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Abstract

In this work we focus on a new technique for making
cloning of parallel simulations more efficient. Cloning pro-
vides a means for running multiple similar simulations in
parallel where many computations are shared rather than
repeated [12]. A simulation is cloned on an event for a
particular set of logical processes, creating new LP clones.
The clones diverge as messages from the new LPs arrive at
uncloned LPs. Until replication, all the computations for a
particular LP are shared between the clones. Simulation
kernels using cloning achieve efficiency by incrementally
replicating logical processes as necessary. This enables re-
gions of the simulation that have not been affected to use the
same computations for both the new and old clone. Clearly,
the longer replication can be delayed, the more efficient
the simulation. We hypothesize that in many cases replica-
tion takes place before it is strictly necessary. We propose
just-in-time cloning that addresses this issue by relaxing
the constraints of simulation cloning to further benefit from
shared computations.

1. Introduction

In this work we focus on a new technique for making
cloning of parallel simulations more efficient. We briefly
review the cloning approach here. For a full description
please see [12]. We report on a significant efficiency im-
provement to the algorithm for simulation cloning.

Simulation cloning in Time Warp simulations enables ef-
ficient exploration of multiple simulated futures based on
policy decisions made at decision points. Time Warp sim-
ulations are composed of multiple logical processes (LP)
that exchange messages to advance the simulation. In the
standard approach to cloning, a simulation is duplicated a
portion at a time by replicating LPs as necessary. Our im-
provement concerns the timing of LP replication. In par-

ticular, we are able to delay many replications and to avoid
some replications altogether.

As an example of how simulation cloning might be ap-
plied, consider an air traffic control scenario where in-
clement weather may force a change in policy for one or
more airports. One might use simulation to compare al-
ternate strategies for managing the flow of aircraft in this
portion of the air space. Many strategies are available to
controllers to address such problems, but their impact on
the situation may be difficult to predict. Simulation cloning
can provide a means for efficiently evaluating many policies
at once.

Continuing with the example, the simulation can be ini-
tialized with the current state of the airspace, then executed
forward until reaching the point where new policies are to
be imposed. The simulation can then be cloned (replicated),
with each clone simulating the traffic space with a different
control policy. The point where the simulation is cloned
is referred to as a decision point. The cloned simulations
execute concurrently, and will produce results identical to a
traditional replicated simulation where the entire simulation
is executed from the beginning using different policies.

Simulation cloning assumes a message-based computa-
tion paradigm like that commonly used in parallel discrete
event simulations. Specifically, the simulation is composed
of a collection of logical processes (LPs) that communi-
cate exclusively by exchanging time stamped events or mes-
sages. A synchronization algorithm is used to ensure that
each LP processes its events in time stamp order, or in the
case of optimistic simulation protocols, the net effect of
each LP’s computation is as if its events were processed in
time stamp order. Simulation cloning can be used with ei-
ther conservative or optimistic synchronization techniques.

Simulation cloning improves performance because it al-
lows computations to be shared between the clones. Up to
the decision point the simulations are identical and a sin-
gle computation suffices for the cloned simulations. After
the decision point the simulations slowly diverge as aircraft



emanating from the airport of interest begin to affect other
airports in the simulation. In air traffic simulations airports
are typically mapped to LPs[19]. As an airport (LP) accepts
an incoming aircraft from an airport (LP) that diverged, it
too diverges (or replicates). Eventually, the entire simula-
tion is fully replicated and the simulations are doing all the
computations as two replicated simulations plus some small
overhead.

We envision two general schemes for improving the per-
formance of cloning: (1) By delaying the replication of a
cloned logical process until it is absolutely necessary, thus
allowing LPs to continue to share computations and (2) by
merging cloned simulations so that replicated simulations
that have re-converged to the same state can resume sharing
computations. This paper focuses on a discussion of delay-
ing replication.

