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Summary

Theoretically optimal parallel pattern matching algorithms assume models of computation that do not
accurately represent parallel hardware. The specific issue investigated in this paper is whether algorithms
evaluated in performance and compared with the PRAM model exhibit similar relative performance on
physical machines. Our conclusion is that this is not the case, because such performance evaluations do
not take into account runtime overhead due to remote memory access, synchronization or inter-task com-
munication costs. To validate this conclusion, three parallel pattern matching algorithms are evaluated on
a 64 processor KSR2 supercomputer, a 12 processor SGI Power Challenge and a 16 processor SGI Ori-
gin 2000. One algorithm (Vishkin’s) is theoretically optimal and asymptotically faster when implemented
on a PRAM architecture; the others (the Boyer-Moore and the Knuth-Morris-Pratt algorithms) are serial
algorithms parallelized by domain decomposition. Processing time is measured on 1 to 40 processors for
searches of primate DNA sequence data 1 to 128 megabytes long, using long and short patterns (2 bytes to
10 megabytes). Performance is also evaluated on English and random texts. In all cases, the parallelized
serial algorithms out-perform the “optimal” algorithm of Vishkin.

Index Terms— Experimental algorithmic, parallel models, multiprocessors, pattern matching algorithms.
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1 Introduction

The Parallel Random Access Machine (PRAM) is a standard theoretical model of computation used to
predict the performance of parallel applications [12]. The PRAM comprises an unbounded number of
processors accessing an infinite space of shared memory without incurring communication costs for these
accesses. Weaknesses of the PRAM model have been pointed out by numerous researchers who in turn
have proposed new computational models to account for specific inaccuracies [1, 10, 11, 13, 18, 20, 30, 33].
Although the literature is expanding towards more realistic models, the PRAM model remains in frequent
use because of its simplicity and generality (e.g. [8, 16, 21]).

The memory access time not accounted for in the PRAM leads to unpredictable behavior of applica-
tions, especially when memory access time is large with respect to computation time. PRAM model argue
that smart hardware or compiler pre-fetching [25, 35] can hide actual memory access latencies. Current
hardware or compilers do not have such capabilities and, unfortunately, the trend toward faster CPUs and
larger memory hierarchies (register, sub-cache, cache, and various levels of remote memories) suggests that
problems with the PRAM model will worsen rather than improve.

This paper experimentally demonstrates the difficulty of comparing algorithms in the PRAM model.
We compare a theoretically optimal and asymptotically faster parallel algorithm with two serial algorithms
parallelized by domain decomposition. Specifically, we compare an optimal PRAM algorithm solving a
pattern matching problem by Vishkin [34] with two serial pattern matching algorithms, one by Boyer and
Moore [5] and the other by Knuth, Morris and Pratt [22]. The results of our work demonstrate the problem
of comparing parallel algorithms using simplified theoretical models. Even though Vishkin’s algorithm
is optimal and asymptotically faster under PRAM, the parallelized serial algorithms outperform it on real
hardware by significant margins. Performance is measured while varying several parameters including
the number of processors, text length, pattern length and text source differing in the size of the alphabet
(DNA, random text, and various English texts, with alphabet sizes of 4, 95 and 75-84 respectively). In all
cases, the parallelized serial algorithms out-perform Vishkin’s. Figure 1 is representative of our results.
The graph shows performance of the three algorithms searching for a pattern 16 bytes long in an English
text of size 128 megabytes. The significant result of this research is that use of the PRAM model for
performance prediction leads to incorrect statements about the suitability of various parallel algorithms

running on realistic and existing parallel architectures. This is particularly the case for fine-grained parallel
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Figure 1: Performance of the Vishkin algorithm and the parallelized Boyer-Moore and Knuth-Morris-Pratt algorithms on a 16
processor SGI Origin 2000. Lower values indicate better performance.

algorithms where the PRAM model predictions currently do not meet and are not likely to meet in the
future, the measured algorithmic performance. Realistic predictions must account for delays in memory
access, synchronization and communication costs.

There exist other computational models such as the Bulk Synchronous Parallel (BSP) [33], Block Dis-
tributed Memory (BDM) [20], and LogP [9] that account for non-uniform memory access and synchro-
nization costs. These models are motivated by the deficiency of the PRAM, as is our research. Our paper
complements the theoretical work underlying these new models by exposing thoroughly and experimentally
the practical reasons underlying the issues with PRAM.

Experimental evaluations of algorithms provide useful insights. In particular, we clearly show experi-
mentally, the reasons why it is difficult to predict actual execution times on parallel machines for algorithms
that differ asymptotically on the PRAM model. While it is well-known that PRAM can be improved, there
is also intellectual value experimentally examining the reasons underlying the need for such improvements.

This paper is organized as follows. The following section describes the PRAM model and the experi-
mental hardware platforms used in this research. The task examined, namely pattern matching, is discussed
in Section 3. Section 4 describes Vishkin’s parallel pattern matching algorithm and the serial Boyer-Moore
and Knuth-Morris-Pratt algorithms. The parallel implementations of the Knuth-Morris-Pratt, Boyer-Moore
and Vishkin algorithms and their performance on real machines are described in Sections 5 and 6. An im-
proved implementation of the Vishkin algorithm and its performance are discussed in Section 7. Section 8
discusses results indicating that the Vishkin algorithm may never achieve “optimal” performance in prac-

tice even if the number of processors are unlimited as the PRAM architecture assumes. We conclude with a
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discussion of the implications on our results and future directions in computer hardware development.

2 Platforms

2.1 The PRAM Architecture

The PRAM is a shared memory model where processors work synchronously, executing the same pro-
gram. The model assumes an unbounded number of processors that communicate through shared memory
or global random access memory. The memory is of unbounded size and is uniformly accessible by all

processors. This architecture is illustrated in Figure 2. Each memory cell can be independently accessed

P77 0%

Shared Random Access Memory

Figure 2: The PRAM architecture, unbounded number of processors.

without cost, even when there is contention between neighboring memory cells. Since the communication
is “free”, memory bandwidth is unlimited and any memory access take unit time.

“PRAM?” is often preceded by a prefix to denote assumptions concerning the handling of simultaneous
memory accesses. For example, the concurrent-read concurrent-write (CRCW) PRAM allows both con-
current read and concurrent writes to the same memory location, and the concurrent-read exclusive-write
CREW-PRAM allows simultaneous reading of the same memory location but does not allow simultaneous

writing.
2.2 The Ring Based Architecture

The first parallel architecture used for this research is an example of a well-balanced machine: a 64 pro-
cessor Kendall Square Research (KSR2) supercomputer. The KSR2 is a cache-only-memory architecture
(COMA). The processors are 64-bit two-way set-associative super-scalar RISC CPUs operating at 40 MHz
each. Peak performance is 40 M-flops per node, a speed that is well matched by the machine’s bus archi-
tecture described next.

The KSR is classified as a NUMA (Non-Uniform Memory Access) system, where the memory access

times are non-uniform depending upon whether the location addressed is in local memory or in various
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levels of remote memory. The “bus” topology of the KSR is a hierarchy of rings where each ring has 34
slots. 32 of the slots are used for connecting processors and the remaining two are used for linking to other
rings. The 32 processors form a ring operating at 1 GB/sec. Interconnection bandwidth within a ring scales
linearly, since every ring slot may contain a transaction [4], resulting in a ratio of CPU to bus capacity that
is far better than that of other parallel architectures discussed in the literature. This is especially true for the
increasingly popular networked parallel machines now employed widely [26]. The KSR2 was intended to

support 5,000 processors although the ring design supports an arbitrary number of levels.

