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Abstract 
This paper is a reminder of the danger of al- 

lowing “risk” when synchronizing a parallel discrete- 
event simulation: a simulation code that runs correctly 
on a serial machine may, when run in parallel, fail 
catastrophically. This can happen when Time Warp 
presents an 5nconsistent” message to an LP, a mes- 
sage that makes absolutely no sense given the LP’s 
state. Failure may result if the simulation modeler 
did not anticipate the possibility of this inconsistency. 
While the problem is not new, there has been little dis- 
cussion of how to deal with it; furthermore the problem 
may not be evident to new users or potential users of 
parallel simulation. This paper shows how the problem 
may occur, and the damage it may cause. We show 
how one may eliminate inconsistencies due to lagging 
rollbacks and stale state, but then show that so long as 
risk is allowed it is still possible for an LP to be placed 
in a state that is inconsistent with model semantics, 
again making it vulnerable to failure. We finally show 
how simulation code can be tested to ensure safe execu- 
tion under a risk-free protocol. Whether risky or risk- 
free, we conclude that under current practice the de- 
velopment of correct and safe parallel simulation code 
is not transparent to the modeler; certain protections 
must be included in model code or model testing that 
are not rigorously necessary if the simulation were ex- 
ecuted only serially. 

1 Introduction 
Reynolds has argued that synchronization protocols 

for parallel discrete-event simulation are characterized 
by a spectrum of attributes [S]. In particular, he noted 
that protocols broadly categorized as “optimistic” re- 
ally entail ttvo different aspects; aggressiveness means 
executing an event before it is certain to be correct to 
do so, and risk means sending a message that might 
not be correct. That the two ideas could be separated 
was demonstrated by Reynolds with a variant on his 
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Figure 1: Hierarchy of softlvare layers in typical paral- 
lel simulation discrete-event simulation (PDES) pack- 
age 

SRADS protocol [3] the distinction was also used by 
Steinman in development of the SPEEDES system US- 
ing the Breathing Time Buckets protocol [7]. Both 
methods employ aggressiveness, but not risk. 

The most widely cited optimistic systems use risk, 
notably the Time Warp Operating System (TWOS) 
[4] and Georgia Time Warp (GTW) [2]. The TWOS 
effort ended some years ago; GTW typifies Time Warp 
simulators in current use. GTW is essentially a li- 
brary whose classes and methods can be used in a C 
or C++ program to transform it into a simulation. 
One can think of a GTW simulation as code in some 
high level programming language that calls the GTW 
libraries, which use Unix facilities. Figure 1 illustrates 
this layering in the general case. Regions where some 
state-saving occurs are highlighted. 

Optimistic methods are able to recover from tempo- 
ral errors by saving enough “state” to return them to a 
prior simulation time. The modeler is responsible for 
identifying state variables in user code; the Time Warp 
state is comprised of these variables and some internal 
state information. Much of the operating environment 
in which an optimistic simulation executes is not con- 
sidered to be state, and is not saved or restored. The 
significance of this fact cannot be overstated. The 
trend in parallel simulators is to link together sim- 
ulation libraries, user model code, and user code li- 
braries. The user code libraries in particular may not 
have been developed for use with optimistic parallel 



simulation in mind. A case in point is the TeD sim- 
ulation language being developed at Georgia Tech for 
the simulation of telecommunication networks; TeD 
resides astride GTW [l]. Very explicit mechanisms 
are provided in that tool to link to potentially large 
blocks of ordinary C/C++ code; the language by de- 
sign is a “meta-language” that allows certain simula- 
tion constructs to be embedded in a high level lan- 
guage, The problem we consider is that under normal 
Time Warp operating rules, user model code and user 
libraries may be executed using data arguments that 
are utterly inconsistent with the logical state of the 
code. We will see that the consequences may be that 
the program crashes (at best), or leads to incorrect 
behavior or results without hint of error (at worst). 