As an example of how delaying replication may be ben-
eficial, consider a single flight from a replicated LP repre-
senting the Atlanta (ATL) airport to Stockholm (ARN) that
is forced to land one hour late. Further assume that this late
arrival has no additional effect on the state of the Stockholm
airport. In standard simulation cloning, the Stockholm air-
port is replicated by the delayed flight since now there are
two different simulations. The cloning of the Stockholm’s
airport is illustrated in Figure 1, where a new physical clone
2 is created and virtual clone 2 is remapped to Stockholm’s
physical clone 2. As aircraft depart from the new Stockholm
airport clones destined to other European airports, those air-
ports will also be cloned, even if the two copies of the Stock-
holm airport are equivalent. In Figure 1 a flight from Stock-
holm’s clone 2, destined to Vienna, has an identical flight
in clone 1 and will cause Vienna to clone. The two phys-
ical copies of Vienna will be the same after receiving both
copies of the flights from Stockholm. The problem here is
that by virtue of an interaction from a diverged clone, air-
ports become unnecessarily replicated.

In this work we propose a just-in-time cloning as an ap-
proach to delaying replication of cloned logical processes.
We evaluate the approach in two benchmark simulation ap-
plications: PCS and P-Hold.

2. Related work

Simulation cloning has been shown to improve perfor-
mance of interactive applications such as simulations of
the ground transportation [16, 17] and air-traffic control
[12]. Cloning has been implemented both in conservative
[2, 16, 17] and optimistic [12] simulation executives.

With respect to cloning in general, related work in inter-
active parallel simulation include [7] and [6]. The approach
of [7] allows for the testing of what-if scenarios provided
they are interjected before a deadline. Alternatives are ex-
amined sequentially using a rollback mechanism to erase
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exploration of one path in order to begin exploration of an-
other. [6] create a new simulation from a previous base-line
simulation by executing forward. They can determine if a
computation can be reused by using a predicate function
that is tested on the baseline simulation, however as in [7]
only the testing of one alternative at a time is allowed. A
drawback of this latter approach is that one must manage
the entire state-space of the baseline simulation.

Cloning has been used to improve accuracy of simula-
tion results, i.e., to run multiple independent replications
then average their results at the end of the runs. For exam-
ple, in [10] research focuses on how to achieve statistical
efficiency of replications spread on different machines. In
[18] replications are synchronized via a shared clock. In this
way the same event occurs at the same time at all replicas.

Cloning is also used in sequential simulations to propa-
gate faults in digital circuits [14], modeling of flexible man-
ufacturing systems [4] or to fork transactions in simulation
languages [11]. Sequential simulation languages typically
clone dummies (“shadows”) to do time-based waiting [15].

Our approach that delays replication is similar to tech-
niques that reduce the cost of rollbacks: Lazy cancellation
[9], the aggressive no-risk (ANR) [5] protocol and exploit-
ing “lookback” [3] for example. Lazy cancellation delays
sending anti-messages until the event that originally sched-
uled them is guaranteed not to be re-generated. ANR de-
lays delivering messages until the event that created them
is guaranteed not to be rolled back (the sender event), this
technique avoids cascading rollbacks. Lookback is a tech-
niques that identifies situations where one can avoid roll-
back.

Our approach is applicable both to optimistic and conser-
vative protocols. It uses message comparison as in the lazy
cancellation protocol, but does not suffer from the same per-
formance penalty since it only compares messages if the LP
is subject to replication.

3. Problem statement

A Time Warp simulation is composed of multiple log-
ical processes that communicate by exchanging messages.
To support multiple parallel clones of a simulation, the con-
cepts of physical logical process, virtual logical process and
virtual messages were introduced in [12]. Virtual LPs and
messages do not have a physical realization. Instead, each
virtual LP maps to one physical logical process that does
have a physical realization in the parallel simulation sys-
tem. Similarly, each virtual message maps to a single phys-
ical message.

Computations common between two or more clones are
completed by a physical LP and shared by the virtual LPs
in the clones that are mapped to the physical LP. Similarly,
virtual messages among different clones are mapped to a

single physical message to avoid duplication. Sharing of
common computations may proceed until the state of one
of the virtual LPs diverges from the others. At this point the
LP must be replicated and it becomes a physical LP.

We know that a virtual LP cannot diverge from the oth-
ers until it receives a message from a replicated LP. It is
possible at this point that the information in a message from
a replicated LP sender will cause the state in the receiver
to diverge from the others. An earlier implementation of
cloning took a conservative approach, and replicated the re-
ceiving LP when this occurs [12]. However, if replication
can be delayed we may be able to gain even more efficiency.