=
& Level I Directory
- Level 0 Directory
Local Cache

Local Processor

global shared memory

system bus

Figure 3: The ring-based architecture on the left and the bus-based architecture on the right.

The KSR2 stores data in units of pages and sub-pages. Pages are of size 16 K-bytes, divided into 128
sub-pages of 128 bytes. The unit of allocation in local caches is a page. The unit of transfer and sharing
between local caches is a subpage. Each local cache has room for 2,048 pages or a total of 32 M-bytes.
A sub-cache has room for 0.25 MB of instructions and 0.25 MB for data. When a processor references an
address not found in its local cache, the memory manager first makes room for it by allocating a page. The
contents of the newly allocated page are filled as needed, a subpage at a time.

Memory page routing is controlled on the KSR using the ALLCACHE hardware engine. The ALL-
CACHE provides a single shared address space for all processors throughout the ring architecture, where
40-bit addresses are supported.

Via hardware migration and replication, the ALLCACHE engine provides a sequentially consistent
memory model. With sequential consistency, the result of any execution is the same as if the operations

of all processors where executed in some sequential order and the operations of each individual processor
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appear in this sequence in the order specified by its program [23]. Memory coherence is maintained by
updating all cells when a processor writes to an address. Memory access (which occurs in sub-pages of
128 bytes) latencies are approximately 2, 18, 126, and 600 cycles for local sub-cache, local cache, AG:0
(consisting of up to 32 CPUs) and AG:1 (consisting of up to 1088 CPUs), respectively. In comparison
to more recent architectures, the KSR’s memory scheme offers more favorable ratios of memory access
times to CPU cycle times. Specifically, the latencies for the SGI Origin 2000, another NUMA architecture
discussed below, are 11, 61 and 138 cycles for the L2 hardware cache, local memory cache shared by two
CPUs and a remote memory of up to 32 nodes, respectively [24, 29].

The KSR differs from the PRAM in that memory access times are non-uniform depending on the lo-
cation of data. By treating all memory as a cache (COMA), hardware supports some measure of latency
hiding in memory access, as data is automatically moved to a processor when needed. This functionality
helps bridge the gap between PRAM and the KSR, but nevertheless the KSR machine has to physically

move or copy data to realize memory accesses.
2.3 The Bus Based Architectures

The second class of parallel architectures used in our work represents the large number of bus-based parallel
machines employed in practice: an SGI Power Challenge. Our SGI Power Challenge has twelve 75 MHz
MIPS R8000 processors. In this machine, the first level instruction and data caches are of size 16 KB each.
The unified secondary cache has a size of 4 MB. The main memory size of the Power Challenge is 3 GB.
The latencies for the SGI Power Challenge are 5, 53 and 80 cycles for local sub-cache, local memory and
remote memory (where the bus supports the use of 12 processors simultaneously), respectively [24, 28, 29].
The processors on the Power Challenge communicate via a fast shared-bus interconnect. The bus has a
bandwidth of 1.2 gigabytes (GB) per second with a 256-bit wide data bus and a separate 40-bit wide address
bus that can access up to one terabyte (TB) of physical memory. The bus provides high-bandwidth, low-
latency, cache-coherent communication between processors, memory, and I/O. As a result the processors
share a single pool of memory where memory access cost is identical for all processors. Cache coherency
is maintained by snooping on the bus. The significant aspect studying bus-based architectures is that they
are classified as uniform memory access (UMA) systems.

Bus-based architectures differ from the PRAM model’s assumptions in that they have finite bandwidth,

and only a finite number of transactions can be performed per cycle. This limits the scalability of these
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architectures. In contrast, the PRAM model assumes that it can support an infinite number of processors

without increased memory access costs.
2.4 The Hub Based Architecture

The third class of architectures considered in this research is represented by an SGI Origin 2000 with 16
195 MHz MIPS R10,000 processors. Its first level instruction and data caches are of sizes 32KB each. The
unified secondary cache is of size 4 MB. The main memory size of the Origin is 4 GB. The Origin, like

the KSR, is classified as a NUMA machine. The architecture is hub-based with up to two processors per

2 processors 4 processors 4 processors 8 processors

12 processors 16 processors

Figure 4: The hub based architecture of the SGI’s Origin 2000.

hub. The hub contains memory that can be shared between the two processors. Figure 4 shows SGI Origin
2000 topologies for 2-16 processors. The hub manages memory accesses and I/O. Larger systems are built
by connecting hubs to each other or to a router. A router has six ports that can connect to additional hubs
or routers (a router is shown as an R in Figure 4). The advantage of adding a router to a hub rather than
an additional hub is that larger systems can be built since two hubs connected to each other allow for a
maximum system of 4 processors; the disadvantage is that the use of routers leads to higher memory access
costs. Systems are constructed by increasing the dimensionality of the router configuration and adding up
to two hubs with each additional router. Systems with any number of nodes may be constructed by leaving
off some corners of the n-dimensional hypercube (see Figure 5).

The Origin uses a directory-based cache coherence scheme. Memory is organized in cache lines of 128

bytes. The directory cache coherency mechanism uses dedicated circuitry in the hub to manage memory.
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Figure 5: Larger configurations of the SGI’s Origin 2000, 32 and 64 processors.

The latest copy is retrieved without waiting to write back to memory. When a node requests a cache line,
its hub initiates the memory fetch of the whole line from the node that contains that line.

The Origin 2000 differs from the PRAM model in that it is NUMA (as with the KSR multiprocessor).
Therefore, locality of memory access must be taken into consideration. Latency hiding is accomplished
by caching and pre-fetching data that are not cache-resident. Furthermore, the topology of the hypercube
router configuration implies that memory accesses pass through at most n + 1 routers, where n is the
dimension of the hypercube. The Origin requires more cycles than the Power Challenge to access various
levels of memory (Origin 2000 requires 11, 61 and 138 cycles respectively for accesses to the L2 cache,
local memory shared by two CPUs and remote memory of up to 32 nodes, respectively while the Power
Challenge requires 5, 53 and 80 cycles respectively to access cache, main memory and remote caches; this
implies a degradation in the ratio memory access time to CPU speed for this machine compared to the less

scalable Power Challenge.
2.5 Discussion of Platforms

It is not feasible to realize the PRAM model’s assumptions of both scalability and uniform memory access
costs in one architecture. Existing hardware can provide either of these capabilities, but one is typically
provided at the expense of the other.

Bus-based architectures for instance, can provide uniform memory access costs for a given number of
processors, where memory accesses have the same latencies regardless of their target memory locations.
Unfortunately, bus-based systems fail to emulate the PRAM in three ways. First, they do not scale; adding
processors is limited by bandwidth constraints on the bus. Second, there are limits on the number of
processors that can simultaneously access the same location or even the same set of locations (i.e. memory
bank) in main memory, due to bounds on memory concurrency. Third, synchronization instructions have
substantially higher overheads than memory accesses, leading to additional scalability problems. All of

these behaviors violate the assumptions of the PRAM model.
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NUMA architectures are subject to bus-based machines’ problems with concurrent memory access and
with the cost of synchronization instructions. However, they provide improved scalability by sacrificing
uniformity in memory access costs. In these systems, main memory is distributed among the processors.
When one processor must access a remote memory cell, the request is transmitted to the remote node. The
number of hops required depends on the number of processors in the system. Again, this violates a key
assumption of the PRAM model.