These disturbing consequences are made possible 
because by accepting risk, Time Warp allows a logical 
process (LP) to execute a message that is inconsistent 
with the state of the LP (throughout the paper we 
will say that the message is inconsistent, although the 
fault of the inconsistency may actually lie with the 
LP). Such a message is destined to be canceled (or the 
LP is destined to be rolled back), but the LP has no 
way of knowing this. Processing the message, the state 
of the LP is combined with the data in the message to 
produce potentially nonsensical data and actions that 
have the ability to corrupt the operating environment 
in a way that will not be fixed by any rollback. Under 
the normal Time Warp execution rules there is no way, 
in general, for the LP to automatically recognize that 
the message is inconsistent with the LP state. 

Any general purpose Time Warp system that sim- 
ply links into the C or C++ run-time system has 
the potential to behave in this way. So long as a 
Time Warp system allows a modeler to include com- 
pletely general code with the ability to write into non- 
checkpointed areas such as user library space or run- 
time system space, that system has an accident wait- 
ing to happen. 

We have not come to bury Time Warp, but to 
praise it’. For a very important set of real simula- 
tion problems, it offers the only hope of high-fidelity 
parallel simulation. The reason we are emphasizing 
this particular aspect of Time Warp baaed simulation 
is that parallel simulation technology has matured to 
the point where major complex systems are being pro- 
posed that will use it. The complexity of these systems 
is such that verification and validation just assuming 
serial execution is a major exercise in software engi- 
neering, Our point is that engineering of parallel simu- 
lations additionally requires one to ensure the safety of 

1 Julius Caesar, III.ii, with apologies to Mark Antony. 

the simulation in all states in which it might be placed. 
We do not believe it is widely understood that this is 
a larger and more difficult problem for optimistic par- 
allel simulation than it is for serial or conservatively 
synchronized simulation. But it most certainly is, be- 
cause the space of potential code states is much larger, 
and may include states that defy the model semantics 
or physical constraints of the modeled system. 

The threat of this behavior was foreseen by the 
TWOS designers, and their solution is noteworthy2. 
They recognized that a possible consequence of pro- 
cessing an inconsistent message would be to engage in 
an action causing a runtime error, e.g., pass a nega- 
tive value to a square root function, suffer a segmenta- 
tion fault by indexing outside of array bounds, divide 
by zero, generate an arithmetic underflow or overflow, 
etc. . The TWOS system caught Unix signals gener- 
ated by these occurrences and placed the faulting LP 
in an “error” state, from which it could be released by 
a rollback. An error was reported to the user only if 
the error state was committed, e.g., the GVT passed 
its time-stamp. This solution goes part way, but is 
not complete, at least in environments similar to Fig- 
ure 1. By processing an inconsistent message, an LP 
can damage the heap, stack, or static data area, with- 
out generating a signal. The damage may not affect 
execution until long after its occurrence, and in any 
case, is permanent. 

TWOS was implemented on four platforms (Mark 
II Hypercube, Mark III Hypercube, BBN Butterfly, 
UNIX network), the last three fit the model of Fig- 
ure 1. Interestingly, in the Mark II Hypercube, TWOS 
was the fundamental operating system and so was 
better able to protect itself against erratic LP be- 
havior. In all versions dynamic memory management 
was a touchy issue, so touchy in fact that TWOS pro- 
grammers were advised to eschew pointers altogether. 
While the Mark II Hypercube version monitored stack 
usage (blowing the stack while executing an incon- 
sistent message was a regular occurrence-remember 
that the Mark II had only 256K memory/node), the 
later versions did not. The threat of infinite loops was 
not addressed, although it was thought that this could 
be handled if a message arrival triggered an interrupt 
that was permitted to halt the LP’s processing of an 
event. GTW does not filter Unix signals nor does it 
offer protection against any of these possibilities. 

