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ABSTRACT 

A virtualization system is presented that is designed to help 
predict the performance of parallel/distributed discrete 
event simulations on massively parallel (supercomputing) 
platforms.  It is intended to be useful in experimenting with 
and understanding the effects of execution parameters, 
such as different load balancing schemes and mixtures of 
model fidelity.  A case study of the virtualization system is 
presented in the context of plasma physics simulations, 
highlighting important virtualization challenges and issues, 
such as reentrancy and synchronization in the virtual plane, 
and our corresponding solution approaches.  A trace-based 
prediction methodology is presented, and is evaluated with 
a 1-D hybrid collisionless shock model simulation, with 
the predicted performance being validated against one ob-
tained in actual simulation.  Predicted performance meas-
urements show excellent agreement with actual perform-
ance measurements on parallel platforms containing up to 
512 CPUs. 

1 INTRODUCTION 

Evaluating and optimizing the efficiency of a paral-
lel/distributed discrete event simulation (PDES) programs 
on large supercomputer configurations is problematic.  For 
example, different partitioning schemes might need to be 
evaluated over multiple application scenarios and/or differ-
ent supercomputer configurations.  Because supercomput-
ing CPU time is limited and expensive relative to that on 
desktop computing platforms, it is desirable to avoid utiliz-
ing supercomputing time to experiment with different par-
allelization and optimization strategies (e.g., tweaking the 
load balancing algorithm).  A much more desirable ap-
proach is to execute the applications on a “virtual” super-
computer in order to complete the bulk of the experimenta-

tion and performance optimization prior to executing the 
code on the supercomputer.  Since the virtual execution of 
large numbers of processors cannot itself be accommo-
dated on a single host processor because of time and/or 
memory constraints, the virtual execution itself should be 
run on a less expensive parallel platform such as a cluster 
of workstations. 

Virtualization offers many benefits, including the fol-
lowing: (1) repeatable execution (2) a dedicated, easily 
customizable virtual supercomputer configuration, (3) 
ready access to large supercomputer configurations, and 
(4) ease of adding instrumentation without perturbing per-
formance metrics. 

A virtual, predictive execution is said to experience a 
slowdown if it runs slower than actual simulation on same 
number of processors, i.e., the virtual execution takes more 
total time than the application would have taken to execute 
on the supercomputing platform.  However, it is worth not-
ing that virtual execution-based prediction is still useful 
even if it experiences such a slowdown.  This is because 
the virtual execution offsets the loss of performance with 
its several other desirable properties – it retains repeatabil-
ity of parallel execution and cleanliness of target platform, 
without the need for actual (supercomputing) platform for 
execution. 

1.1 Motivation 

The need for virtualization of PDES applications is exem-
plified by one specific project (Karimabadi 2005) concern-
ing the simulation of the Earth’s global magnetosphere us-
ing PDES techniques.  The PDES models require 
execution on large parallel platforms, and hence we are 
considering supercomputing platforms for this purpose.  
However, the computational models of the Earth’s magne-
tosphere reflect its strong heterogeneity, and the best parti-
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tioning schemes for parallel execution are not known a pri-
ori.  Thus, we are faced with the need to evaluate different 
partitioning schemes, as well as other aspects such as accu-
racy and speed tradeoffs for different model approxima-
tions – (a) magneto-hydro dynamics, (b) hybrid, and (c) 
particle-in-cell models.  Various metrics need to be meas-
ured in order to obtain a qualitative understanding of the 
model’s execution, as the PDES models themselves are 
novel and need to be better understood.  Performance pre-
dictions are required to help tune and fine-tune the simula-
tions for best use of the supercomputing resources.  It is 
also useful early on in the development to have an estimate 
of performance to help overall debugging and optimiza-
tion. 

To meet the challenges of this immediate application, 
we address the problem of virtualizing the core of PDES 
applications in general.  First, we develop a framework, 
called PDES2, for PDES-based virtual execution of any 
PDES applications.  Then, we use the framework and ap-
ply it to evaluate the performance and instrumentation of 
PDES models of Earth’s magnetosphere. 