It is not likely that industry will devise a system providing both scalability and uniform memory access.
The market is moving towards scalable multi-layered memory architectures with low average memory ac-
cess costs due to multiple layers of cache and local memory, but with higher costs for more distant memory
accesses. Market trends also indicate a growing disparity between processor speeds and memory access

times (see Figure 6). Processors are getting faster, while memory speeds are remaining about the same.
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Figure 6: Percent improvement in performance since 1980 for microprocessor and DRAM access time. The processor-memory
performance gap is increasing: Microprocessor performance improves at a rate of 60% per year and the access time to DRAM
improves at a slower rate of less than 10% per year [19].

This trend is also evident in the architectures studied in this paper. For example, Figure 7 shows that the
older NUMA based KSR is a better balanced machine than the more recent NUMA based SGI Origin 2000.
This trend will move real machines even further from the PRAM model.

Finally, for all parallel hardware, the cost of a memory access varies significantly depending on the
machine architecture, on how recently the memory cell was accessed by the current processor and on how
recently it was written by another processor. PRAM does not capture such performance effects derived from
the locality of data. Furthermore, for problems like pattern matching (discussed in detail in the next section)
where the input size (text, and pattern) is large, the PRAM allows the number of concurrently executing
tasks to grow as a function of the size of the input. This leads to inaccurate performance estimates because

the PRAM does not account for the overhead of context switching between tasks.
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Figure 7: Memory access cost at various levels of memory for the SGI Origin 2000, the KSR and the SGI Power Challenge.

3 Parallel Pattern Matching

The experimental aspect of this work addresses pattern matching algorithms, where all occurrences of a
given pattern are found in a specified text. Pattern matching algorithms are important in building infor-
mation retrieval systems, managing large databases or exploring and searching the Internet. The theoretical
performance of pattern matching algorithms is described in terms of the length of the text to be searched,
n, and the length of the pattern to be found, m. Performance may also depend on the alphabet size ¢, which
is the number of different symbols used in the text and pattern. Various sequential methods exist for pattern
matching: dynamic programming [31], suffix trees [32] and automaton-based algorithms [2, 5, 22]. This
study focuses on non-periodic ! patterns.

Optimal parallel pattern matching algorithms have been developed by Galil [15] and by Vishkin [34],
where the former provides for a constant alphabet size and the latter assumes an arbitrary alphabet size.
For a parallel algorithm, “optimal” means that the work (the total number of operations) of the parallel
algorithm is within a constant factor of the work of the best known sequential algorithm solving the same
problem 2. These algorithms are developed for the PRAM model. Vishkin’s optimal parallel algorithm
runs in the general case in O(log m) on a CRCW-PRAM having n/ log m processors and in O(log? n) on a
CREW-PRAM having 1/ log? n processors. Thus, for both types of PRAM, more than 350, 000 processors
would be required to search for an eight byte pattern in a 10 megabyte text. When there are fewer processors

available, the algorithm runs in O(n/p) time for both the CRCW-PRAM and the CREW-PRAM.

'A string s of length [ is periodic if the length of its period is at most half its length . Here, a string w is a period of a string w if w is a prefix of
u® for an integer k, or equivalently if w is a prefix of uw [15]

%j.e. a parallel algorithm is optimal if it takes O(S(n)/p), where p is number of processors, n is the problem size, and S(n) is the worse case
performance of the best known sequential algorithm solving the same problem
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For purposes of comparison, we parallelize the Boyer-Moore serial algorithm by domain decomposition,
motivated by the fact that this algorithm prevails in practice. The algorithm is attractive despite its worst-
case performance of O(mn) since on average it performs sub-linearly. Another serial algorithm by Knuth-
Morris-Pratt is chosen because its worst-case performance is linear at O(n + m). Parallelization of a serial
algorithm by domain decomposition is attractive because certain memory reference costs can be minimized
in-part, because each processor is solely responsible for processing a specific portion of the domain without
sharing data with other processors. This also avoids false sharing, where different processors accessing
different memory units contend for the same memory page. In contrast, Vishkin’s algorithm depends on
the locality of data and this implicates its theoretical performance. Specifically, our results show that the

Boyer-Moore and the Knuth-Morris-Pratt algorithms outperform the Vishkin algorithm on all platforms.

4 Three Algorithms for Pattern Matching

4.1 Vishkin: A Theoretically Optimal Parallel Algorithm

Vishkin’s algorithm has three steps:

Input: Two one-dimensional arrays: T [1..n] — the text, P [1..m] — the pattern.
Output: All occurrences of the pattern in the text.

Step I: Pre-process the pattern to generate the witness array.

Step 1I: Eliminate candidates by duel.

Step 111: Test each surviving candidate for a match.

To explain Vishkin’s algorithm, we must first introduce the concept of a “duel” and the representation
of the “witness” array. The basic idea is that for any two prospective candidates in the text fewer than m
characters apart, only one may survive a “duel” (remain a possible match candidate). Only one such match
can exist®. For example, if j; and jo are two positions in text, and |j; — jo| < m, then it is impossible for (an
aperiodic) pattern to match the text at both locations (see Figure 8). To resolve a duel between positions
j1 and jo of fext, the algorithm refers to a witness array (witness) which is constructed when the pattern

is pre-processed. witness|i] indicates the first position of a mismatch when the pattern is compared with

3This is true for non-periodic patterns. In a non-periodic pattern, no suffix of the pattern matches any prefix of the pattern. Periodic patterns
require an extension to the basic Vishkin algorithm which is not implemented here.
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Figure 8: Candidate matches ji and jo spaced less than m apart cannot both have a match with pattern of size m.

itself at position 7 (witness[1] is always 0, because the pattern always matches itself). To illustrate this idea
consider the pattern daddadad and shift another copy of the pattern above it:

no mismatches
a d d a d a d witness[1] =0
d d d d

i =T =¥
o

shift =1

For this pattern, witness[1] is 0 because the pattern matches itself. The shift position for the above case is
1 and the shift is also the index of the witness array. When we shift the above pattern one position further
to the left (a shift position of 2), we find that witness[2] is 1 since the first character “d” mismatches the

second character “a”. This situation is shown below:

mismatch at 1
witness[2] =1

o
[NSIE R = R
[P
[aTpy
[ =N
[o V]
o o
[o V]

[=N

shift = 2

When a match is attempted at a shift of 3, a mismatch is first found at position 2 of the pattern above,

so witness(3] is 2. This is illustrated below:

1 2 mismatch at 2

d a d d a d a d witness[3] = 2
d a d d a d a d

3 shift = 3

Continuing shifting the above pattern to compute the witness array in the same manner, we have witness[4]
is 4 (see below) and witness|[5] is 1:
2

a
a

mismatch at 4
d a d witness[4] =4

oo W
o o~

a
d

o

o

o
Ao —

shift = 4

To capture the duel idea and its implications, consider the scenario below using the same pattern
(daddadad) as above (the text is daddadaddadaddadaddadad, Figure 8 is illustrative as a refer-

ence):
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d a d d a d a d pattern
d a d d a d a d pattern

d a d d a d a d d a d a d d a d a d d a d a d text
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 position

Assume j; and jy are two possible positions in the text for a match. The position of the pattern on the top
is 71 = 6, the position of the pattern closest to the text is jo = 3. Therefore, w in the Figure is 4, because
witness[4] is 4 (top pattern is at position 4 with respect to the bottom pattern and witness[4] is 4.) The duel
between j; and js then proceeds by comparing the j; — 1 + w position of the text with the corresponding
positions in pattern; the observation is that the text position can either match at the w position of the top
pattern, or match at the j; — jo + w position of the bottom pattern or neither (but it cannot match both
positions simultaneously). The position that matches wins and the other is discarded. If both lose, then both
are discarded. In our example, the text character at positions j; — 1 +w = 9 is compared with the character
at position w = 4 of the top pattern and with the character at position j; — 72 +w = 7 of the bottom pattern.
The bottom pattern is discarded.

