 0s Computer Science
Dartmouth College

Hanover, NH 03755

Abstract
This paper is a reminder of the danger of al-

lowing “risk” when synchronizing a parallel discrete-
event simulation: a simulation code that runs correctly
on a serial machine may, when run in parallel, fail
catastrophically. This can happen when Time Warp
presents an 5nconsistent” message to an LP, a mes-
sage that makes absolutely no sense given the LP’s
state. Failure may result if the simulation modeler
did not anticipate the possibility of this inconsistency.
While the problem is not new, there has been little dis-
cussion of how to deal with it; furthermore the problem
may not be evident to new users or potential users of
parallel simulation. This paper shows how the problem
may occur, and the damage it may cause. We show
how one may eliminate inconsistencies due to lagging
rollbacks and stale state, but then show that so long as
risk is allowed it is still possible for an LP to be placed
in a state that is inconsistent with model semantics,
again making it vulnerable to failure. We finally show
how simulation code can be tested to ensure safe execu-
tion under a risk-free protocol. Whether risky or risk-
free, we conclude that under current practice the de-
velopment of correct and safe parallel simulation code
is not transparent to the modeler; certain protections
must be included in model code or model testing that
are not rigorously necessary if the simulation were ex-
ecuted only serially.

1 Introduction
Reynolds has argued that synchronization protocols

for parallel discrete-event simulation are characterized
by a spectrum of attributes [S]. In particular, he noted
that protocols broadly categorized as “optimistic” re-
ally entail ttvo different aspects; aggressiveness means
executing an event before it is certain to be correct to
do so, and risk means sending a message that might
not be correct. That the two ideas could be separated
was demonstrated by Reynolds with a variant on his

188
10844097/97$10.00 0 1997 IEEE

Figure 1: Hierarchy of softlvare layers in typical paral-
lel simulation discrete-event simulation (PDES) pack-
age

SRADS protocol [3] the distinction was also used by
Steinman in development of the SPEEDES system US-
ing the Breathing Time Buckets protocol [7]. Both
methods employ aggressiveness, but not risk.

The most widely cited optimistic systems use risk,
notably the Time Warp Operating System (TWOS)
[4] and Georgia Time Warp (GTW) [2]. The TWOS
effort ended some years ago; GTW typifies Time Warp
simulators in current use. GTW is essentially a li-
brary whose classes and methods can be used in a C
or C++ program to transform it into a simulation.
One can think of a GTW simulation as code in some
high level programming language that calls the GTW
libraries, which use Unix facilities. Figure 1 illustrates
this layering in the general case. Regions where some
state-saving occurs are highlighted.

Optimistic methods are able to recover from tempo-
ral errors by saving enough “state” to return them to a
prior simulation time. The modeler is responsible for
identifying state variables in user code; the Time Warp
state is comprised of these variables and some internal
state information. Much of the operating environment
in which an optimistic simulation executes is not con-
sidered to be state, and is not saved or restored. The
significance of this fact cannot be overstated. The
trend in parallel simulators is to link together sim-
ulation libraries, user model code, and user code li-
braries. The user code libraries in particular may not
have been developed for use with optimistic parallel

simulation in mind. A case in point is the TeD sim-
ulation language being developed at Georgia Tech for
the simulation of telecommunication networks; TeD
resides astride GTW [l]. Very explicit mechanisms
are provided in that tool to link to potentially large
blocks of ordinary C/C++ code; the language by de-
sign is a “meta-language” that allows certain simula-
tion constructs to be embedded in a high level lan-
guage, The problem we consider is that under normal
Time Warp operating rules, user model code and user
libraries may be executed using data arguments that
are utterly inconsistent with the logical state of the
code. We will see that the consequences may be that
the program crashes (at best), or leads to incorrect
behavior or results without hint of error (at worst).