1.2 Related Work 

Traditional performance prediction efforts focused on plat-
form performance evaluation, such as predicting the over-
all runtime of an application on a parallel machine.  For 
example, traditional direct execution-based efforts focused 
on predicting how much faster a set of parallel programs 
would execute on a future parallel computer configuration 
(Dickens et al 1996, Reinhardt et al 1993).  As such, in-
strumentation of applications is not the primary focus – the 
emphasis lies more on the parallel computer configuration 
rather than on the application. 

In contrast, the focus of this present work is on predic-
tion and analysis of the causes of performance effects and 
gathering detailed information about application-level fac-
tors contributing to observed parallel performance.  For 
example, it is useful to understand which portions of the 
grid-based physics models contribute to increased event 
processing loads on certain processors, which grid cells in-
cur more event processing loads relative to other cells, and 
how blocking time due to distributed time synchronization 
affects overall performance.  This is more akin to debug-
ging and testing the performance of parallel programs, al-
beit on virtual parallel platforms. 

Another distinguishing factor is in the class of parallel 
programs considered.  Traditional performance prediction 
of generalized parallel programs attempts to accommodate 
a range of general parallel programs, such as MPI-based 
applications (Prakash and Bagrodia 1998).  In our work, 
the main focus is on performance prediction of parallel 
discrete event simulations.  This restricted focus allows ab-
stracting much of the hardware details of the virtual plat-
form, including network switch operation, operating sys-

tem effects and low level effects such as interrupts.  
Instead, simple models can be used in their place.  For ex-
ample, it is sufficient to model communication delays us-
ing simple delay distributions for fairly accurate perform-
ance estimates. 

Finally, there is a speed vs. accuracy tradeoff involved 
in different approaches. Other PDES performance predic-
tors use software emulation (Zheng et al 2004) focusing on 
accuracy by having cycle accurate model of target machine 
and predicting network performance.  In contrast, the ap-
proach presented here focuses on faster approximations of 
the same. 

The rest of the document is organized as follows.  In 
the next section, fundamental concepts in virtualizing 
PDES systems are introduced.  In section 3, the implemen-
tation details of the PDES2 virtual system are described.  
This is followed by section 4 in which the trace-based 
methodology is described for developing abstract models 
of event-stepped plasma physics models.  A performance 
validation study is presented in section 5 to validate the 
system, approach and results against actual simulation runs 
on supercomputers.  Finally, status and future work are 
outlined in section 6. 

2 PDES VIRTUALIZATION CONCEPTS 

2.1 Virtual & Real System Relationships 

Let Ф be the original system of interest.  Let α be the 
PDES model of Ф.  α executes on Nα processors.  Let β be 
a PDES simulation of α. β is executed on Nβ processors.  
The relationships of these real and virtual systems are illus-
trated in Figure 1 as three layers.  Each layer is a model of 
the layer above it. 

 

 
Figure 1: Systems and their Inter-relationships 

 
Note that α and β need not necessarily execute on identical 
computation platforms.  For example, they can be executed 
on entirely dissimilar types of processors and inter-
processor networks.  Also, most typically, Nα»Nβ.  In other 
words, a large platform execution is virtually realized on a 
much smaller platform (e.g., execution on supercomputers 
is simulated on a small cluster of workstations). 

Ф: Original system being modeled 

α: PDES model of Ф, executed on Nα processors

β: PDES model of α, executed on Nβ proces-
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2.2 System Timelines 

In any PDES execution of a system, there are three funda-
mental, distinct timelines involved.  Additionally, in a 
PDES of a PDES program, two more timelines appear.  
Thus, there are five distinct timelines in a PDES of PDES 
programs, as explained next. 