This paper first illustrates concretely how this prob- 
lem can arise and discusses its ramifications, provid- 

2We acknowledge and thank Peter Reiher and Fred Wieland 
for providing us with the following description of the TWOS 
approach to dealing with this problem. 
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ing a review of a problem long known to Time Warp 
cognoscenti. Our contribution is to explore how to 
eliminate two sources of the problem-lagging roll- 
backs and stale state-and then to show that an LP 
can still be pushed into a state that is inconsistent 
with model semantics. We look at risk-free protocols, 
and show that if all LP code is safe with respect to 
“internal speculation,, , then the simulation is safe. 

2 The Problem 
We encountered the possibility of processing an 

inconsistent message when using GTW to simulate 
multi-cast resource allocation algorithms. In our 
model, a “link” LP is responsible for storing the cur- 
rent usage and availability of a network link. Such an 
LP may be queried “how much bandwidth do you have 
available”, may be instructed “give me B bits per sec- 
ond bandwidth”, and may be notified “I’m returning 
B bits per second bandwidth”. “Node” LPs simulate 
the arrival of multi-cast requests; the multi-cast ac- 
ceptance procedure involves (i) querying the link LPs 
that would be involved in the broadcast, analyzing the 
available bandwidth and (if the broadcast can be ac- 
cepted) (ii) computing how much bandwidth should 
be requested from each link, (iii) instructing each link 
to allocate this computed amount to the broadcast. 
When the broadcast session is completed, the node LP 
restores the used bandwidth to the link LPs involved 
in the broadcast. 

This paper resulted from our observation that link 
LPs with zero available bandwidth were sometimes in- 
structed to allocate some non-zero amount of band- 
width to a new connection, and that link LPs whose 
bandwidth was completely available were sometimes 
instructed to add additional available bandwidth. 

Close analysis revealed that these nonsensical situ- 
ations were transient, either the LP was rolled back 
and when approaching the message again was in a 
state consistent with the message’s instruction, or the 
message itself was annihilated. We also came to un- 
derstand how these situations could arise. Figure 2 
illustrates an example. At (simulation) time 100 a 
link LP would be queried by node 1 for availability in- 
formation, and would report its available bandwidth, 
B > 0, in response. Then, the link LP is rolled back to 
an earlier time, say 90, by a message from node 2 that 
claims all B bits per second of the available bandwidth 
at time 90. Node 2 does not release this bandwidth 
any time soon. As part of the processing of that roll- 
back, an anti-message is sent after the response mes- 
sage to node 1, but is recognized only after node 1 uses 
the first response in a decision to claim bandwidth C 
bits per second bandwidth from the link LP, before 

So why should we be concerned if an LP processes 
a funny looking message, since that will all get sorted 
out with rollbacks? We ought to be concerned because 
the code processing that message may not have been 
designed to deal with anomalous messages. We ought 
to be concerned because by combining the state of the 
message with the state of the LP it is conceivable that 
the LP code will do any one of a number of bad things, 
including 

indexing outside of array bounds to damage mem- 
ory or cause a segmentation fault, 

call a recursive function with arguments that do 
not yield a “bottom” to the recursion, 

enter an infinite loop, 

commit some numerical error such as divide-by- 
zero, (under/over)-flow, negative arguments to an 
library routine expecting positive arguments, 

delete an object from an empty data structure, 

just about any bone-headed error you’ve ever 
done or ever seen done in a C or C-H- program. 

The point should be clear, the danger of processing an 
inconsistent message is that the code developer has a 
certain model of system behavior in mind that de- 
rives from physical reality. Processing of an inconsis- 
tent message can push the LP into an unforeseen state 
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Figure 2: Timing diagram of how an inconsistent mes- 
sage may occur. 

the anti-message catches up with it (N.B., our un- 
derstanding of GTW is that event processing routines 
are atomic, meaning that so long as the anti-message 
arrives after the initiation of the event that generates 
the bandwidth claim message, that erroneous message 
will be sent). Node l’s bandwidth claim is destined to 
be annihilated, because node 1 is destined to be rolled 
back to dea1 with the link LP’s new (empty) state, 
But, the link LP processes the bandwidth claim from 
a state where no bandwidth is available. Of course, 
eventually the link LP will be rolled back when the 
bandwidth claim message is annihilated. 