These disturbing consequences are made possible
because by accepting risk, Time Warp allows a logical
process (LP) to execute a message that is inconsistent
with the state of the LP (throughout the paper we
will say that the message is inconsistent, although the
fault of the inconsistency may actually lie with the
LP). Such a message is destined to be canceled (or the
LP is destined to be rolled back), but the LP has no
way of knowing this. Processing the message, the state
of the LP is combined with the data in the message to
produce potentially nonsensical data and actions that
have the ability to corrupt the operating environment
in a way that will not be fixed by any rollback. Under
the normal Time Warp execution rules there is no way,
in general, for the LP to automatically recognize that
the message is inconsistent with the LP state.

Any general purpose Time Warp system that sim-
ply links into the C or C++ run-time system has
the potential to behave in this way. So long as a
Time Warp system allows a modeler to include com-
pletely general code with the ability to write into non-
checkpointed areas such as user library space or run-
time system space, that system has an accident wait-
ing to happen.

We have not come to bury Time Warp, but to
praise it’. For a very important set of real simula-
tion problems, it offers the only hope of high-fidelity
parallel simulation. The reason we are emphasizing
this particular aspect of Time Warp baaed simulation
is that parallel simulation technology has matured to
the point where major complex systems are being pro-
posed that will use it. The complexity of these systems
is such that verification and validation just assuming
serial execution is a major exercise in software engi-
neering, Our point is that engineering of parallel simu-
lations additionally requires one to ensure the safety of

1 Julius Caesar, III.ii, with apologies to Mark Antony.

the simulation in all states in which it might be placed.
We do not believe it is widely understood that this is
a larger and more difficult problem for optimistic par-
allel simulation than it is for serial or conservatively
synchronized simulation. But it most certainly is, be-
cause the space of potential code states is much larger,
and may include states that defy the model semantics
or physical constraints of the modeled system.

The threat of this behavior was foreseen by the
TWOS designers, and their solution is noteworthy2.
They recognized that a possible consequence of pro-
cessing an inconsistent message would be to engage in
an action causing a runtime error, e.g., pass a nega-
tive value to a square root function, suffer a segmenta-
tion fault by indexing outside of array bounds, divide
by zero, generate an arithmetic underflow or overflow,
etc. . The TWOS system caught Unix signals gener-
ated by these occurrences and placed the faulting LP
in an “error” state, from which it could be released by
a rollback. An error was reported to the user only if
the error state was committed, e.g., the GVT passed
its time-stamp. This solution goes part way, but is
not complete, at least in environments similar to Fig-
ure 1. By processing an inconsistent message, an LP
can damage the heap, stack, or static data area, with-
out generating a signal. The damage may not affect
execution until long after its occurrence, and in any
case, is permanent.

TWOS was implemented on four platforms (Mark
II Hypercube, Mark III Hypercube, BBN Butterfly,
UNIX network), the last three fit the model of Fig-
ure 1. Interestingly, in the Mark II Hypercube, TWOS
was the fundamental operating system and so was
better able to protect itself against erratic LP be-
havior. In all versions dynamic memory management
was a touchy issue, so touchy in fact that TWOS pro-
grammers were advised to eschew pointers altogether.
While the Mark II Hypercube version monitored stack
usage (blowing the stack while executing an incon-
sistent message was a regular occurrence-remember
that the Mark II had only 256K memory/node), the
later versions did not. The threat of infinite loops was
not addressed, although it was thought that this could
be handled if a message arrival triggered an interrupt
that was permitted to halt the LP’s processing of an
event. GTW does not filter Unix signals nor does it
offer protection against any of these possibilities.

This paper first illustrates concretely how this prob-
lem can arise and discusses its ramifications, provid-

2We acknowledge and thank Peter Reiher and Fred Wieland
for providing us with the following description of the TWOS
approach to dealing with this problem.

189

I

ing a review of a problem long known to Time Warp
cognoscenti. Our contribution is to explore how to
eliminate two sources of the problem-lagging roll-
backs and stale state-and then to show that an LP
can still be pushed into a state that is inconsistent
with model semantics. We look at risk-free protocols,
and show that if all LP code is safe with respect to
“internal speculation,, , then the simulation is safe.