Let TФ denote a point on Ф’s timeline.  Let VTα be 
the corresponding virtual time in α.  Since α is a model of 
Ф, VTα≡TФ.  Let RTα be a point in real-time (wall-clock 
time) in the execution of α. Let VTβ be the corresponding 
virtual time in β.  Since β is a model of α, VTβ≡RTα.  Let 
RTβ be the execution time of β on same number of proces-
sors as α.  The ratio ρ=RTα/RTβ at the end of simulation 
represents the efficiency of virtualization (ρ<1 implies α’s 
virtual execution is slower than real execution).  These re-
lationships among the various timelines are depicted in 
Figure 2. 

 

 
Figure 2: The Five Distinct Timelines Involved in PDES of 
PDES 
 

For accurate performance prediction, it is important to 
keep the timelines distinct.  Our virtualization framework 
is carefully designed to keep distinct notions of these times 
by maintaining separate representations for each at run-
time. 

2.3 Performance vs. Accuracy 

Clearly, there are tradeoffs possible between the perform-
ance of the virtual execution and the accuracy of the pre-
dicted results.  One method is to use analytical models of 
the application and analyze its execution.  Such analytical 
models are faster to simulate, but are harder to develop as 
fair approximations of the application.  Other methods in-
clude virtualizing the entire application context (King et al 
2003), which is more challenging than virtualizing abstract 
models, or developing a virtual model using event traces 
generated from the original application. 

The method chosen for this paper is based on abstract 
models approximated/tuned with parameters extracted 
from traces (described in greater detail in section 4). 

2.4 Special Synchronization Methods 

In plasma simulation, we are investigating the use of spe-
cial synchronization methods (Karimabadi 2005, Omel-
chenko 2005) that carefully exploit certain relaxations of 
accuracy constraints in the models.  Our virtual framework 
is intended to not only explore performance effects of tra-
ditional synchronization techniques, but also the relative 
improvements offered by the novel synchronization tech-
niques. 

In particular, we are interested in easily adding and 
enhancing models of new synchronization methods into the 
virtual execution.  The preemptive event processing (PEP) 
algorithm (Omelchenko 2005) is of immediate interest as it 
has been designed to circumvent the low-lookahead con-
straints of particle-in-cell or hybrid plasma simulations.  In 
later sections, we describe how the PEP synchronization is 
easily added to virtual execution of general PDES conser-
vative synchronization. 

3 IMPLEMENTATION 

Our virtualization framework, called PDES2, is imple-
mented using a layered approach.  The framework is de-
veloped over an object-oriented, general-purpose PDES 
system called µsik (Perumalla 2005) designed for develop-
ing efficient PDES applications.  The layers in PDES2 are 
built using class hierarchy rooted at the threaded simula-
tion process class of µsik. 

A core layer in PDES2 is responsible for virtualizing 
the hardware, modeling the basic PDES synchronization 
mechanisms of α, as well as implementing the PDES syn-
chronization of β.  This layer is then used to virtualize cus-
tomized synchronization algorithms of α.  For plasma 
simulation, a virtual “preemptive event processing (PEP)” 
synchronization algorithm is modeled in this layer, as de-
scribed in detail in later sections.  This layer, which we call 
the virtual PEP layer, is realized as an extension of the core 
layer. 

3.1 Virtual Core Layer 

This layer provides the following components: 
 

1. Virtual models of hardware, i.e., abstractions of 
threaded execution, network latencies, etc., of α 

2. Models of PDES synchronization, i.e., virtual safe-
time computation, etc., of α 

 

TФ 

VTα 

RTα 

VTβ 

RTβ 
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It also implicitly takes care of synchronization of the PDES 
execution of β.  This layer provides a class called virtual 
CPU (VCPU), which provides a separate stack of execu-
tion (maintains a separate thread context) for each VCPU.  
The following is the class interface of VCPU. 

 

 
The root VCPU (virtual CPU) class provides all the 

required support for the virtual context of a single thread of 
execution.  Each instance of VCPU provides a separate 
thread context (we model only a single thread per CPU, 
and do not model operating system effects such as context 
switching). 