_ -_- A--------_ _ I __--- _._. -- _-_ ._ _____-__ 

that does not correspond to physical reality. While the 
code may be safe and correct in all states correspond- 
ing to physical reality (the only states in which it will 
find itself in a correct serial simulation or a conserva- 
tively synchronized parallel simulation), it might not 
be safe in non-physical states. As it processes an in- 
consistent message it may behave in unforeseen ways, 
damaging memory in the runtime system or even in 
the parallel simulation libraries. Damaged memory 
that is not considered to be part of the Time Warp 
“state” is damaged forever, and has the potential to 
crash the simulation, alter the behavior of the simula- 
tion, or corrupt some data associated with the simu- 
lation. 

3 Safety through Methodology 
Once we understood the source of the problem we 

saw that we could try to detect when a message was 
inconsistent and not act upon it, or just allow incon- 
sistent messages to make the LP link state nonsensical 
and try to prevent the simulator from damaging the 
runtime environment. We now explore these options. 
Both solution approaches rely on the LP code doing 
checking that may detect that the LP should be sus- 
pended until rolled back to an earlier time. We pre- 
sume then that the Time Warp system includes a call 
to implement self-suspension. 

To require that a code check the logical consistency 
of each message it processes is philosophically unset- 
tling. Time Warp has long been advertised as making 
synchronization transparent to the user; it most def- 
initely is not transparent if in order to ensure that 
it runs without crashing we must augment the code 
with extensive consistency checks. While good soft- 
ware engineering practice calls for extensive checks, in 
practice little PDES code we’ve ever seen is actually 
written this way. It may be technically difficult or 
even impossible to always determine whether a mes- 
sage is consistent. Asynchronous code is hard enough 
to develop correctly when one knows what the correct 
messages look like, let alone having to anticipate and 
protect against the potential of arbitrarily inconsistent 
messages. 

The second approach would include the TWOS sig- 
nal trapping trick, but would also try to detect prob- 
lems before they occur. Arguments for all library func- 
tions would have to be tested for reasonableness, to 
avoid things like taking the logarithm of a negative 
number. Nearly every memory access has to be tested 
for reasonableness, even if pointers are banned. Every 
single read or write to an array must first check that 
the index is within the array bounds. This holds true 
even if the array is declared to be simulation “state”- 

its memory space is in the heap somewhere and step- 
ping outside of its confines can cause damage. But it 
gets worse. Some array writes are done tacitly, using 
C/C++ library calls. One can imagine a string be 
ing created using sprintfbut for that string to exceed 
the allocated space because the string contents depend 
on an inconsistent message. The ability for detecting 
memory access problems has gotten quite comprehen- 
sive, it is conceivable that most such problems could 
be caught using the sort of technology behind com- 
mercial tools like Purify and insure++. To develop 
that technology independently for a parallel simula- 
tion engine is a daunting task. 

A “catch-it-in-the-act” approach will also have to 
deal with bottomless recursion and infinite loops. 
There is a serious theoretical problem here, in that 
the well-known halting problem asserts that there is 
no algorithm that can take an arbitrary loop and de- 
tect whether it terminates. Protection from infinite 
looping has to be ad-hoc. To be completely safe one 
would have to be able to detect when processing of a 
message could lead to an infinite loop or bottomless 
recursion, and this is definitely non-trivial. 

In summary, to rely on user-supplied consistency 
checking alone to filter out inconsistent messages is 
to court disaster. On the other hand, the implemen- 
tation cost of monitoring executing C/C++ code to 
protect the runtime system from all possible ways of 
being trashed is overwhelming. In either case, sub- 
stantially more work is involved to ensure that the 
parallel simulation runs safely than is required for a 
serial or conservatively synchronized simulation. It is 
clearly not enough to test a parallel simulation on one 
processor and expect it to always run safely in parallel. 