2 The Problem
We encountered the possibility of processing an

inconsistent message when using GTW to simulate
multi-cast resource allocation algorithms. In our
model, a “link” LP is responsible for storing the cur-
rent usage and availability of a network link. Such an
LP may be queried “how much bandwidth do you have
available”, may be instructed “give me B bits per sec-
ond bandwidth”, and may be notified “I’m returning
B bits per second bandwidth”. “Node” LPs simulate
the arrival of multi-cast requests; the multi-cast ac-
ceptance procedure involves (i) querying the link LPs
that would be involved in the broadcast, analyzing the
available bandwidth and (if the broadcast can be ac-
cepted) (ii) computing how much bandwidth should
be requested from each link, (iii) instructing each link
to allocate this computed amount to the broadcast.
When the broadcast session is completed, the node LP
restores the used bandwidth to the link LPs involved
in the broadcast.

This paper resulted from our observation that link
LPs with zero available bandwidth were sometimes in-
structed to allocate some non-zero amount of band-
width to a new connection, and that link LPs whose
bandwidth was completely available were sometimes
instructed to add additional available bandwidth.

Close analysis revealed that these nonsensical situ-
ations were transient, either the LP was rolled back
and when approaching the message again was in a
state consistent with the message’s instruction, or the
message itself was annihilated. We also came to un-
derstand how these situations could arise. Figure 2
illustrates an example. At (simulation) time 100 a
link LP would be queried by node 1 for availability in-
formation, and would report its available bandwidth,
B > 0, in response. Then, the link LP is rolled back to
an earlier time, say 90, by a message from node 2 that
claims all B bits per second of the available bandwidth
at time 90. Node 2 does not release this bandwidth
any time soon. As part of the processing of that roll-
back, an anti-message is sent after the response mes-
sage to node 1, but is recognized only after node 1 uses
the first response in a decision to claim bandwidth C
bits per second bandwidth from the link LP, before

So why should we be concerned if an LP processes
a funny looking message, since that will all get sorted
out with rollbacks? We ought to be concerned because
the code processing that message may not have been
designed to deal with anomalous messages. We ought
to be concerned because by combining the state of the
message with the state of the LP it is conceivable that
the LP code will do any one of a number of bad things,
including

indexing outside of array bounds to damage mem-
ory or cause a segmentation fault,

call a recursive function with arguments that do
not yield a “bottom” to the recursion,

enter an infinite loop,

commit some numerical error such as divide-by-
zero, (under/over)-flow, negative arguments to an
library routine expecting positive arguments,

delete an object from an empty data structure,

just about any bone-headed error you’ve ever
done or ever seen done in a C or C-H- program.

The point should be clear, the danger of processing an
inconsistent message is that the code developer has a
certain model of system behavior in mind that de-
rives from physical reality. Processing of an inconsis-
tent message can push the LP into an unforeseen state

190

Nods2

WI) ,#’
ItieBb~,’

.’
,’

Figure 2: Timing diagram of how an inconsistent mes-
sage may occur.

the anti-message catches up with it (N.B., our un-
derstanding of GTW is that event processing routines
are atomic, meaning that so long as the anti-message
arrives after the initiation of the event that generates
the bandwidth claim message, that erroneous message
will be sent). Node l’s bandwidth claim is destined to
be annihilated, because node 1 is destined to be rolled
back to dea1 with the link LP’s new (empty) state,
But, the link LP processes the bandwidth claim from
a state where no bandwidth is available. Of course,
eventually the link LP will be rolled back when the
bandwidth claim message is annihilated.

_ -_- A--------_ _ I __--- _._. -- _-_ ._ _____-__

that does not correspond to physical reality. While the
code may be safe and correct in all states correspond-
ing to physical reality (the only states in which it will
find itself in a correct serial simulation or a conserva-
tively synchronized parallel simulation), it might not
be safe in non-physical states. As it processes an in-
consistent message it may behave in unforeseen ways,
damaging memory in the runtime system or even in
the parallel simulation libraries. Damaged memory
that is not considered to be part of the Time Warp
“state” is damaged forever, and has the potential to
crash the simulation, alter the behavior of the simula-
tion, or corrupt some data associated with the simu-
lation.