Duels are carried out in Step II. The computational structure of Step II is shown in Figure 9. The du-
els essentially determine a representative candidate for progressively larger blocks of text. Initially the
block is small and consists of two characters (2'). The size of the block representing the winner candi-
date increases from 2! to 2!°8™~1 and the number of “survivors” decreases by half for each iteration or
round. Figure 9 shows the tree structure of the computation for text = daddadaddadaddadaddadad and
pattern = daddadad. There are log m — 1 levels in the tree, which corresponds to the number of iterations
in the algorithm. At each node, the number indicates the position of the winning candidate. The compu-

tations are carried out in parallel. After the duels are complete, the remaining candidates are examined in

Figure 9: The binary tree structure of the computation of duels, nodes above level 0 is labeled with position of the winner from a
previous round.

Step III. There are at most 2n/m remaining candidates. A character by character check is employed to

determine which of the candidate positions in the text exactly match pattern. Number of comparisons for
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this step is m(2n/m), i.e. 2n, in the worst case and 2n/m best case. Pseudo code for steps II and III appear
in Appendix A.
The storage requirement for the Vishkin algorithm is 4n + 4m + 7. The operation count and complexity

are described for each step below:

Step I: Preprocessing of the pattern requires O(m) operations and O(log m) time.

Step II: ~ Duels require (n/2 +n/4 + ... 4+ n/2losml=1)y = n1 — 2 = O(n) operations and
O(logm) time with O(n/logm) processors.

Step III:  Final step requires in the worst case (mn/2U196™=1) = 2p = O(n) operations and

O(log m) time with O(n/log m) processors. Number of operations in the best case is

(ny2logml=1y = o /m = O(n/m).

On a PRAM machine, the algorithm runs in O(log m) when ”m processors are available, otherwise worst

log
case is 3n/p and best case is n/p where p is the number of processors. The algorithm does not plan
memory access patterns for processors. Further, since the PRAM model assumes that all processors operate

in synchronous mode, on actual hardware it is left to the programmer to ensure that processors wait between

iterations.
4.2 Sequential Pattern Matching Algorithms

The parallel implementations of the serial algorithms have two steps:

Input: Two one-dimensional arrays: T [1..n] — the text, P [1..m] — the pattern.
Output: All occurrences of the pattern in the text.

Step I: Pre-process the pattern sequentially.

Step 1I: Split the text into k sections, one section for each

processor, then apply the sequential algorithm to each.

4.2.1 The Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm is the first linear time sequential pattern matching algorithm. Linearity is
achieved by taking advantage of remembering text positions that have been examined from a previous shift

of the pattern, thereby avoiding re-examining already known characters. For example, consider matching
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the pattern = ococoe against the text = the rococo style, assuming the current shift is 5 (see Fig-

ure 10). Five characters ococo in the text have been matched with the characters of the pattern. The next

‘tlhle| [rlofclofcfo]| [s[t]y]l]e

shift | o[ clolc]|o]e]o]
(t[hfe] Trfolclolcfo] [s[t[y[1]e]

Lojclofclofe]o]

shifi 42

Figure 10: Matching the pattern ococoe against a text.

character however, a space, mismatches the pattern character e. The Knuth-Morris-Pratt algorithm exploits
knowledge of matched characters to determine a new valid shift. In the example, an advancement of one is
disregarded because the first character in the pattern o would mismatch the already examined character c
in the text. In contrast, a shift of two utilizes the knowledge of aligning three characters from the text with
three characters in the pattern.

The algorithm avoids re-examination of text characters by pre-processing the pattern. A function that
determines new shifts is computed by comparing the pattern against itself. The idea is to find the length
of the longest prefix of the pattern that is a suffix of characters that have been matched in the text. The
difference between the “length” of the suffix already examined and the “length” of the prefix determines the
new shift of the pattern. In the example, the difference is 2 because the length of the suffix ococo is 5 and
the length of the prefix oco is 3. A lookup table stores the length of each prefix for each possible suffix.

The table for ococoeo is shown in Figure 11.

1234567 suffix length (index of table)
ococoeo pattern
0012301 prefix length

Figure 11: The prefix lookup table for the pattern ococoeo, here a suffix of length 4 has a prefix of length 2.

The algorithm has a worst case running time of 2n 4+ 2m, where the search phase runs at worst 2n

and the preprocessing phase runs at worst 2m. In the best case the number of comparisons in the search
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phase is n+O(1) [3]. The worst case running time is independent of the size of the alphabet. The algorithm
achieves linearity by remembering text characters that match the characters in the pattern. The Boyer-Moore

algorithm described below also takes advantage of tracking mismatched characters.
4.2.2 The Boyer-Moore Algorithm

On average the Boyer-Moore approach is the fastest sequential exact pattern matching algorithm, both in
theory and in practice. The key to the algorithm’s speed is that it can often skip the examination of text
positions. This is accomplished by shifting the pattern from left to right and examining the pattern against
the text right to left (i.e., the matching process starts by comparing the last character in the pattern, as
opposed to starting from the beginning of the pattern). Two heuristics help determine how far to the right
to shift the pattern on each iteration: (1) the bad-character heuristic and (2) the good-suffix heuristic [7].
The bad-character heuristic uses information from the discovery of bad text characters or uses mismatch
positions with the pattern in order to propose a new shift, while the good suffix heuristic proposes a shift that
does not cause characters in the current “good suffix” to be mismatched against the proposed new alignment
of the pattern. The pattern is then shifted by the largest of the proposed amounts.

To illustrate the effects of the two heuristics, consider the three snapshots of the process in Figure 12.

The algorithm is comparing the pattern = paralegal against the text = and his regal seal. The

la[n|d| [h[ils| [E]elglall] [s]e]a]1]
shift !p\al_r\a{l\e\g\a\l\

[a[n[d] [n[i[s] [¥]e[gla[1] [s]ea]1]

- |plajrlallle[gla]l]

shifi  +2

[a[n[d] [n[i[s] [r[e[g[a]l] [s]ea[1]
_ 5 plajriallle|gla]l]
shift C+ 4 3

Figure 12: Matching the pattern paralegal against a text by comparing characters in a right-to-left manner.

first snapshot shows that the current shift shift is invalid; because the “bad character” r does not match
the character 1 in the pattern. The second snapshot shows the proposal of the “bad character” heuristic:
shift the pattern 2 positions to the right. The “bad character” heuristic proposes this amount so that the

discovered “bad character” in the text matches the rightmost character r in the pattern (pattern position 3).



Practical Pattern Matching 17

The third snapshot shows the proposal of the “good-suffix” heuristics: shift the pattern 4 positions to the
right. This heuristic takes advantage of the knowledge of the text characters that matched the rightmost
characters of the pattern. It then proposes the smallest right shift of the pattern such that the text characters
that previously matched the suffix of the pattern do not mismatch any new characters of the pattern after
the proposed shift. Here the heuristic proposes that the pattern shift 4 positions to the right, so that the
characters al in the text match the al characters in the pattern (starting at position 4 of the pattern.) The
algorithm then shifts the pattern by 4 since this is the larger of the two proposals.