The only hope for a comprehensive solution is to 
ensure that each LP’s code is run in isolation and can- 
not damage the environment. At no time can the code 
be left to run on its own until “completion”, because 
“completion” may never come. These are actually the 
same issues behind running Java applets safely; a truly 
comprehensive solution might be based on using Java 
to express and execute LP code, or use some other in- 
terpreted language. In the meantime, what can we do 
with the C/C++ based Time Warp systems? 

4 Rollback Consistency and Stale 
States 

A first step towards dealing with the consistency 
problem is to define our terms. The root cause of 
the problem in the multi-cast simulation was that a 
rollback or cancelation process occurred, but the LP 
reflected the post- (alternatively, pm-) rollback system 
state and the message reflected the pm- (alternatively, 

191 



--.-- -L_l._-_/__ -.- - 

post-) rollback system state. This leads us to define 
rollback consistency. 

One can think of Time Warp’s execution on an LP 
as defining a tree, branches occurring where rollbacks 
are induced. Each rollback creates a new arm that is 
followed, until a rollback splits it. This is illustrated in 
Figure 3 where a sequence of four time-lines shows the 
evolution of this tree. The extent of each arm denotes 
the distance in simulation time the LP advanced be- 
fore being rolled back. The solid line denotes the cur- 
rent state evolution path, dotted lines denote “dead” 
paths. Labeled black boxes identify points where the 
LP generated a message; arrows identify points in sim- 
ulation time where the LP is rolled back. A circle 
marks the branch in the tree caused by a rollback, and 
is labeled with the simulation time of the rollback. 

One can imagine sampling the state of the LP at 
different points in execution time, each sample would 
map to the end of the currently “active” execution 
arm; e.g., one could sample the state at the point 
message A is sent, and again at the point message 
B is sent. At the instant the state was sampled, the 
active tree arm would be at the label A in the first 
case, and B in the second case. The execution tree 
gives us a way of reasoning about the consistency of 
LP state sampled at two different points in simulation 
(and real) time. We’ll say that two samples are rull- 
back consistent if they lie on a common path (including 
branches) in the execution tree. Samples associated 
with messages C and D are consistent (even after the 
rollback at time 11)) as are samples associated with 
messages C and E. No other pair of labeled points 
are consistent. Given two consistent samples, we can 
order them by simulation time. 

Next we think about how an LP’s state evolves as 
a function of the states of other LPs at various points 
in simulation time. Conceptually, at any instant we 
could describe how the state of LP i has been influ- 
enced by all other LPs, in terms of the data state of all 
other LPs at the various last (in real time) times they 
affected LP i. We can track these dependencies, as fol- 
lows. Associate with each LP i a dependency vector 
(DV) that contains a component for every LP. The jlh 
component holds a code describing the last state of LP 
j to affect LP i. Initially the DV has null components, 
save for the LP’s own component; the DV is updated 
when an ordinary message is accepted, to reflect the 
new influences on the LP’s state (anti-messages are 
excluded from this discussion). This is accomplished 
by associating with every message the sender’s DV at 
the time of transmission. As the message is processed 
we update the recipient’s DV by merging it with the 

Simulation Time. 
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Figure 3: The evolution of an execution tree 

message’s DV. For each component we save the most 
“up-to-date” of the two. This way of thinking about 
dependency is basically Lamport’s idea of distributed 
clocks [5]. It is important to keep in mind that these 
vectors are descriptive devices we use to reason about 
the system; the solutions we propose do not need to 
implement them. 

Within this conceptual framework we can iden- 
tify situations where inconsistencies arise. If for any 
component j the recipient’s code for j is rollback- 
inconsistent with the message’s component for j, then 
we know that LP j underwent a rollback that affected 
and is reflected in the state of either the sender or 
receiver, but not both. Returning to the time-line of 
Figure 2, we see that at the point that the link LP a~- 

cepts the inconsistent message, the state of the link 
LP reflects the time 90 rollback, but that the link 
component for the message’s DV does not reflect it. 
The link state component of the recipient is rollback- 
inconsistent with the link state component of the mes- 
sage. 