3 Safety through Methodology
Once we understood the source of the problem we

saw that we could try to detect when a message was
inconsistent and not act upon it, or just allow incon-
sistent messages to make the LP link state nonsensical
and try to prevent the simulator from damaging the
runtime environment. We now explore these options.
Both solution approaches rely on the LP code doing
checking that may detect that the LP should be sus-
pended until rolled back to an earlier time. We pre-
sume then that the Time Warp system includes a call
to implement self-suspension.

To require that a code check the logical consistency
of each message it processes is philosophically unset-
tling. Time Warp has long been advertised as making
synchronization transparent to the user; it most def-
initely is not transparent if in order to ensure that
it runs without crashing we must augment the code
with extensive consistency checks. While good soft-
ware engineering practice calls for extensive checks, in
practice little PDES code we’ve ever seen is actually
written this way. It may be technically difficult or
even impossible to always determine whether a mes-
sage is consistent. Asynchronous code is hard enough
to develop correctly when one knows what the correct
messages look like, let alone having to anticipate and
protect against the potential of arbitrarily inconsistent
messages.

The second approach would include the TWOS sig-
nal trapping trick, but would also try to detect prob-
lems before they occur. Arguments for all library func-
tions would have to be tested for reasonableness, to
avoid things like taking the logarithm of a negative
number. Nearly every memory access has to be tested
for reasonableness, even if pointers are banned. Every
single read or write to an array must first check that
the index is within the array bounds. This holds true
even if the array is declared to be simulation “state”-

its memory space is in the heap somewhere and step-
ping outside of its confines can cause damage. But it
gets worse. Some array writes are done tacitly, using
C/C++ library calls. One can imagine a string be
ing created using sprintfbut for that string to exceed
the allocated space because the string contents depend
on an inconsistent message. The ability for detecting
memory access problems has gotten quite comprehen-
sive, it is conceivable that most such problems could
be caught using the sort of technology behind com-
mercial tools like Purify and insure++. To develop
that technology independently for a parallel simula-
tion engine is a daunting task.

A “catch-it-in-the-act” approach will also have to
deal with bottomless recursion and infinite loops.
There is a serious theoretical problem here, in that
the well-known halting problem asserts that there is
no algorithm that can take an arbitrary loop and de-
tect whether it terminates. Protection from infinite
looping has to be ad-hoc. To be completely safe one
would have to be able to detect when processing of a
message could lead to an infinite loop or bottomless
recursion, and this is definitely non-trivial.

In summary, to rely on user-supplied consistency
checking alone to filter out inconsistent messages is
to court disaster. On the other hand, the implemen-
tation cost of monitoring executing C/C++ code to
protect the runtime system from all possible ways of
being trashed is overwhelming. In either case, sub-
stantially more work is involved to ensure that the
parallel simulation runs safely than is required for a
serial or conservatively synchronized simulation. It is
clearly not enough to test a parallel simulation on one
processor and expect it to always run safely in parallel.

The only hope for a comprehensive solution is to
ensure that each LP’s code is run in isolation and can-
not damage the environment. At no time can the code
be left to run on its own until “completion”, because
“completion” may never come. These are actually the
same issues behind running Java applets safely; a truly
comprehensive solution might be based on using Java
to express and execute LP code, or use some other in-
terpreted language. In the meantime, what can we do
with the C/C++ based Time Warp systems?

4 Rollback Consistency and Stale
States

A first step towards dealing with the consistency
problem is to define our terms. The root cause of
the problem in the multi-cast simulation was that a
rollback or cancelation process occurred, but the LP
reflected the post- (alternatively, pm-) rollback system
state and the message reflected the pm- (alternatively,

191

--.-- -L_l._-_/__ -.- -

post-) rollback system state. This leads us to define
rollback consistency.

