
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

ABSTRACT

A virtualization system is presented that is designed to help
predict the performance of parallel/distributed discrete
event simulations on massively parallel (supercomputing)
platforms. It is intended to be useful in experimenting with
and understanding the effects of execution parameters,
such as different load balancing schemes and mixtures of
model fidelity. A case study of the virtualization system is
presented in the context of plasma physics simulations,
highlighting important virtualization challenges and issues,
such as reentrancy and synchronization in the virtual plane,
and our corresponding solution approaches. A trace-based
prediction methodology is presented, and is evaluated with
a 1-D hybrid collisionless shock model simulation, with
the predicted performance being validated against one ob-
tained in actual simulation. Predicted performance meas-
urements show excellent agreement with actual perform-
ance measurements on parallel platforms containing up to
512 CPUs.

1 INTRODUCTION

Evaluating and optimizing the efficiency of a paral-
lel/distributed discrete event simulation (PDES) programs
on large supercomputer configurations is problematic. For
example, different partitioning schemes might need to be
evaluated over multiple application scenarios and/or differ-
ent supercomputer configurations. Because supercomput-
ing CPU time is limited and expensive relative to that on
desktop computing platforms, it is desirable to avoid utiliz-
ing supercomputing time to experiment with different par-
allelization and optimization strategies (e.g., tweaking the
load balancing algorithm). A much more desirable ap-
proach is to execute the applications on a “virtual” super-
computer in order to complete the bulk of the experimenta-

tion and performance optimization prior to executing the
code on the supercomputer. Since the virtual execution of
large numbers of processors cannot itself be accommo-
dated on a single host processor because of time and/or
memory constraints, the virtual execution itself should be
run on a less expensive parallel platform such as a cluster
of workstations.

Virtualization offers many benefits, including the fol-
lowing: (1) repeatable execution (2) a dedicated, easily
customizable virtual supercomputer configuration, (3)
ready access to large supercomputer configurations, and
(4) ease of adding instrumentation without perturbing per-
formance metrics.

A virtual, predictive execution is said to experience a
slowdown if it runs slower than actual simulation on same
number of processors, i.e., the virtual execution takes more
total time than the application would have taken to execute
on the supercomputing platform. However, it is worth not-
ing that virtual execution-based prediction is still useful
even if it experiences such a slowdown. This is because
the virtual execution offsets the loss of performance with
its several other desirable properties – it retains repeatabil-
ity of parallel execution and cleanliness of target platform,
without the need for actual (supercomputing) platform for
execution.

1.1 Motivation

The need for virtualization of PDES applications is exem-
plified by one specific project (Karimabadi 2005) concern-
ing the simulation of the Earth’s global magnetosphere us-
ing PDES techniques. The PDES models require
execution on large parallel platforms, and hence we are
considering supercomputing platforms for this purpose.
However, the computational models of the Earth’s magne-
tosphere reflect its strong heterogeneity, and the best parti-

PERFORMANCE PREDICTION OF LARGE-SCALE
PARALLEL DISCRETE EVENT MODELS OF PHYSICAL SYSTEMS

Kalyan S. Perumalla
Richard M. Fujimoto
Prashant J. Thakare

Santosh Pande

College of Computing
Georgia Institute of Technology

801 Atlantic Dr. NW
Atlanta, GA 30332-0280, U.S.A.

 Homa Karimabadi
Yuri Omelchenko
Jonathan Driscoll

SciberQuest Inc.
777 South Pacific Coast Highway

Suite 108 (A)
Solana Beach, CA 92075, U.S.A.

356

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

tioning schemes for parallel execution are not known a pri-
ori. Thus, we are faced with the need to evaluate different
partitioning schemes, as well as other aspects such as accu-
racy and speed tradeoffs for different model approxima-
tions – (a) magneto-hydro dynamics, (b) hybrid, and (c)
particle-in-cell models. Various metrics need to be meas-
ured in order to obtain a qualitative understanding of the
model’s execution, as the PDES models themselves are
novel and need to be better understood. Performance pre-
dictions are required to help tune and fine-tune the simula-
tions for best use of the supercomputing resources. It is
also useful early on in the development to have an estimate
of performance to help overall debugging and optimiza-
tion.

To meet the challenges of this immediate application,
we address the problem of virtualizing the core of PDES
applications in general. First, we develop a framework,
called PDES2, for PDES-based virtual execution of any
PDES applications. Then, we use the framework and ap-
ply it to evaluate the performance and instrumentation of
PDES models of Earth’s magnetosphere.

1.2 Related Work

Traditional performance prediction efforts focused on plat-
form performance evaluation, such as predicting the over-
all runtime of an application on a parallel machine. For
example, traditional direct execution-based efforts focused
on predicting how much faster a set of parallel programs
would execute on a future parallel computer configuration
(Dickens et al 1996, Reinhardt et al 1993). As such, in-
strumentation of applications is not the primary focus – the
emphasis lies more on the parallel computer configuration
rather than on the application.