The worst-case running time, which includes periodic patterns, of Boyer-Moore is O(n + rm), where
7 is the total number of matches [22]. The worst case thus degenerates to O(nm) comparisons when there
are n — m + 1 matches. The best case is n/m comparisons and the average is O(n/m) comparisons. Cole
shows that if the pattern is non-semi-cyclic* the Boyer-Moore algorithm has an upper bound of 3n + -
comparisons [6]. A variant of the Boyer-Moore algorithm, the Galil [14] algorithm, improves the worst
case performance to O(n + m). The optimum bound of the expected time complexity of string matching is

O(logTqmn), where q is the size of the alphabet [22].
4.3 Discussion of Parallel Pattern Matching Algorithms

The main difference between the serial and Vishkin algorithms is the structure of computation. The Vishkin
algorithm uses a binary tree (see Figure 9) while Boyer-Moore and Knuth-Morris-Pratt use a linear list.
For the Vishkin computations, the bottom of the binary-tree structure (the leaf nodes) comprises the search
text characters, while the internal nodes represent the winner processors “duels”. The binary tree can be
envisioned as a tournament tree, where the winner represents a potential match and the looser a mismatch.
This binary-tree structure reduces computations but as discussed in more detail below, it also increases
processor dependencies. A completion of an iteration in the Vishkin algorithm is the same as computing
all the winners of duels at a specific level of the tree. At each level or iteration of the tree, the number of
processors used decreases by half. As a consequence, an important consideration for the Vishkin algorithm
is the extent to which processors must share data (especially when there are fewer processors than in the
best case). In the best case of Vishkin’s algorithm (when an infinite number of processors are available),
the structure implies that at each iteration every processor is dependent on the result of a different processor

than in the previous iteration. Initially, this assigns a processor to two character positions in the text at the

4 A semi-cyclic pattern is of the form wv¥, where w is a proper suffix of v and k >= 2.
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Algorithm PRAM Case | Processors | Best Case | Worst Case | Storage Requirement
Knuth-Morris-Pratt | O(m) n—m+1 % w n+m
Boyer-Moore O(m) n—m-+1 s nr n+m+c
Vishkin O(logm) oo - - dn+4m+7

Table 1: Summary of Complexity and Storage Requirement of the Boyer-Moore algorithm and the Vishkin algorithm. The
serial algorithms parallel predicted complexity assume linear speed-up. Note, that Vishkin’s algorithm runs faster than the serial
algorithms even when they are parallelized such that each possible match is assigned a unique processor.

lowest level of the tree.

Processors may also depend on previous processors’ results when there are fewer than p processors
available, since the PRAM model does not provide guidance on how to assign processors to blocks of text.
For example, the text-positions at the lowest level may be assigned round-robin. For instance, if there are
four processors, processor 0 is initially assigned text positions 0, 1; processor 1 is assigned positions 2 and
3; processor 3 is assigned positions 4 and 5; processor 1 positions 6 and 7; and so on. This assignment
maximizes dependencies among processors, but interestingly the PRAM model does not add a performance
penalty for this assignment. On actual parallel machines an assignment of text positions to processors in
contiguous blocks is clearly more advantageous with respect to performance.

The algorithms also differ in storage requirements: for the Vishkin algorithm, it is 4n 4+ 4m + 7; while
the Boyer-Moore and Knuth-Morris-Pratt algorithms require n 4+ m + ¢ and n + m amount of storage
respectively, where c is the size of the alphabet. The storage for the Vishkin algorithm is 2n for a matrix
that holds the tree structure, a vector of size n that holds boolean values indicating if there is a potential
match or not, and n for the text itself. The Boyer-Moore algorithm’s storage requirements include n for
the text, c for the bad-character heuristics, and m for the good-suffix heuristics. The Knuth-Morris-Pratt
algorithm uses n for storing the text and m to store the prefix table. Table 1 is a summary of the complexity

and the storage requirements of the serial and Vishkin algorithms.

S Parallel Implementations

All three algorithms were implemented using the Cthreads [27] library for parallel user-level threads.
The C-threads library is ported across different platforms (this research uses the KSR-2, the SGI Power
Challenge and the SGI Origin 2000), which results in the same user code executed across the various
platforms used in our experimentation. Although C-threads allows several threads to be mapped to the same
processor, that feature is not needed and not used, as threads are mapped to unique processors throughout

the experiments examined in this paper.
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5.1 Parallel Implementation of the Serial Algorithms

Parallel versions of the Boyer-Moore and the Knuth-Morris-Pratt algorithms are created by converting the
sequential routine into a function that can operate on sub-parts of the text. Simple domain decomposition
is used such that the search text is divided into &k sub-parts when k processors are available. Each thread

then proceeds to process its sub-part of the text. In the Boyer-Moore algorithm, each thread keeps its own

P, P, P, P,

aaabctgu‘u‘P‘c‘u‘o[P a‘a‘a‘b‘c‘t‘guupcuop

Figure 13: Processors are assigned are assigned continuous subparts of the text and work independently in the parallel implemen-
tations of the serial algorithms.

local copy of the two specialized data structures used to implement the two heuristics. The size of the array
required for implementing the good-suffix heuristic is the same size as the pattern, namely m. The data
structure to implement the bad character heuristics is the size of the ASCII character set. Each thread in the
Knuth-Morris-Pratt algorithm only keeps its own copy of the prefix lookup table, which is of size m. The
vector containing the search text is shared between threads both in the Knuth-Morris-Pratt and Boyer-Moore

algorithms. Pseudo code for the text analysis part of the algorithms appears in Appendix B.
5.2 Implementation of Vishkin’s Algorithm

The algorithm given by Vishkin is written under the assumption that there are n/log m processors. Few
characters are assigned per processor when the pattern is small. For example, when the pattern is of length
4, then each processor is assigned two characters of text. The KSR-2, however, is limited to 64 processors,
so even a modest text requires some type of decomposition to distribute the problem between processor
elements.

In our first implementation of the Vishkin algorithm, computations are assigned to processors round-
robin. Here, processing of text is interleaved between the processors, so that each thread determines the
winner of the partition numbered by its /D. Then the thread proceeds to determine the winner of the
partition I D + num_threads, and so on. When a thread completes a level and is ready to advance to the
next level, it must pause until other threads complete their processing for the current level. This is because
computations at one level depend upon other threads’ results at the next lower level. Conversely, the PRAM

model assumes synchronous machine operation which implies that all threads naturally complete each stage
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at the same time. The structure of the computation scheme is shown in Figure 14. The figure shows a subtree

of the computational tree. Different shades of gray denote assignments to different processors.

Figure 14: A subtree of the computational tree, with different shades of gray denoting assignments to different processors.

The main data structures given by the algorithm are: left, a multi- dimensional array, a vector match,
and a vector text. The left matrix holds the position of the winning candidates of “duels”, as discussed
in Section 4.1. The match vector is indexed by the character position corresponding to the search text
and contains a boolean value which indicates if the specified position can still be considered as a possible
candidate or not. The fext array contains the search text. Threads share data in match, left and fext; each
thread has its own copy of the vector pattern and the vector witness.