One can think of Time Warp’s execution on an LP
as defining a tree, branches occurring where rollbacks
are induced. Each rollback creates a new arm that is
followed, until a rollback splits it. This is illustrated in
Figure 3 where a sequence of four time-lines shows the
evolution of this tree. The extent of each arm denotes
the distance in simulation time the LP advanced be-
fore being rolled back. The solid line denotes the cur-
rent state evolution path, dotted lines denote “dead”
paths. Labeled black boxes identify points where the
LP generated a message; arrows identify points in sim-
ulation time where the LP is rolled back. A circle
marks the branch in the tree caused by a rollback, and
is labeled with the simulation time of the rollback.

One can imagine sampling the state of the LP at
different points in execution time, each sample would
map to the end of the currently “active” execution
arm; e.g., one could sample the state at the point
message A is sent, and again at the point message
B is sent. At the instant the state was sampled, the
active tree arm would be at the label A in the first
case, and B in the second case. The execution tree
gives us a way of reasoning about the consistency of
LP state sampled at two different points in simulation
(and real) time. We’ll say that two samples are rull-
back consistent if they lie on a common path (including
branches) in the execution tree. Samples associated
with messages C and D are consistent (even after the
rollback at time 11)) as are samples associated with
messages C and E. No other pair of labeled points
are consistent. Given two consistent samples, we can
order them by simulation time.

Next we think about how an LP’s state evolves as
a function of the states of other LPs at various points
in simulation time. Conceptually, at any instant we
could describe how the state of LP i has been influ-
enced by all other LPs, in terms of the data state of all
other LPs at the various last (in real time) times they
affected LP i. We can track these dependencies, as fol-
lows. Associate with each LP i a dependency vector
(DV) that contains a component for every LP. The jlh
component holds a code describing the last state of LP
j to affect LP i. Initially the DV has null components,
save for the LP’s own component; the DV is updated
when an ordinary message is accepted, to reflect the
new influences on the LP’s state (anti-messages are
excluded from this discussion). This is accomplished
by associating with every message the sender’s DV at
the time of transmission. As the message is processed
we update the recipient’s DV by merging it with the

Simulation Time.

1 9
(cl 0 . se*. ;~.

Figure 3: The evolution of an execution tree

message’s DV. For each component we save the most
“up-to-date” of the two. This way of thinking about
dependency is basically Lamport’s idea of distributed
clocks [5]. It is important to keep in mind that these
vectors are descriptive devices we use to reason about
the system; the solutions we propose do not need to
implement them.

Within this conceptual framework we can iden-
tify situations where inconsistencies arise. If for any
component j the recipient’s code for j is rollback-
inconsistent with the message’s component for j, then
we know that LP j underwent a rollback that affected
and is reflected in the state of either the sender or
receiver, but not both. Returning to the time-line of
Figure 2, we see that at the point that the link LP a~-

cepts the inconsistent message, the state of the link
LP reflects the time 90 rollback, but that the link
component for the message’s DV does not reflect it.
The link state component of the recipient is rollback-
inconsistent with the link state component of the mes-
sage.

A concrete example of a state code that detects
rollback-inconsistency is a certain type of list. The
first list element gives the simulation time of the sam-
pled state. Following this is an ordered list of sim-
ulation times at which the LP was rolled back prior
to sampling the state. Rollback times appear in this
list in the order that the rollbacks were applied. For
example, in Figure 3 the code for the LP state when
message E is sent is the send-time of that message,
followed by (9’7’11). Let (tl, Lr) and (tz, Lz) two
codes for an LP, where tl and t2 are simulation times
and ~51 and L2 are ordered lists of rollback times. If
these lists have different lengths, then the shorter list

~--.-- _ --_- _--- -._^-~~._- - _-- . -~___

wallclock time

Figure 4: Inconsistency due to stale state.

is necessarily a proper prefix of the longer, e.g., (mith-
out loss of generality) Lr = (Lz, L$). If there is any
rollback time in Li that is less than t2, the codes
are rollback-inconsistent. (tl, LI) was sampled later
in real-time than was (ts, Lz), and reflects a rollback
that brought the LP behind the simulation time of
(t2, L2)‘s sample. If instead there is no rollback in L’:
with a time-stamp less than tz, then the additional
rollbacks reflected in L1 happen too late in simulation
time to affect the sample at (tz, Lz), and so the codes
are rollback-consistent.