Observe that some replicated LPs generate messages
identical to their un-replicated (pre-cloned) counterparts. In
these cases it is not necessary to replicate LPs that receive
such messages. If we account for these situations and delay
replication there may be a significant advantage, especially
considering that if we did clone identical logical processes
they in turn would send out identical messages causing fur-
ther unnecessary cloning and so on. This observation is the
basis of our new approach, just-in-time cloning.

The two problems we must address then, are:

• How long can we delay replication? and

• How can we implement just-in-time cloning so that the
resulting simulation outcome is correct?

4. Implementation

As long as messages for a virtual LP from a replicated
LP are identically matched by messages from the other cor-
responding replicated LPs there is no need to replicate the
receiver. Thus our implementation of just-in-time cloning
relies on message checking to detect situations where repli-
cation is necessary.

Message comparison is expensive. If we do too much
comparing, performance will suffer. However, it is not nec-
essary that all messages be tested, it is only necessary for
certain virtual LPs to conduct this comparison. We hypoth-
esize that the set of LPs that must inspect messages is usu-
ally a small fraction of those in the entire simulation.

Consider the fact that simulations are cloned on an event
at a specific LP. So, initially, only one LP is replicated.
From that point, changes spread across the simulation out-
ward, much like the ripples from a pebble dropped in a
pond. It is at the boundary, the leading edge of the ripple,
where messages must be checked. Now consider an LP on
this boundary. It has received a message from a replicated
LP. Must it replicate itself? Perhaps not. If it receives an
identical message from all the other corresponding senders,
it does not have to replicate. But how long should it wait to
receive these messages?



We implemented just-in-time cloning in an optimistic
simulator. In this case we know that it is probable that
the corresponding messages have been received by the time
GVT matches the timestamp of the first message, however
this is not guaranteed1. So, at this time we check to see
if all the messages have arrived; if not, the receiving LP is
replicated. The net effect is that the LPs on the boundary ex-
ecute events conservatively, while the rest of the simulation
proceeds optimistically.

Just-in-time cloning was implemented within an opti-
mistic Time Warp simulation kernel [13]. Below we provide
pseudocode for the portions relevant to the JIT algorithm.

Data structures:
// Each LP has an associated array of queues;
// one queue for each simulation clone. Queues
// are sorted in timestamp order.
delay_queue[LP][clone]

Event processing:
// get next message
message = dequeuePendingQueue();

if( message might cause replication )
{
rcvt = message.receive_time

// block messages after rcvt;
// handled by TimeWarp executive
sendBlockingMessage( self,rcvt,putInJITList )

// queue message in delay queue
enqueue( delayQueue[self][message.clone] );
}

else
{
process message normally
}

Cancellation: // if there is a rollback
remove message from delay queue
if message scheduled a blocking message,

cancel it

We add a data structure, delay queue[][], which
contains an array of queues for each LP. For each LP, the
array contains one queue for each simulation clone. The
queues are used to store incoming messages that might force
replication.

When a new message arrives, it is inspected to see if it
might cause replication. Specifically, if it is from a repli-
cated LP, and the receiving LP has not yet been replicated,
the message may cause a replication. If the message might
cause replication the LP sends a BlockingMessage to
itself (more on that in a moment), and adds the message
to the appropriate delay queue. If the message cannot
cause replication it is processed normally.

1this only affects the performance and not the correctness of the simu-
lation

The sending of a BlockingMessage with a times-
tamp of the incoming message sets the following chain of
events in motion. First, the optimistic executive will block
processing on all messages with a timestamp after the time
of the BlockingMessage. This ensures that the mes-
sages equal to or larger than GVT and less than the time
stamp of the BlockingMessage are available for pro-
cessing and allows our software to capture the messages that
need to be inspected.

Next, our callback function PutInJITList (see be-
low) will be called automatically when GVT reaches the
timestamp. PutInJITList and ProcessJITLIST ac-
complish evaluation of the delay queues to see if the
LP must be replicated. Code for PutInJITList and
ProcessJITLIST is included below.