A concrete example of a state code that detects 
rollback-inconsistency is a certain type of list. The 
first list element gives the simulation time of the sam- 
pled state. Following this is an ordered list of sim- 
ulation times at which the LP was rolled back prior 
to sampling the state. Rollback times appear in this 
list in the order that the rollbacks were applied. For 
example, in Figure 3 the code for the LP state when 
message E is sent is the send-time of that message, 
followed by (9’7’11). Let (tl, Lr) and (tz, Lz) two 
codes for an LP, where tl and t2 are simulation times 
and ~51 and L2 are ordered lists of rollback times. If 
these lists have different lengths, then the shorter list 
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Figure 4: Inconsistency due to stale state. 

is necessarily a proper prefix of the longer, e.g., (mith- 
out loss of generality) Lr = (Lz, L$). If there is any 
rollback time in Li that is less than t2, the codes 
are rollback-inconsistent. (tl, LI) was sampled later 
in real-time than was (ts, Lz), and reflects a rollback 
that brought the LP behind the simulation time of 
(t2, L2)‘s sample. If instead there is no rollback in L’: 
with a time-stamp less than tz, then the additional 
rollbacks reflected in L1 happen too late in simulation 
time to affect the sample at (tz, Lz), and so the codes 
are rollback-consistent. 

However, there is another source of inconsistency, 
due instead to what we’ll call “‘stale states”. An simple 
3 LP example illustrates this possibility. A time-line 
for the scenario is given in Figure 4. ‘There is a re- 
source that at any point in simulation time is held 
by either LP 1 or LP 2. The resource is held by an 
LP until the other requests it, and some random time 
after the request, the resource is released to the LP 
requesting it. Now imagine that at time 100 LP 2 
has the resource and LP 1 requests it. LP 1 does not 
know when it will actually acquire the resource, and 
so continues optimistically on to an event at time 120, 
under the assumption that it does not have the re- 
source at time 120. The event processed at time 120 
responds to a query by LP 3, “Do you have the re- 
source now?“. Assuming not, LP 1 replies “No” at 
time 121. Sometime after this exchange LP 2 decides 
to yield the resource, at simulation time 110. Imme- 
diately after sending the “It’s yours now” message to 
LP 1, it processes a query event from LP 3 at simula- 
tion time 121. “No”, it replies. Upon receipt of this 
second negative response, LP 3 is in an illogical (with 
respect to the model semantics) state. We cannot pin 
this situation on a rollback inconsistency, because no 
rollbacks have yet occurred. 

The problem in this case is that LP 3’s state is 
“stale” with respect to the query response message it 
receives from LP 2. It is stale in the sense that some 
action has been initiated that ultimately will roll LP 
3 back, t,hat the LP 2 data dependency component of 
LP 2’s message to LP 3 is of a state that follows that 

initiation, but the LP 2 component of LP 3’s data 
dependency vector will be affected by that initiation, 
but has not yet been affected by it. 

More formally, if M is a message processed by LP 
j, we’ll say that LP j’s state is stale with respect to 
M if M’s dependency vector component for some LP 
It reflects a state of LP k that follows its transmission 
of a message that initiates a rollback, the penultimate 
result of which is to rollback LP j, but which result 
has not yet occurred. The definition of M being stale 
with respect to LP j’s state is entirely similar, save 
that the penultimate result is that M is annihilated. 

Rollback-inconsistency and stale state are related 
concepts in that rollback inconsistency occurs when a 
completed rollback makes two sampled states inconsis- 
tent, whereas stale state occurs when an initiated but 
as yet uncompleted rollback chain makes two sampled 
states inconsistent. For example, whereas states asso- 
ciated with C and D in Figure 3 are rollback consis- 
tent, once the first message responsible for initiating 
the rollback chain that causes the rollback at time 11 
is sent, state D becomes stale, even before the time 11 
rollback is recognized. 