However, there is another source of inconsistency,
due instead to what we’ll call “‘stale states”. An simple
3 LP example illustrates this possibility. A time-line
for the scenario is given in Figure 4. ‘There is a re-
source that at any point in simulation time is held
by either LP 1 or LP 2. The resource is held by an
LP until the other requests it, and some random time
after the request, the resource is released to the LP
requesting it. Now imagine that at time 100 LP 2
has the resource and LP 1 requests it. LP 1 does not
know when it will actually acquire the resource, and
so continues optimistically on to an event at time 120,
under the assumption that it does not have the re-
source at time 120. The event processed at time 120
responds to a query by LP 3, “Do you have the re-
source now?“. Assuming not, LP 1 replies “No” at
time 121. Sometime after this exchange LP 2 decides
to yield the resource, at simulation time 110. Imme-
diately after sending the “It’s yours now” message to
LP 1, it processes a query event from LP 3 at simula-
tion time 121. “No”, it replies. Upon receipt of this
second negative response, LP 3 is in an illogical (with
respect to the model semantics) state. We cannot pin
this situation on a rollback inconsistency, because no
rollbacks have yet occurred.

The problem in this case is that LP 3’s state is
“stale” with respect to the query response message it
receives from LP 2. It is stale in the sense that some
action has been initiated that ultimately will roll LP
3 back, t,hat the LP 2 data dependency component of
LP 2’s message to LP 3 is of a state that follows that

initiation, but the LP 2 component of LP 3’s data
dependency vector will be affected by that initiation,
but has not yet been affected by it.

More formally, if M is a message processed by LP
j, we’ll say that LP j’s state is stale with respect to
M if M’s dependency vector component for some LP
It reflects a state of LP k that follows its transmission
of a message that initiates a rollback, the penultimate
result of which is to rollback LP j, but which result
has not yet occurred. The definition of M being stale
with respect to LP j’s state is entirely similar, save
that the penultimate result is that M is annihilated.

Rollback-inconsistency and stale state are related
concepts in that rollback inconsistency occurs when a
completed rollback makes two sampled states inconsis-
tent, whereas stale state occurs when an initiated but
as yet uncompleted rollback chain makes two sampled
states inconsistent. For example, whereas states asso-
ciated with C and D in Figure 3 are rollback consis-
tent, once the first message responsible for initiating
the rollback chain that causes the rollback at time 11
is sent, state D becomes stale, even before the time 11
rollback is recognized.

The problems of rollback inconsistency and stale
state can be both eliminated by the simple mecha-
nism of requiring message acknowledgments. The dis-
cussion below assumes the use of aggressive cancela-
tion (also a modified lazy cancelation is possible so
long as before a rolled back LP sends any new post-
rollback message, all previously sent messages with
larger time-stamps are aggressively canceled, with ac-
knowledgments all received).

When an LP sends an ordinary message, it blocks
from further processing until it receives an acknowl-
edgment for that message (actually, all that is required
is that it not send any new message before that ac-
knowledgment is received). If a message (ordinary or
anti-) is placed in LP j’s input buffer and does not
cause rollback, that message is acknowledged immedi-
ately. If instead the message triggers a rollback, say at
simulation time t, LP j does not acknowledge the mes-
sage until it has itself received an acknowledgment for
all anti-messages sent with time-stamps greater than
t.

We must argue that this mechanism does not cause
deadlock, and that it does indeed eliminate rollback
inconsistency and stale data. Freedom from deadlock
is easily seen, by considering the unacknowledged mes-
sage with largest receive-time. It ultimately must be
acknowledged, breaking any deadlock cycle.

Theorem 1 Under message acknowledgments for
anti-messages, rollback-inconsistency is eliminated.