The virtual CPU thread has a core scheduler loop in its 
run() method in which it schedules “safe timestamp-
ordered” processing.  The safe-time at a processor is a 
lower-bound on the timestamp (LBTS) of incoming events 
from other processors in the future.  The virtual CPU im-
plementation includes built-in support for global asynchro-
nous, distributed, reduction-based safe-time computation.  
As of this writing, it does not consider transient messages 
(Mattern 1993), if any are sent, in α. 

It is important to note that the actual minimum-
timestamp values across all virtual CPUs need to be re-
duced to find their global minimum.  The synchronization 
messages of α are translated into events in β.  Accurate de-
termination of the LBTS values of α is necessary, since 
that determines and uncovers the actual load bal-
ance/imbalance in α.  Note that this is distinct from LBTS 
values used for parallel simulation execution of β. 

The distributed reductions follow a logarithmic pattern 
of communication, which requires dramatically smaller 
number of synchronization messages to be simulated as 
compared to an all-to-all pattern, for computing virtual 
safe-time values in α. 

3.2 Virtual PEP Layer 

In this layer, the synchronization framework of the core 
layer is extended by adding the special PEP functionality, 
namely, “pulling down” event timestamps whenever a new 
LBTS is computed.  PEP essentially is a distributed algo-
rithm designed to uncover concurrency of event-based dis-

tributed simulation of physics models while conserving 
flux. 

Since traditional lookahead-based techniques fail due 
to potentially zero-lookahead events possible in such simu-
lations, new techniques such as PEP are needed to uncover 
concurrency without losing flux conservation.  PEP does 
this by safely reducing (pulling down) the timestamps of 
local pending events based on global information of mini-
mum time delays of all events.  Such pulling down of time-
stamps serves to enable new processable events that would 
otherwise be un-processable in a traditional zero lookahead 
conservative parallel simulation. 

 

 
The PEP_VCPU class overloads the per-

form_synchronization() method of VCPU, and implements 
PEP’s pulling down of timestamps in it.  Since 
VCPU::perform_synchronization() models the computation of 
LBTS in α, the pulling down of timestamps can be natu-
rally performed immediately after the new LBTS is known. 

3.3 Virtual PEP-Application Layer 

In this layer, specific applications of PEP synchronization 
are developed.  The application is initialized in its begin() 
method, and finalization is done in its end() method.  
Events are scheduled by using the PEP_VCPU’s schedule() 
method.  Each event has a pointer to a Cell instance, repre-
senting that the event is scheduled on behalf of that cell.  
The PEP_VCPU class automatically “pulls down” the time-
stamps of these events as/when needed, according to the 
PEP algorithm.  When it is time to execute an event, the 
PEP_VCPU invokes the execute_vevent() method of that 
event’s Cell.  Application-specific extensions to the virtual 
CPU are realized as subclasses of PEP_VCPU, and extend-
ing its begin() and end() methods. 

3.4 Abstract Virtual PEP Application 

An abstract model of a PEP-based application can be virtu-
alized as follows.  The Chombo package (Colella 2005) is 
used to organize the volumes and other data structures in 
the grid-based model in terms of discrete-space boxes. 

class VCPU : public ThreadedSimProcess 
{ 
   virtual void perform_synchronization(VTime vt, VTime dt); 
 
    virtual void begin() = 0; 
   virtual void end() = 0; 
    virtual void process_next(double *wctime, double *mem) = 0; 
    virtual void get_min_ts(VTime *vt, VTime *vdt) = 0; 
  
    int myvcpu_num; 
    class LBTSInfo {  …  } lbts; 
    class ResourceUsage {  …  } resources; 
} 

class PEP_VCPU : public VCPU 
{ 
    virtual void begin(); 
    virtual void perform_synchronization(VTime vt, VTime dt); 
    virtual void pulldown_timestamps(VTime vt, VTime dt); 
    virtual void process_next(double *wctime, double *mem); 
    virtual void get_min_ts(VTime *vt, VTime *vdt); 
    virtual void end(); 
 
    EventPQ event_pq; 
    virtual void schedule( VEvent *ve ); 
    virtual void deschedule( VEvent *ve ); 
} 
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The domain is partitioned into B boxes, and mapped to 
P processors, as shown in Figure 3. 