In contrast, the focus of this present work is on predic-
tion and analysis of the causes of performance effects and
gathering detailed information about application-level fac-
tors contributing to observed parallel performance. For
example, it is useful to understand which portions of the
grid-based physics models contribute to increased event
processing loads on certain processors, which grid cells in-
cur more event processing loads relative to other cells, and
how blocking time due to distributed time synchronization
affects overall performance. This is more akin to debug-
ging and testing the performance of parallel programs, al-
beit on virtual parallel platforms.

Another distinguishing factor is in the class of parallel
programs considered. Traditional performance prediction
of generalized parallel programs attempts to accommodate
a range of general parallel programs, such as MPI-based
applications (Prakash and Bagrodia 1998). In our work,
the main focus is on performance prediction of parallel
discrete event simulations. This restricted focus allows ab-
stracting much of the hardware details of the virtual plat-
form, including network switch operation, operating sys-

tem effects and low level effects such as interrupts.
Instead, simple models can be used in their place. For ex-
ample, it is sufficient to model communication delays us-
ing simple delay distributions for fairly accurate perform-
ance estimates.

Finally, there is a speed vs. accuracy tradeoff involved
in different approaches. Other PDES performance predic-
tors use software emulation (Zheng et al 2004) focusing on
accuracy by having cycle accurate model of target machine
and predicting network performance. In contrast, the ap-
proach presented here focuses on faster approximations of
the same.

The rest of the document is organized as follows. In
the next section, fundamental concepts in virtualizing
PDES systems are introduced. In section 3, the implemen-
tation details of the PDES2 virtual system are described.
This is followed by section 4 in which the trace-based
methodology is described for developing abstract models
of event-stepped plasma physics models. A performance
validation study is presented in section 5 to validate the
system, approach and results against actual simulation runs
on supercomputers. Finally, status and future work are
outlined in section 6.

2 PDES VIRTUALIZATION CONCEPTS

2.1 Virtual & Real System Relationships

Let Ф be the original system of interest. Let α be the
PDES model of Ф. α executes on Nα processors. Let β be
a PDES simulation of α. β is executed on Nβ processors.
The relationships of these real and virtual systems are illus-
trated in Figure 1 as three layers. Each layer is a model of
the layer above it.

Figure 1: Systems and their Inter-relationships

Note that α and β need not necessarily execute on identical
computation platforms. For example, they can be executed
on entirely dissimilar types of processors and inter-
processor networks. Also, most typically, Nα»Nβ. In other
words, a large platform execution is virtually realized on a
much smaller platform (e.g., execution on supercomputers
is simulated on a small cluster of workstations).

Ф: Original system being modeled

α: PDES model of Ф, executed on Nα processors

β: PDES model of α, executed on Nβ proces-

357

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

2.2 System Timelines

In any PDES execution of a system, there are three funda-
mental, distinct timelines involved. Additionally, in a
PDES of a PDES program, two more timelines appear.
Thus, there are five distinct timelines in a PDES of PDES
programs, as explained next.

Let TФ denote a point on Ф’s timeline. Let VTα be
the corresponding virtual time in α. Since α is a model of
Ф, VTα≡TФ. Let RTα be a point in real-time (wall-clock
time) in the execution of α. Let VTβ be the corresponding
virtual time in β. Since β is a model of α, VTβ≡RTα. Let
RTβ be the execution time of β on same number of proces-
sors as α. The ratio ρ=RTα/RTβ at the end of simulation
represents the efficiency of virtualization (ρ<1 implies α’s
virtual execution is slower than real execution). These re-
lationships among the various timelines are depicted in
Figure 2.

Figure 2: The Five Distinct Timelines Involved in PDES of
PDES

For accurate performance prediction, it is important to
keep the timelines distinct. Our virtualization framework
is carefully designed to keep distinct notions of these times
by maintaining separate representations for each at run-
time.

2.3 Performance vs. Accuracy

Clearly, there are tradeoffs possible between the perform-
ance of the virtual execution and the accuracy of the pre-
dicted results. One method is to use analytical models of
the application and analyze its execution. Such analytical
models are faster to simulate, but are harder to develop as
fair approximations of the application. Other methods in-
clude virtualizing the entire application context (King et al
2003), which is more challenging than virtualizing abstract
models, or developing a virtual model using event traces
generated from the original application.

The method chosen for this paper is based on abstract
models approximated/tuned with parameters extracted
from traces (described in greater detail in section 4).