Proof: For the sake of contradiction, suppose a
message M is delivered to LP k such that the mes-
sage’s dependency vector is rollback-inconsistent with
LP k’s dependency vector in component j. With-
out loss of generality (and using the list code de-
scribed earlier), suppose that LP k’s DV code for LP
j, (tr , Ll), is a later (with respect to wallclock time)
reflection of LP j’s state than is the corresponding
component (ts, Lz) in M’s DV. Rollback-inconsistency
implies that Lr = (Ls, L’,) for some non-empty list
L{, and that L$ contains some rollback time t3 with
t3 < t2. We take t3 to be the first such rollback time
in L’, . Ultimately we can trace back the appearance of
code (tz, Lz) in M’s DV to a transmission at time t2
by LP j. When LP j processes the rollback at ts after
that transmission, it does not send any further mes-
sages before receiving an acknowledgment for the anti-
message it sends to cancel the time ts message. That
anti-message, possibly triggering other anti-messages
that must be acknowledged, erases all dependence of
any LP on the state of LP j reported in the time t:!
message. LP j cannot advance to any state repre-
sented by code (tl, L1) before that cancelation is com-
plete. Hence, code (t2, Lt,) may not be associated with
M if LP k’s code is (tl, Ll), establishing the contra-
diction and proving the theorem.
0

It is worth noting that a measure of safety can be
gained just by acknowledging anti-messages. Addi-
tionally requiring acknowledgments for ordinary mes-
sages brings freedom from stale states as well.

Theorem 2 Under message acknowledgments for or-
dinary and anti-messages, the system is free from stale
states.

Proof: Suppose that LP k’s state is stale with respect
to message M in the dependency vector component for
LP j. This means that LP j sent some message Ml
before achieving the state reflected in M’s DV compo-
nent for LP j, a message that triggers a rollback chain
that will ultimately affect LP j, but has not. This
cannot occur, as LP j awaits an acknowledgment for
M’ before sending any further messages. A similar
argument shows that M cannot be stale with respect
to LP j’s state.
q

Two important points should be noted here. First,
Time Warp pioneers recognized that if the system
contained messages that would cause an LP to roll-
back and messages that would cause it to move for-
ward, then the rollback should have precedence. This

194

could be done heuristically by always processing anti-
messages before other messages. Some schemes even
proposed preemptive rollbacks of all LPs within some
“distance” of a temporal error without bothering to
see if anti-messages would indeed trigger rollbacks
there. Our acknowledgments are the logical exten-
sion of such thinking. Second, waiting for acknowledg-
ments before allowing an LP to send another message
need not impact performance greatly. This is a mat-
ter of latency hiding. If there are many LPs on each
processor, then after suspending one we may well be
able to find many that have useful work to perform
while the first is blocked. In any case, the require-
ment is that an LP not send another message without
appropriate acknowledgments, not that it cannot pro-
cess. It is viable to allow the LP to continue executing,
and buffer its messages until appropriate acknowledge
releases are obtained.

5 Safety and Risk-Free Protocols
Despite the measure of safety offered by requiring

acknowledgments, it is easy to see that a “risky” mes-
sage can still be drive an LP into error. For instance,
the first message LP A sends to LP B may be inconsis-
tent with LP B’s initial state, unless LP A first receives
and processes a message from LP C. Risky processing
allows LP A to befoul LP B with the errant message.

In our view, the real danger of allowing risky mes-
sages is that in a complex code the space of possible
nonsense states into which an LP might be driven is
too large to anticipate. Intuition will guide a model
developer so long as the LP data state can be assumed
to reflect a real possible state in the modeled physical
system. Even though banning risk still allows one to
get into states that are inconsistent with model seman-
tics, we observe that if the model code is safe under all
“internally speculative” scenarios, then it is safe under
a risk-free protocol. This point is so obvious it hardly
needs mentioning, yet given the perhaps ill-considered
impetus in the PDES community to attempt every bit
of parallelism possible, perhaps it does need mention-
ing.