 

 
Figure 3: Box to Processor Mapping in Chombo 

 
Each box Boxb is mapped to a processor pb.  The setup 

is done during initialization in each PEP_VCPU instance.  
Each box is further organized in terms of grid data ele-
ments as shown in Figure 4. 

 

 
Figure 4: Grid-based Cell Modeling using Chombo 

 
Db is the LevelData item associated with Boxb.  Each 

Db is in fact a BaseFab<Cell>.  As with any BaseFab, 
each element within the BaseFab is associated with spe-
cific coordinates i,j,k in the domain of the containing box.  
In our case, each element of the BaseFab is a Cell.  Each 
Cell within a data item Db, thus, is identified by its coordi-
nates i,j,k within the domain of Boxb.  Each Cell contains a 
priority queue of particles, as depicted in Figure 5. 

 

 
Figure 5: Cell Model Containing Priority Queue of Particles 

Each Cell schedules two events into the event queue of 
the PEP_VCPU instance to which the cell belongs.  One 
event corresponds to the next time of its field update.  The 
other event corresponds to the time of the earliest particle 
update in the cell.  These events’ timestamps are subjected 
to PEP if/as necessary, and later get scheduled by 
PEP_VCPU.  Upon processing one of these events, the Cell 
re-schedules the same event appropriately into the future. 

3.5 Virtualizing Chombo 

The Chombo library was originally designed to be used as 
a “single instance per process,” linked to an executable in a 
single address space.  However, virtualized execution re-
quires that multiple instances be realized with the same 
process address space – one Chombo instance for each vir-
tual CPU.  In order to use multiple logically distinct in-
stances of Chombo framework within the same UNIX 
process, it is necessary to ensure the instances stay distinct 
do not overlap and interfere with each other.  When the 
code associated with a particular virtual CPU is active, the 
environment must be arranged such that Chombo function-
ality for that (and only for that) corresponding virtual CPU 
is activated. 

This is achieved in PDES2 via a combination of fea-
tures.  First, Chombo is fortunately written by its authors to 
be reentrant, which we exploit to keep multiple copies of 
root Chombo objects distinct as long as the identity of the 
invoking processor is updated at runtime.  Next, Chombo 
provides a sequential mode of compilation which excludes 
multi-processor, MPI-based support.  This mode is used to 
compile Chombo to avoid undesirable conflict with virtual 
CPUs, and with µsik’s own MPI communication.  Finally, 
a small set of modifications are incorporated into 
Chombo’s query functions that return the processor ID and 
number of processors in the system.  Instead of returning 
the default MPI-based processor rank and size, the values 
corresponding to the virtual execution are returned.  The 
changes are only limited to less than a dozen lines of code. 

The PEP_VCPU class invokes this added support for 
switching among multiple logically-distinct instances of 
Chombo library, by setting and unsetting the Chombo pro-
cid variable dynamically, in direct correspondence to mul-
tiple virtual CPU instances. 

3.6 Hybrid Shock Simulation 

As a benchmark for validating our PDES2 prediction 
framework, a 1-dimensional hybrid shock simulation pro-
gram is used (Karimabadi et al 2005). In this hybrid shock 
code, ions are treated as macro particles whereas electrons 
are treated as a fluid (electron moments up to and including 
temperature are retained). 

Hybrid codes are ideally suited for physical phenom-
ena that occur on ion time and spatial scales and where a 
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kinetic description of the electrons is not required. Max-
well's equations are solved by neglecting the displacement 
current in Ampere's law (Darwin approximation) that 
eliminates light waves, and by explicitly assuming charge 
neutrality. 

The model problem uses the piston method where in-
coming plasma moving with flow speed larger than its 
thermal speed is reflected off the piston located on the 
most right hand boundary.  This leads to the generation of 
a shock which propagates to the left. The simulation do-
main is divided into cells, and the ions are uniformly 
loaded into each cell. 