Note that it is possible for one or more messages to still
be in transit when the delay queue is processed. There-
fore, an LP may be unnecessarily replicated. This may lead
to inefficient, duplicated processing by the new LP, but the
simulation will still produce correct results.

PutInJITList() // called when GVT reaches blocktime
JITList = NULL;
Put LPs that sent blocking messages scheduled
at GVT onto JITList
ProcessJITList( GVT )

ProcessJITList( GVT )
while( ((readyLP = next from JITList ) != NULL) )

merged_message = NULL;
for( clone = 0; clone < num_clones; clone ++ )

{
message = dequeueAtTime( GVT,

delayQueue[readyLP][clone] )
if( message != NULL)

if( merged_element == NULL )
merged_message = message;

else
if( checkEqual( merged_message, message ) )

mergeMessage( merged_message, message )
else

queue message in Pending Queue
} /* for all clones */

process merged_message

dequeueAtTime() will only return a pointer to a
message if one or more exist at the specified time; in our
case GVT.

We require checkEqual() to be provided by the ap-
plication programmer. checkEqual() evaluates its two
message arguments to determine if they are equivalent. We
do this for two reasons. First, it may be the case that two
messages are not bit-wise identical, but still equivalent. The
kernel cannot determine this without help from the appli-
cation level. Second, the user may consider that two very
slightly differing messages may be considered identical. By
relaxing the constraint on how similar messages must be to
be considered identical, we may achieve more efficiency.



(The performance of this aspect of just-in-time cloning has
not been evaluated yet.)

If the two messages are equivalent, they are merged by
mergeMessage(). Our cloning implementation adds ad-
ditional information to messages in order to determine the
origin of the message (i.e. if it came from a replicated LP).
mergeMessage() ensures that the data structure is ap-
propriately updated when the messages are combined.

5. Performance

We evaluated the performance just-in-time cloning using
two benchmark applications: P-Hold and PCS [8, 1]. For
each application we constructed best case and worst case
scenarios. In the best case scenarios, a single LP is repli-
cated, but it continues identically to the original LP, thus
additional replications do not usually occur. Unnecessary
replications are possible due to the race condition outlined
in Section 3, but they cause inefficiency at worst; not in-
correct results. In the worst case scenarios, every message
from a replicated LP to an un-replicated LP forces repli-
cation. The worst case was implemented by revising the
application-level function checkEqual() to always re-
turn false.

The best and worst case scenarios help us explore the up-
per and lower performance bounds of just-in-time cloning
for a particular application. For reference we also include
results of traditional replication (two fully physically repli-
cated simulations) and a single simulation. By “single
simulation” we mean the original simulation has not been
cloned.

P-Hold provides synthetic workloads using a fixed mes-
sage population. Each LP is instantiated by an event. Upon
instantiation, the LP schedules a new event with a specified
time-stamp increment and destination LP (for more details
on P-Hold see [8]). P-Hold is instrumented by varying the
rate at which a clone causes the replication of other LPs.
This is done by adjusting the selection of the destination LP
of a message (logical processes are instantiated by receiving
messages).

We instrumented to variations of P-Hold. In the first case
the spreading is slowed by having an LP send messages only
to itself or to its neighbor (slow spreading). In the second
case the spreading is not constrained and the destination is
selected from a uniform distribution of all logical processes
in the simulated system (fast spreading). The time stamp
increment to schedule a new event is 1.0 in the slow spread-
ing case and is selected from an exponential distribution be-
tween 0.0 and 1.0 in the fast spreading case. In our experi-
ments the P-Hold simulations use a message population of
8096 and 1024 logical processes.

PCS is a benchmark which simulates a personal commu-
nication services network. The network is wireless (radio

receivers and transmitters) and provides services to mobile
PCS subscribers. The radio ports are structured in a grid
with one port per sector. Each cell services portables or
mobile phone units that each occupy a cell for a period of
time before proceeding to one of the four neighboring cells.
Call arrival, call completion, and move are example behav-
iors or types of portables which are modeled by events in the
simulation. Cells are modeled by LPs. Here we use a PCS
network of 1024 cells (a 32X32 grid) and 8192 portables.
Most of the communication, typically 90%, is between LPs
residing on the same processor. Many of those messages
are self-initiating, or sent between the same logical process.
More details of PCS are described in [1].