The problems of rollback inconsistency and stale 
state can be both eliminated by the simple mecha- 
nism of requiring message acknowledgments. The dis- 
cussion below assumes the use of aggressive cancela- 
tion (also a modified lazy cancelation is possible so 
long as before a rolled back LP sends any new post- 
rollback message, all previously sent messages with 
larger time-stamps are aggressively canceled, with ac- 
knowledgments all received). 

When an LP sends an ordinary message, it blocks 
from further processing until it receives an acknowl- 
edgment for that message (actually, all that is required 
is that it not send any new message before that ac- 
knowledgment is received). If a message (ordinary or 
anti-) is placed in LP j’s input buffer and does not 
cause rollback, that message is acknowledged immedi- 
ately. If instead the message triggers a rollback, say at 
simulation time t, LP j does not acknowledge the mes- 
sage until it has itself received an acknowledgment for 
all anti-messages sent with time-stamps greater than 
t. 

We must argue that this mechanism does not cause 
deadlock, and that it does indeed eliminate rollback 
inconsistency and stale data. Freedom from deadlock 
is easily seen, by considering the unacknowledged mes- 
sage with largest receive-time. It ultimately must be 
acknowledged, breaking any deadlock cycle. 

Theorem 1 Under message acknowledgments for 
anti-messages, rollback-inconsistency is eliminated. 



Proof: For the sake of contradiction, suppose a 
message M is delivered to LP k such that the mes- 
sage’s dependency vector is rollback-inconsistent with 
LP k’s dependency vector in component j. With- 
out loss of generality (and using the list code de- 
scribed earlier), suppose that LP k’s DV code for LP 
j, (tr , Ll), is a later (with respect to wallclock time) 
reflection of LP j’s state than is the corresponding 
component (ts, Lz) in M’s DV. Rollback-inconsistency 
implies that Lr = (Ls, L’,) for some non-empty list 
L{, and that L$ contains some rollback time t3 with 
t3 < t2. We take t3 to be the first such rollback time 
in L’, . Ultimately we can trace back the appearance of 
code (tz, Lz) in M’s DV to a transmission at time t2 
by LP j. When LP j processes the rollback at ts after 
that transmission, it does not send any further mes- 
sages before receiving an acknowledgment for the anti- 
message it sends to cancel the time ts message. That 
anti-message, possibly triggering other anti-messages 
that must be acknowledged, erases all dependence of 
any LP on the state of LP j reported in the time t:! 
message. LP j cannot advance to any state repre- 
sented by code (tl, L1) before that cancelation is com- 
plete. Hence, code (t2, Lt,) may not be associated with 
M if LP k’s code is (tl, Ll), establishing the contra- 
diction and proving the theorem. 
0 

It is worth noting that a measure of safety can be 
gained just by acknowledging anti-messages. Addi- 
tionally requiring acknowledgments for ordinary mes- 
sages brings freedom from stale states as well. 

Theorem 2 Under message acknowledgments for or- 
dinary and anti-messages, the system is free from stale 
states. 

Proof: Suppose that LP k’s state is stale with respect 
to message M in the dependency vector component for 
LP j. This means that LP j sent some message Ml 
before achieving the state reflected in M’s DV compo- 
nent for LP j, a message that triggers a rollback chain 
that will ultimately affect LP j, but has not. This 
cannot occur, as LP j awaits an acknowledgment for 
M’ before sending any further messages. A similar 
argument shows that M cannot be stale with respect 
to LP j’s state. 
q  

Two important points should be noted here. First, 
Time Warp pioneers recognized that if the system 
contained messages that would cause an LP to roll- 
back and messages that would cause it to move for- 
ward, then the rollback should have precedence. This 

194 

could be done heuristically by always processing anti- 
messages before other messages. Some schemes even 
proposed preemptive rollbacks of all LPs within some 
“distance” of a temporal error without bothering to 
see if anti-messages would indeed trigger rollbacks 
there. Our acknowledgments are the logical exten- 
sion of such thinking. Second, waiting for acknowledg- 
ments before allowing an LP to send another message 
need not impact performance greatly. This is a mat- 
ter of latency hiding. If there are many LPs on each 
processor, then after suspending one we may well be 
able to find many that have useful work to perform 
while the first is blocked. In any case, the require- 
ment is that an LP not send another message without 
appropriate acknowledgments, not that it cannot pro- 
cess. It is viable to allow the LP to continue executing, 
and buffer its messages until appropriate acknowledge 
releases are obtained. 