The original 1-D hybrid shock model is written as a 
µsik (Perumalla 2005) application, and has been ported to 
run on up to 512 CPUs of the DataStar supercomputer at 
the San Diego Supercomputing Center.  Since the simula-
tion runs on actual large-scale supercomputing platform, it 
serves as an ideal test case to verify if the PDES2 frame-
work accurately predicts the observed performance.  In 
fact, the same supercomputer is also used for virtual execu-
tion as well, albeit on much smaller number of processors.  
In the largest configuration, up to 16 virtual CPUs are 
hosted per real CPU, giving 512 virtual CPUs on 32 real 
CPUs for a high-resolution predictive simulation of the 1-
D hybrid code, as described later. 

4 TRACE-BASED METHODOLOGY 

A trace-based methodology is employed to configure and 
tune the prediction model to the actual simulation, as illus-
trated in Figure 6.  In this, the actual simulation is first exe-
cuted sequentially on one processor to generate a runtime 
trace of all events scheduled by the model.  Important as-
pects of each event included in the trace are: the event’s 
timestamp increment, δ; its elapsed wallclock time for exe-
cution, ω; and the event’s type (particle motion, field up-
date, etc.). 

The “replicated scaling” methodology for extending 
the model to larger problem sizes makes the process of vir-
tualization easier.  The δ and ω time statistics are generated 
from a single processor execution, and they are replicated 
on larger no. of processors. 

 

 
 

Figure 6: Trace-based Configuration of Virtual Execution 
 

A sequential simulation is used to generate a trace file 
containing comprehensive event processing statistics, in-
cluding event types, source and destination cells and com-
putation time per event.  From the trace file, a set of tuples 
is extracted: {<ξ, ω, η, δ>}, where ξ is an event type, ω is 
wallclock time to process an event of type ξ, η is the num-
ber of events generated by each event of type ξ, and δ is 
the simulation time delay added to newly generated events 
by an event of type ξ.  Note that the total number of event 
types, ξ, is a constant for any given simulation run.  For 
each event type, ω, η and δ represent random variables.  In 
particular, the trace file provides sufficient information to 
set the range of low and high values for each variable. 

For the hybrid shock application, a uniform distribu-
tion between the low and high values seems to fit the dis-
tribution well for ω and δ.  Also, η always equals unity in 
the hybrid shock simulation because each cell update event 
schedules exactly one (next) cell update event, and each 
field update event schedules exactly one (next) field update 
event. 

5 EXPERIMENTAL STUDY 

We now focus on experimental study to validate our virtu-
alization models and trace-driven methodology.  As men-
tioned previously, the 1-D hybrid shock plasma simulation 
is used as the benchmark in our validation experiments.  
The aim of the validation experiments is to verify how 
closely the performance metrics match between the pre-
dicted values and actual observed values, for a range of 
application scenarios. 

5.1 Experiment Platform 

All performance data reported here are collected on the San 
Diego Supercomputing Center’s IBM DataStar supercom-
puter.  The DataStar is a cluster of 8-way IBM P655 nodes, 
each node with 8 Power4 1.5GHz processors and 16GB 
memory (shared by the 8 processors).  The nodes are con-
nected by an IBM Federation Switch providing low latency 
and high bandwidth communication. 

For virtual execution, the following number of real 
CPUs are used for varying number of virtual CPUs (real 
CPUs→virtual CPUs): 1→1, 2→2, 4→4, 8→8, 8→16, 
8→32, 8→64, 16→128, 32→256, 32→512. 

For all experiments, the end-to-end communication la-
tency is set to 100 microseconds, based on latency bench-
marks run separately.  Thus, each message sent across 
processors in α are sent as events in β with a simulation 
time delay of 100 microseconds.  Consequently, this delay 
also serves as the lookahead for conservative parallel exe-
cution of β. 

Sequential 
Simulation 

 
 

Trace File 
 

{<ξ,ω,η,δ>} 
 

Generate Extract 
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Simulation 

Event time 
Blocking time 

Speedup 

Configure Predict 
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5.2 Metrics of Interest 

Some of the metrics that are of interest for prediction in-
clude the total number of events processed by the simula-
tion, and the amount of elapsed/wallclock time consumed 
by the simulation to reach a certain simulated end-time.  
The event-counts provide information about overall speed 
of simulation.   The predicted wallclock time gives an es-
timate of how much supercomputing CPU time is expected 
to be allocated to simulate a given phenomenon to comple-
tion. 