Evaluation of just-in-time cloning was conducted on an
SGI Origin 2000 with sixteen 195 MHz MIPS R10,000 pro-
cessors. The first level instruction and data caches are each
32 KB. The unified secondary cache is 4 MB. The main
memory size is 4 GB. All experiments use 4 processors

The independent variable for this experiment is exe-
cution time and the metric is simulation progress (virtual
time). Larger values indicate better performance. Simu-
lated time is also referred as the virtual time to distinguish
it from wall-clock time. For all P-Hold simulations the de-
cision point (cloning) occurs at one logical process (LP0) at
simulated time 1000. In PCS the decision point is at simu-
lated time 500, 000.

Figure 2 shows the simulation progress (virtual time) of
P-Hold where the destination address is selected from a uni-
form distribution (the fast spreading case) versus wall clock
time.
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Figure 3 shows the performance of P-Hold in the slow



spreading cases. In both plots a larger number indicates
better performance.
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The performance for traditional cloning, in the fast
spreading scenario, initially degrades upon the instantiation
of a new clone, but then later continues linearly. The ex-
ecution time for the best case of just-in-time cloning slows
down but is closer to the performance of a single simulation.
Just-in-time cloning, in the best case, improves on simula-
tion cloning by 39%, and is about 12% slower than a single
simulation. Its worst case performance is about 14% slower
than simulation cloning.

In simulation cloning the slow spreading scenario shows
a more dramatic slow-down but then proceeds linearly as
well. The slow-spread case performs significantly faster
than the fast-spread case, once the performance stabilizes.
In this scenario, the performance of just-in-time cloning
is tight to the performance of a single simulation, there
is about about 2% difference. It improves on simulation
cloning by about 34% and at its worst it is about 12% slower
than simulation cloning.

The best case is tighter to a single simulation in the slow
spread scenarios since fewer logical processes interact with
a cloned logical process, causing them to wait conserva-
tively for “corresponding” messages until they can progress
further. In contrast in the fast spread scenario, there is a
larger set of neighboring logical processes and hence more
logical processes progress in conservative mode. The worst
case of just-in-time cloning perform worse than simulation
cloning because just about every logical process is likely to
interact with the cloned logical process, causing all logical
process to progress in conservative mode.

Our results, shown in Figure4 from the experiments us-

ing the PCS benchmark show similar performance as P-
Hold, except in the worst case. The worst case, that al-
ways replicates a logical process when it receives a message
from a cloned logical process initially behaves similar to
the performance of simulation cloning but then at simulated
time 1,750,000 it degrades more toward the performance of
the fully replicated PCS simulation. The performance of
the fully replicated PCS eventually surpasses the worst case
performance of just-in-time cloning. In the best-case how-
ever, just-in-time cloning is closer to the performance of a
single simulation.

Figure 4 shows the performance of PCS. These perfor-

Figure 4. Performance of PCS. Larger num-
bers indicate better performance.

mance improvements of both PCS and P-Hold indicate that
there may be a significant performance improvement of
just-in-time cloning over simulation cloning which makes a
difference for an interactive simulation, where alternatives
need to be compared and instantiated dynamically.

6. Conclusion

Just-in-time cloning enables cloned simulations to avoid
replication of receiver LPs, thus enabling computations to
be shared longer. The potential benefit of just-in-time
cloning is demonstrated using two benchmarks, P-Hold and
PCS. Results indicate that just-in-time cloning can improve
the performance of simulation cloning by a factor of 1.7.
It is especially efficient when the influence of a message
introduced by a logical process does not spread to other
processes in the simulation at a high rate. At best it runs
only 2% slower than a a single simulation run. These initial
performance results indicate that just-in-time cloning may
significantly reduce the time required to compute multiple
simulations.



At present we have only evaluated the approach in syn-
thetic best and worst case scenarios. In future work we will
investigate performance in typical simulation tasks. Addi-
tionally, we assume that the cost of message comparison is
low. This may be reasonable since we only need to to com-
pare messages when an LP receives messages from a cloned
LP. In future work we will examine the impact of message
size and also explore realistic applications for just-in-time
cloning.
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