5 Safety and Risk-Free Protocols 
Despite the measure of safety offered by requiring 

acknowledgments, it is easy to see that a “risky” mes- 
sage can still be drive an LP into error. For instance, 
the first message LP A sends to LP B may be inconsis- 
tent with LP B’s initial state, unless LP A first receives 
and processes a message from LP C. Risky processing 
allows LP A to befoul LP B with the errant message. 

In our view, the real danger of allowing risky mes- 
sages is that in a complex code the space of possible 
nonsense states into which an LP might be driven is 
too large to anticipate. Intuition will guide a model 
developer so long as the LP data state can be assumed 
to reflect a real possible state in the modeled physical 
system. Even though banning risk still allows one to 
get into states that are inconsistent with model seman- 
tics, we observe that if the model code is safe under all 
“internally speculative” scenarios, then it is safe under 
a risk-free protocol. This point is so obvious it hardly 
needs mentioning, yet given the perhaps ill-considered 
impetus in the PDES community to attempt every bit 
of parallelism possible, perhaps it does need mention- 
ing. 

Constraining synchronization to be risk-free vastly 
simplifies the programmer’s job in verifying the safety 
of the program. For, let S denote the set of “real” 
LP data states, those corresponding to physical re- 
ality. During testing and verification of correctness, 
one ensures that the transitions between states in S is 
correct in response to a set of external messages ME 
and in response to a set of iniernal messages Ml. If 
a risk-free protocol is used, to test or verify safety, 
one needs only to ensure that the LP is safe within 
all states S’ _> S, obtained by considering all ways 



of starting with a state in S and repeatedly making 
transitions by accepting messages from MI.. Contrast 
this with the need to test or verify the set of states 
St’ > S’, obtained by considering all ways of starting 
with a state in S and repeatedly making transitions 
driven by messages of any kind or content. In the for- 
mer case it is reasonable to expect the code developer 
to have intuition about the behavior of the LP code 
in S’, in the latter case it is a much harder job. 

6 Conclusions 
We remind the community that optimistic process- 

ing implies that LPs may be temporarily driven into 
nonintuitive states. We point out that with current 
trends in using C and C++ as the basis for paral- 
lel simulation, this creates a danger of damaging the 
simulation while it executes in one of these states, for 
the executing code has access to portions of the stack, 
heap, and static data areas that are not checkpointed. 

Our concern is that parallel simulation is on the 
threshold of being used to build large complex mod- 
els, but that the safety ramifications of optimistic pro- 
cessing in general, and risky messages in particular 
are not well understood by those who would build 
those simulators. For, the model code has to be re- 
silient enough not to crash the system, even when 
pushed into transient, but unexpected non-physical 
non-intuitive states. 

We observe that lagging rollbacks and stale states 
are two important causes of an LP entering a non- 
sense state, and show that requiring acknowledgments 
from anti-messages eliminates lagging rollbacks, and 
that additionally requiring acknowledgments from or- 
dinary messages eliminates stale states. We note that 
the problem of verifying an LP code’s safety is much 
reduced if it can be assumed that a risk-free synchro- 
nization protocol will be used. The programmer needs 
only consider the effects of speculative computation 
that are entirely internal to the LP. This eliminates 
the need to anticipate against processing arbitrarily 
illogical messages. 

Optimistic synchronization provides the only way 
some important problem classes can be simulated with 
fidelity on parallel machines. However, it is important 
to realize that the software engineering burden of us- 
ing Time Warp is higher than for serial simulation. 
So long as the LP code can adversely affect its oper- 
ating environment, synchronization concerns are not 
transparent to the modeler. 
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