In case of ill-balanced scenarios, additional per-
processor statistics are useful.  Such statistics include per-
processor event-counts and time spent blocked in synchro-
nization/communication.  In fact, PDES2 is fully equipped 
to generate such blocking time statistics, but this feature is 
not exercised for this document, and detailed experimental 
numbers for the same are not reported here.  However, to 
facilitate analysis, our virtual framework is indeed capable 
of producing all such statistics, without perturbing the vir-
tual distributed execution. 

5.3 Validating Total No. of Events 

Figure 7 shows the prediction of number of simulated 
events executed within a given simulation end time in α.  It 
is seen that the predicted event counts match extremely 
well with the observed values in actual execution, even 
across configurations differing in event load by an order of 
magnitude.  The match holds not only along multiple 
scales of number of processors, but also on the scenario 
size (number of cells per CPU). 
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Figure 7: Prediction of Number of Events Executed in α by Simu-
lation End-time of 100.0 in 1-D Hybrid Shock Model 

5.4 Validating Wallclock Time 

Figure 8 shows the prediction accuracy with respect to 
wallclock time taken (by α).  Again, excellent match is ob-
served between predicted and actual performance, except 
for two values.  A runtime aberration in actual execution 
on 256 CPUs is clearly not captured by the prediction, 
since no platform artifacts (such as operating system 
schedulers) are modeled.  Also, a slight inversion of rela-
tive positions of predicted and actual lines happens on 512 
CPUs for 1500 cells/CPU.  However, the deviation appears 
to be well within tolerance levels for the purposes of per-
formance estimation. 
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Figure 8: Prediction of Elapsed Wallclock time (RTα) to Reach 
Simulation End-time of 100.0 in 1-D Hybrid Shock Model 

5.5 Speed of Prediction 

Figure 9 shows the speed of prediction relative to the 
speed of actual simulation, normalized to same number of 
processors. . Both virtual and actual execution times are 
normalized to same number of CPUs. Value greater than 
unity implies virtual execution is faster than actual simula-
tion; less than unity implies virtual execution is slower 
than actual simulation.  Some amount of slowdown is ex-
pected since the hybrid shock model is fine-grained. 

6 STATUS AND FUTURE WORK 

Novel parallel discrete event models in fields such as 
plasma physics simulations are being developed, aimed at 
execution on supercomputing platforms.  Predictive virtual 
execution of such models, as opposed to actual simulation, 
is useful to uncover performance problems ahead of time, 
without needlessly expending supercomputing resources.   
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Figure 9: Speed of Prediction on 1-D Hybrid Shock Model Rela-
tive to Actual Simulation   
 
Here, a generalized PDES virtualization system, called 
PDES2, for parallel simulation of parallel simulations is 
presented.  The system shows excellent scalability proper-
ties, low slowdowns and high predictive accuracy.  The 
system has been validated using a 1-D Hybrid Shock 
model, which is a complex plasma simulation application.  
The system is also currently operational on large super-
computing platforms.  While retaining high modeling reso-
lution for accuracy, the system also exhibits good scalabil-
ity, supporting up to 16 virtual CPUs per real/host CPU.  
The tool is now poised for use in our projects towards in-
vestigation of best partitioning strategies and load balanc-
ing schemes and their performance effects. 

Currently, PDES2 only supports conservative execu-
tion in both α and β layers.  It is desirable to also explore 
and understand the performance benefits possible with op-
timistic execution in α.  Similarly, it is useful to explore 
speed improvements in the prediction runs by employing 
optimistic simulation in β. 

Also, it is currently possible to track memory con-
sumption and hence perform virtual executions to estimate 
memory requirements.  This feature however remains to be 
tuned and validated against actual simulations. 
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