Pseudo code for the implementation is given in the appendix in three modules (see Figure 26 in Ap-
pendix A). The first module called “thread” synchronizes between levels, the second module called “work
on level” is what each thread executes at each level, the third called “check candidates” is the final step,
where each surviving candidate is checked in parallel. The resulting computational tree is shown in Fig-

ure 14.

6 Performance Results

The first set of experiments were run on a 64 processor KSR2 supercomputer. In each plot a data point
represents the average of over 50 runs. Figure 15 shows how performance varies as 1 to 40 processors
search a 10 megabyte text and a pattern size of 10 using the Boyer-Moore and Vishkin algorithms. For these
performance measurements, timing starts after pre-processing is completed and stops after the last processor
finishes processing. For the Vishkin algorithm the performance initially improves dramatically (up to 5
processors), then levels off and degrades. This is due to shared memory contention. For n processors, in

this implementation, each segment of n characters in the text is accessed by all n processor. Since n is never
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Figure 15: Comparison between the algorithms of Boyer-Moore and Vishkin on the 64 processor KSR2 Supercomputer. Lower
values indicate better performance.

greater than 40, every sub-page (128 bytes on the KSR-2) of the text must migrate to each processor. This
suggests that Vishkin’s algorithm will usually run at the maximum memory/bus speeds of this machine
particularly since the pattern matching operation are not very computationally expensive. An interesting
aspect of performance of Vishkin’s algorithm, depicted in Figure 15, is the significant degradation for 25
and more processors, where at least one processor has migrated to another ring (the KSR processors are
arranged in two rings of 32 processors each). The cost of inter-ring memory access is much higher than
intra-ring access, thereby leading to a significant reduction in the algorithm’s performance.

The Boyer-Moore algorithm performs significantly better than the Vishkin algorithm, which suggests
that for a super computer with 64 processors it may be more beneficial to use a sequential algorithm par-
allelized by domain-decomposition rather than an optimal PRAM algorithm. Furthermore, if memory is
limited, then the Boyer-Moore algorithm is again preferable because the Vishkin algorithm requires signifi-
cantly more memory than the Boyer-Moore algorithm since it needs additional data structures that have the
same relative sizes as the length of the text.

In summary, these results indicate that inter-processor dependencies can significantly impact perfor-
mance on real machines and invalidate PRAM predictions (PRAM predicts that Vishkin should perform
better than Boyer-Moore). In particular, memory access patterns must be planned carefully, especially
when text is forced to migrate between rings as in the KSR implementation of the Vishkin algorithm. Sim-
ple domain decomposition that reduces remote accesses can be beneficial as the Boyer-Moore algorithm

demonstrates.
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7 Improving the Performance of Vishkin’s Algorithm

In the first implementation, performance suffers because fine-grained interleaving of input data requires
each processor to cache all portions of the text. We reduce remote memory accesses and paging by de-

composing the data into continuous partitions and dividing them among the processors. In this revised

Figure 16: The computational tree, in the revised Vishkin approach.

implementation of Vishkin’s algorithm, each thread is assigned disjoint sub-trees of the computation tree,
as illustrated in Figure 16. Here, a different shade of gray indicates an assignment of computation to a

different processor. This scheme offers two improvements over the initial implementation:
e Threads are not dependent upon results of other threads.
e Processors access fewer memory pages because they work on smaller, contiguous portions of the text.

To save memory, the size of the le ft matrix is reduced to contain only two levels of the computation tree.
If the algorithm requires more than two levels, then the previous result from an earlier round is overwritten
(measurements without optimizing memory usage have slightly worse performance). Pseudo code is listed
in Appendix A. Performance results appear in Figure 17.

A substantial improvement is realized by manipulating the memory reference scheme; performance is
better in all cases for this implementation versus the interleaved approach. There is also no performance
reduction as the number of processors exceeds 30 on the KSR machine as occurred previously. This is
because inter-ring memory access is not usually necessary when processors work individually on their own
sub-section of text, although there are still pages shared among processors for the left array. Namely, if a

thread does not need access to the exact same position recently written by another processor, it may need
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Boyer-Moore vs. Vishkin, DNA Data, 10 Mbyte Text SGI Power Challenge Boyer-Moore vs. Vishkin, m=10, 10 Mbyte Text
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Figure 17: The plot on left demonstrates the performance of Vishkin with domain decomposition and memory optimization on
the KSR2 supercomputer. The plot on the right demonstrates improved performance of Vishkin with domain decomposition on
the SGI Power Challenge. The performance of the Vishkin algorithms are compared against the performance of the Boyer-Moore
algorithm on both machines. Lower values indicate better performance.

access to a nearby position.

Even better performance may be realized for the Vishkin algorithm by eliminating synchronization, at
the cost of additional memory for the le ft matrix. By extending its size, we remove the possible conflict of
processors accessing the same memory cell, and thus the requirement for synchronization. The performance
results for this scheme are also shown in Figure 17. Again, performance is improved in all cases compared
to the previous implementations, but the gains are not as significant, because even though synchronization
cost is decreased there are additional memory management costs (such as paging costs).

The Boyer-Moore algorithm is also impacted by memory access and synchronization factors. Speedup 3
of the Boyer-Moore implementation for 10-40 processors on the KSR2 is shown in Figure 18: each search
for a 10 byte pattern in texts varies from 1 to 10 megabytes.  For small sizes of text the costs of
cthread_fork(), barrier(), and the allocation of parameter space for each of the processors dominate the
overall computational cost, but as the size of the text increases this effect becomes less significant. Al-
though each processor operates on independent sections of the text, they must all contend for access to the
bus since the text is in shared memory. This contention results in less than linear speedup for large numbers
of processors and small texts. As the text becomes large, however, speedup approaches linearity for larger
numbers of processors.

Finally, Figure 19 shows the comparison of run times for the Vishkin and Boyer-Moore implementations

as the size of the text is varied. Although both show approximately linear performance, it is safe to say

Sthe ratio between the sequential execution time (of a pure sequential implementation of the same algorithm), and the the execution time of the
parallel implementation
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Figure 18: Speedup of the Boyer-Moore implementation on the KSR2. Higher values indicate better performance.
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Figure 19: Comparison of the Boyer-Moore and the improved Vishkin algorithm on the KSR2. Lower values indicate better
performance.

that the Boyer-Moore implementation is significantly faster than the Vishkin implementation for all sizes of
text.

The performance results suggest that communication cost between processors, both for synchronization
and memory accesses, is the main bottleneck for performance. It is doubtful that algorithms like Vishkin’s,
which exploit communication between processors instead of mapping contiguous blocks of data to one
processor, can ever out-perform a sequential algorithm parallelized by techniques like domain decomposi-
tion on contiguous data. Furthermore, as CPU speeds and memory speeds diverge, locality considerations
become even more important. This suggests the increasing importance of augmenting theoretical parallel
models like PRAM to take into account memory effects. Such memory effects are explored in more detail

in the next section.
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8 Varying the Size of Data Assignment for Interleaving

When the text is large, the Vishkin algorithm requires more processors than are available on existing hard-
ware. For example, searching for an eight byte pattern in a 10 MB byte text requires more than 3 million
processors. Even if there were enough processors, performance may be affected by memory access and

synchronization costs.

PN
<

mm&

Figure 20: Changing the interleave factor for the Vishkin implementation, an interleave size of 1 is shown on the left and an
interleave size of 4 is shown on the right.