Constraining synchronization to be risk-free vastly
simplifies the programmer’s job in verifying the safety
of the program. For, let S denote the set of “real”
LP data states, those corresponding to physical re-
ality. During testing and verification of correctness,
one ensures that the transitions between states in S is
correct in response to a set of external messages ME
and in response to a set of iniernal messages Ml. If
a risk-free protocol is used, to test or verify safety,
one needs only to ensure that the LP is safe within
all states S’ _> S, obtained by considering all ways

of starting with a state in S and repeatedly making
transitions by accepting messages from MI.. Contrast
this with the need to test or verify the set of states
St’ > S’, obtained by considering all ways of starting
with a state in S and repeatedly making transitions
driven by messages of any kind or content. In the for-
mer case it is reasonable to expect the code developer
to have intuition about the behavior of the LP code
in S’, in the latter case it is a much harder job.

6 Conclusions
We remind the community that optimistic process-

ing implies that LPs may be temporarily driven into
nonintuitive states. We point out that with current
trends in using C and C++ as the basis for paral-
lel simulation, this creates a danger of damaging the
simulation while it executes in one of these states, for
the executing code has access to portions of the stack,
heap, and static data areas that are not checkpointed.

Our concern is that parallel simulation is on the
threshold of being used to build large complex mod-
els, but that the safety ramifications of optimistic pro-
cessing in general, and risky messages in particular
are not well understood by those who would build
those simulators. For, the model code has to be re-
silient enough not to crash the system, even when
pushed into transient, but unexpected non-physical
non-intuitive states.

We observe that lagging rollbacks and stale states
are two important causes of an LP entering a non-
sense state, and show that requiring acknowledgments
from anti-messages eliminates lagging rollbacks, and
that additionally requiring acknowledgments from or-
dinary messages eliminates stale states. We note that
the problem of verifying an LP code’s safety is much
reduced if it can be assumed that a risk-free synchro-
nization protocol will be used. The programmer needs
only consider the effects of speculative computation
that are entirely internal to the LP. This eliminates
the need to anticipate against processing arbitrarily
illogical messages.

Optimistic synchronization provides the only way
some important problem classes can be simulated with
fidelity on parallel machines. However, it is important
to realize that the software engineering burden of us-
ing Time Warp is higher than for serial simulation.
So long as the LP code can adversely affect its oper-
ating environment, synchronization concerns are not
transparent to the modeler.

Acknowledgments
This research was supported in part by NSF grants

CCR-9308667 and CCR-9625894, and DARPA Con-

tract N66001-96-C-8530.

References
[l] College of Computing, Georgia Institute of Tech-

nology. MetaTeD-A Meta Language for Model-
ing Telecommunication Networks, October 1996.

[2] S. Das, R. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. GTW: A Time Warp system for
shared memory multiprocessors. In 1994 Winter
Simulation Conference Proceedings, pages 1332-
1339, December 1994.

[3] P. Dickens and P. Reynolds, Jr. SRADS with
local rollback. In Distributed Simulation, vol-
ume 22, pages 161-164. SCS Simulation Series,
Jan. 1990.

[4] D. R. Jefferson, B. Beckman, F. Wieland,
L. Blume, M. DiLorento, P. Hdntalas, P. Rei-
her, K. Sturdevant, J. Tupman, J. Wedel, and
H. Younger. The Time Warp Operating System.
11th Symposium on Operating Systems Princi-
ples, 21(5):77-93, November 1987.

[51

[61

L. Lamport. Time, clocks, and the ordering of
events in distributed systems. Communications
of the ACM, 21(7):558-565, July 1978.

P.F. Reynolds, Jr. Comparative analyses of par-
allel simulation protocols. In Proceedings of the
1989 Winter Simulation Conference, Washing-
ton, D.C., December 1989.

[7] J.S. Steinman. SPEEDES: Synchronous paral-
lel environment for emulation and discrete event
simulation. In Advances in Parallel and Dis-
tributed Simulation, volume 23, pages 95-103.
SCS Simulation Series, Jan. 1991.

195