Access patterns of a larger number of processors than exist in actual hardware can be simulated by
manipulating the assignment of data to real processors. Here, a physical processor represents multiple
processors required by the Vishkin algorithm. The general idea is to simulate the number of characters that
are assigned to each processor in the initial stage of computation. For example, when the text is 1 MB,
or 1,048,576 bytes, and the pattern is 8 bytes, processors compute fragments of text that are between 2-3
characters in length. In terms of Vishkin’s computational tree, this corresponds to one computational node
assigned to one processor, while the neighboring (sibling) nodes on the same level in the tree are assigned
to a different physical processor.

To simulate this behavior, we study the impact of performance when different sizes of text fragments are
assigned to processors round-robin (i.e. a processor is “re-used” in round robin fashion when the algorithm
calls for more processors than are available). A subtree of the computational node assignment to processors
for searching for an 8 byte pattern in text of 1 MB is shown on the left in Figure 20. Recall that for patterns
of size 8 the Vishkin algorithm computes the first 3 levels in the computational tree (leaf and two interior
nodes), and that the computation does not continue to the root of the tree. The node assignment for a
pattern of size 128 is shown on the right of Figure 20. Shades of gray indicate node assignments to different
processors. A round-robin assignment ensures that text-fragments assigned to nearest neighbors in sibling

nodes are on different processors. This emulation of a larger system is optimistic in the sense that the real



Practical Pattern Matching 26

access costs higher if the memory hierarchy is larger. For example, in the KSR architecture we experienced

a memory penalty when processors accessed data residing on different rings.

processors=14, text=shakespear, n = 1 MB, m =32 B, (INT)
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Figure 21: Changing Interleaving: Execution time on the left (lower values indicate better performance) and speedup on the right
(higher values indicate better performance). Performance on the SGI Origin 2000.

To implement the access pattern of Vishkin in a large system, we re-examine our initial implementation
that assigned the computational nodes round-robin. The scheme is modified so that each thread can work on
a specified interleave size. When the interleave size is 4 and there are 2 processors available, a thread first
works on 4 neighboring nodes then it skips 4 nodes to work on its next set of nodes to simulate a different
processor (an interleave size of four is shown on left in Figure 20).

Performance using 14 processors on an SGI Origin 2000 searching for a pattern 32 bytes long in English
text of size 1 MB is shown on the left in Figure 21. Each point represents the median of 40 runs. Addi-
tional experiments using different sizes of text, multiple patterns and alphabets yielded similar results. The
interleave factor is varied from 254 to 4. A factor of 4 simulates systems with an access-pattern of 2 nodes
per processor, the actual allotment in a CREW-PRAM for a pattern of 32 bytes. As the interleave factor
decreases, performance degrades exponentially. The ratio of the sequential Knuth-Morris-Pratt algorithm
with the Vishkin algorithm while varying the interleave factor of the Vishkin algorithm is shown on the
right in Figure 21. The text is 1 MB, the pattern is 32 bytes and 14 processors are used for the parallel run.
The results show a severe degradation of speedup as the interleave decreases. For these interleave factors
the speedup is never greater than 1.

The memory-centric results presented in this section suggest that performance will degrade instead of
improve as processors are added to the system. This is because locality of data becomes poorer as the

number processors is increased: a processor depends on a larger number of other processors to compute its
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results. In addition, since the assignment of data fragments to processors becomes smaller, false sharing
increases and further worsens performance. Additional synchronization costs not demonstrated in these
results will impact performance further, since in our simulation only physical processors synchronize be-
tween levels in the computational tree. As an interesting side-note, we observed that the performance of
Vishkin with an interleave factor 254 performed similarly to the Vishkin implementation without any syn-
chronization primitives. This is probably because the impacts of false sharing and locality of data become
less significant when the interleave factor is large. Each processor can work more independently as the
interleave factor increases.

The type and size of the pattern and text to be searched also impact performance. To verify that changes
in these factors are not so significant as to reverse the importance trends noted so far, additional experiments

were run by varying these parameters. The next two subsections include the results from these experiments.
8.1 Different Types of Text

The size of the alphabet also impacts performance of the Vishkin algorithm. Performance results with two
different alphabet sizes are shown in Figure 22. The alphabet size is 85 on the left and 2 on the right. The
text with the larger alphabet is several copies of the complete works of William Shakespeare (provided by
Project Gutenberg Etext of Illinois Benedictine College). The text consists of symbols that can be found in
a file containing English text, i.e. spaces, return characters, letters, punctuation etc. The pattern is 16 bytes
and there are 0.0001% Matches of the pattern in the text (100% Matches implies there is a match at every
position of the text). The text with the smaller alphabet contains 2 letters: a’s and b’s. The text contains

11.6% Matches of the pattern.
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160 T T T T T T 160 ¢ T T T T
Vishkin —+— \ Vishkin —+—
Knuth-Morris-Pratt — Y Knuth-Morris-Pratt —
140 Boyer-Moore & | 140 \ Boyer-Moore &
120 120 |
- - &
\
E 100 E 100 \
L A 2 \\
= \ A \
e 80 |\ e 80 \\
g \ g \
B oo B ow
. ~.
40 ~— 40 | e
- . o
\—o—;@ =) T —s-
- E—
20 e 0 e TR
T e e S e e - S S|
0 o & T i — i o = & # 0 | I 1 i — —
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors

Figure 22: Different type of text: English text with 0.0001% matches on the left and periodic text with 11.6% matches on the
right. performance on the SGI Origin 2000. Lower values indicate better performance.
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Vishkin performs better with a larger alphabet size. This is because when using a larger alphabet it is
more likely to eliminate possible candidates. In other words the probability of a match is lower when the al-
phabet is larger. The Boyer-Moore and the Knuth-Morris-Pratt algorithms also perform better when there is
a lower probability of a match. Note that Knuth-Morris-Pratt out-performs Boyer-Moore when the alphabet
size is small. In experiments on random text (with fewer matches than English text), the performance of all
three algorithms is similar but slightly better than their performance for English text because they are more
likely to eliminate candidates. The performance of random text is similar in performance to the previous

plots and in shown in Figure fig:text-perf-rand.
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Figure 23: Random text. Performance on the SGI Origin 2000. Lower values indicate better performance.

8.2 Pattern Sizes

The size of the pattern significantly impacts run time. When the pattern is large in relation to the text,
performance is significantly degraded in the parallel Boyer-Moore and the Knuth-Morris-Pratt implementa-
tions (see Figure 24). There is at least one factor responsible for the reduced performance. In the sequential
version of the Boyer-Moore and the Knuth-Morris-Pratt algorithms, an earlier shift determines the length
of the next shift. But the parallel implementation loses this information for different segments on different
processors. This loss may be significant for large patterns For large patterns, the performance of the Vishkin
implementation is somewhat close to the performance of the parallelized sequential algorithms. This is be-
cause a candidate match is more likely to lose a duel with larger patterns. For small patterns (3 bytes and
smaller) the Vishkin algorithm performs poorly because no duels are performed and every position in the
text is treated as a possible match. The Boyer-Moore algorithm performs better when the pattern is larger

than 4 bytes.
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Figure 24: Changing pattern sizes: small patterns on left and large patterns on right. Performance on the SGI Origin 2000. Lower
values indicate better performance.

9 Discussion and Conclusions

The most significant result of this research is that use of the PRAM model for performance prediction
leads to incorrect statements about the suitability of various parallel algorithms for existing and future
parallel architectures. This is particularly the case for fine-grained parallel algorithms where the PRAM
model’s predictions do not currently hold (and are not likely to hold in the future), as demonstrated by
the performance measurements presented in this paper. These measurements indicate the need for more
realistic models that account for delays in memory access, synchronization and communication costs.

Additional results of this work compare parallelized versions of the Boyer-Moore and Knuth-Morris-
Pratt sequential algorithms with Vishkin’s parallel algorithm. We study algorithms performance on several
different parallel architectures using DNA sequences, random and English text. Performance of both the
Boyer-Moore and the Knuth-Morris-Pratt implementations are shown to be significantly better than that of
the Vishkin implementation.

Detailed measurements indicate that inter-processor dependencies significantly impact algorithmic per-
formance on actual machines. This invalidates PRAM based predictions of algorithmic performance, as
PRAM determines that Vishkin is optimal while Boyer-Moore parallelized by domain decomposition is
not. In particular, our results show that memory access patterns must be planned carefully, especially when
text is forced to migrate between rings as in the KSR implementation of the Vishkin algorithm. Appro-
priate domain decomposition that reduces remote accesses can be beneficial as demonstrated by alterna-
tive implementations of Vishkin’s algorithm and by parallel implementations of the Boyer-Moore and the

Knuth-Morris-Pratt algorithms. These results hold for studies of parallel implementations of Vishkin’s,
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Boyer-Moore’s and Knuth-Morris-Pratt’s algorithms in which the impact of several factors on their relative

performance is investigated including:

o type of text (English, Random, DNA),
e size of text,
e size of pattern and

e alternative assignments of segments of text to processors.

In all cases, the sequential algorithms (by Boyer-Moore and Knuth-Morris-Pratt) parallelized by domain
decomposition outperform Vishkin’s theoretically optimal (as predicted by PRAM) algorithm. This result
remains true even when the Vishkin algorithm’s implementation is optimized to account for these factors.

Furthermore, our performance studies of Vishkin’s PRAM optimal algorithm suggest that performance
will degrade instead of improve as processors are added to the system. This is because data is less likely to
be local to the processor that needs it as the number of processors increases. As locality worsens, sequential
bottlenecks increase and false sharing between processors increases as well.

We conclude that the PRAM model does not accurately predict algorithmic performance, due to its
assumption of uniform memory access for an unlimited number of processors with no penalties for memory
contention. This assumption is in direct conflict with current directions in hardware design where in fact,
CPU speed improvements continue to outpace gains in memory speeds. Furthermore, manufacturers are
building shared memory machines with uniform memory access with fewer processors (e.g. the SGI Power
Challenge), while hardware and software efforts are directed at machines with more processors utilizing
distributed memory schemes, again implying the impracticality of “common” memory with a large number
of CPUs. Neither case — few processors and fast shared memory, or many processors with slow shared

memory — matches the implicit assumptions of the PRAM.
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A Vishkin’s Algorithm

The array match indicates if there there is a match in the text at a specified position. The left[i][j] array
stores the outcome of the duels; ¢ indicates which level is being evaluated, and j indicates the particular
block within the given level. The array contents reflect the position of the representative for the block.
The implementation of Vishkin’s algorithm is influenced by Gibbons and Rytter’s [17] description of the

algorithm.
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function DuelText (j1, j2)
if ( j1 = mismatch ) return j,
if ( jo = mismatch ) return j;
else
w — witness[ji1 — ja + 1]
z «— text[j1 — 1 + w]
y < pattern[ji — ja + w)
x — pattern|w)
if(z#y)
match[ja] < FALSE
if(z#£x)
match[j1] < FALSE
if ( match[j2] = TRUE )
return jo as surviving candidate
else if ( match[j1] = TRUE )
return j; as surviving candidate
else
return NULL
end else
end DuelText

procedure ElliminateCandidates
for k — 1 tologm — 1 do
for all ( blocks ’a’ at level ’k’ ) par do
Jo < left[k][2a — 1]* left child of “a” at level k */
j1 < left[k][2a]  /* right child of “a” at level k */
left[k][a] < DuelText(j1, j2)
end _for all
end _for
end_procedure

procedure FindTrueMatch
for all j < first_block to last_block par do
candidate = left[ last_level ] [j]
if (candidate # NULL )
foralli — 1tom
check letter by letter
if ( a mismatch is found )
match[candidate] = FALSE
break out of for loop
else if (looked at whole string and a match )
record a MATCH at position candidate(j)
end_if
end_for all
end_if
end_for

Figure 25: Procedures for Vishkin’s pattern matching algorithm.
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procedure Thread
for level = 1 to logm — 1 do
WorkOnLevel()
increment (numbers_done)
if (last to be done on “level”)
reset number_done to O mutual exclusion
increment (level_working on)
else
wait for other processors to finish
end for

procedure WorkOnLevel

a = my_processor_number

while ( this level is not done ) do
Jo =left[(k-1) mod 2] [2a - 1] left child of a at level k
J1 =left[(k-1) mod 2] [2a] right child of a at level k
left [k mod 2] [a] = DuelText(j1, j2)
a = number_of_processors + a

end_while

procedure CheckCandidates
for j = start_block to end_block do
candidate = left[ last_level ] [j]
if (candidate # NULL )
while ( still a match for this position )
check letter by letter
if (.a mismatch is found )
match[candidate] = FALSE
break out of while loop
else if (looked at whole string and a match )
found a MATCH
end_if
end_while
end_if
end_for

Figure 26: First approach in the implementation Vishkin algorithm.
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num_trees = number of subtrees
if ( participate )

num_blocks = (num_trees/num_procs) x 21°8m=1
num_blocks = num_block /2
start_block = (my-id — 1) * num_blocks + 1
if (MyPE = LAST)
end_block = num _trees * 21°6™m~2
else
end_block = start_block + (num_blocks — 1)
for level = 1 to logm — 1 do
for a = start_block to end_block do
jo2 =left[(k-1) mod 2] [2a - 1]
j1 = left[(k-1) mod 2] [2a]
left [k mod 2] [a] = duel_text(j1, j2)
end _for
if (k#logm—1)
num_blocks = num_blocks /2
end_block = end_blocks/2
start_block = end_blocks — num_blocks + 1
end_if
increment numbers_done mutual exclusion
if ( last to be done on “level”)
reset number_done to 0 mutual exclusion
increment (level_working on)
else ( wait for other processors to finish )
end_for

* Ok X ¥ ¥

end_if

Figure 27: Second approach in the implementation Vishkin algorithm.
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B Boyer-Moore’s Algorithm

procedure Boyer-Moore
shift =0
last_shift =n - m
while (shift < last_shift) do
j=m
while ( (j > 0) and (pattern[j] = text[shift + j] ) ) do
j=j-1
if (j=0) then
found a MATCH
shift = shift + GoodSuffix[0]
else if ( GoodSuffix[j] > (j - BadSuffix[ text[shift + j]] ) then
shift = shift + GoodSuffix[j]
else
shift = shift + (j - BadSuffix[ text[shift + j]])
end_while
end_procedure

Figure 28: Procedure for Boyer-Moore’s pattern matching algorithm.

C Knuth-Morris-Pratt’s Algorithm

procedure Knuth-Morris-Pratt
shift =1
last_shift =n
q=0
for i = shift to last_shift do
while ( (q > 0) and (pattern[q+1] # text[i]) ) do
q = prefix[q]
if ( pattern[q+1] == text[i] )
q=q+1
if(qg==m)
found a MATCH
q = prefix[q]
end_while
end_procedure

Figure 29: Procedure for Knuth-Morris-Pratt’s pattern matching algorithm.
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