2.4 Special Synchronization Methods

In plasma simulation, we are investigating the use of spe-
cial synchronization methods (Karimabadi 2005, Omel-
chenko 2005) that carefully exploit certain relaxations of
accuracy constraints in the models. Our virtual framework
is intended to not only explore performance effects of tra-
ditional synchronization techniques, but also the relative
improvements offered by the novel synchronization tech-
niques.

In particular, we are interested in easily adding and
enhancing models of new synchronization methods into the
virtual execution. The preemptive event processing (PEP)
algorithm (Omelchenko 2005) is of immediate interest as it
has been designed to circumvent the low-lookahead con-
straints of particle-in-cell or hybrid plasma simulations. In
later sections, we describe how the PEP synchronization is
easily added to virtual execution of general PDES conser-
vative synchronization.

3 IMPLEMENTATION

Our virtualization framework, called PDES2, is imple-
mented using a layered approach. The framework is de-
veloped over an object-oriented, general-purpose PDES
system called µsik (Perumalla 2005) designed for develop-
ing efficient PDES applications. The layers in PDES2 are
built using class hierarchy rooted at the threaded simula-
tion process class of µsik.

A core layer in PDES2 is responsible for virtualizing
the hardware, modeling the basic PDES synchronization
mechanisms of α, as well as implementing the PDES syn-
chronization of β. This layer is then used to virtualize cus-
tomized synchronization algorithms of α. For plasma
simulation, a virtual “preemptive event processing (PEP)”
synchronization algorithm is modeled in this layer, as de-
scribed in detail in later sections. This layer, which we call
the virtual PEP layer, is realized as an extension of the core
layer.

3.1 Virtual Core Layer

This layer provides the following components:

1. Virtual models of hardware, i.e., abstractions of
threaded execution, network latencies, etc., of α

2. Models of PDES synchronization, i.e., virtual safe-
time computation, etc., of α

TФ

VTα

RTα

VTβ

RTβ

358

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

It also implicitly takes care of synchronization of the PDES
execution of β. This layer provides a class called virtual
CPU (VCPU), which provides a separate stack of execu-
tion (maintains a separate thread context) for each VCPU.
The following is the class interface of VCPU.

The root VCPU (virtual CPU) class provides all the

required support for the virtual context of a single thread of
execution. Each instance of VCPU provides a separate
thread context (we model only a single thread per CPU,
and do not model operating system effects such as context
switching).

The virtual CPU thread has a core scheduler loop in its
run() method in which it schedules “safe timestamp-
ordered” processing. The safe-time at a processor is a
lower-bound on the timestamp (LBTS) of incoming events
from other processors in the future. The virtual CPU im-
plementation includes built-in support for global asynchro-
nous, distributed, reduction-based safe-time computation.
As of this writing, it does not consider transient messages
(Mattern 1993), if any are sent, in α.

It is important to note that the actual minimum-
timestamp values across all virtual CPUs need to be re-
duced to find their global minimum. The synchronization
messages of α are translated into events in β. Accurate de-
termination of the LBTS values of α is necessary, since
that determines and uncovers the actual load bal-
ance/imbalance in α. Note that this is distinct from LBTS
values used for parallel simulation execution of β.

The distributed reductions follow a logarithmic pattern
of communication, which requires dramatically smaller
number of synchronization messages to be simulated as
compared to an all-to-all pattern, for computing virtual
safe-time values in α.

3.2 Virtual PEP Layer

In this layer, the synchronization framework of the core
layer is extended by adding the special PEP functionality,
namely, “pulling down” event timestamps whenever a new
LBTS is computed. PEP essentially is a distributed algo-
rithm designed to uncover concurrency of event-based dis-

tributed simulation of physics models while conserving
flux.

Since traditional lookahead-based techniques fail due
to potentially zero-lookahead events possible in such simu-
lations, new techniques such as PEP are needed to uncover
concurrency without losing flux conservation. PEP does
this by safely reducing (pulling down) the timestamps of
local pending events based on global information of mini-
mum time delays of all events. Such pulling down of time-
stamps serves to enable new processable events that would
otherwise be un-processable in a traditional zero lookahead
conservative parallel simulation.

The PEP_VCPU class overloads the per-

form_synchronization() method of VCPU, and implements
PEP’s pulling down of timestamps in it. Since
VCPU::perform_synchronization() models the computation of
LBTS in α, the pulling down of timestamps can be natu-
rally performed immediately after the new LBTS is known.

3.3 Virtual PEP-Application Layer

In this layer, specific applications of PEP synchronization
are developed. The application is initialized in its begin()
method, and finalization is done in its end() method.
Events are scheduled by using the PEP_VCPU’s schedule()
method. Each event has a pointer to a Cell instance, repre-
senting that the event is scheduled on behalf of that cell.
The PEP_VCPU class automatically “pulls down” the time-
stamps of these events as/when needed, according to the
PEP algorithm. When it is time to execute an event, the
PEP_VCPU invokes the execute_vevent() method of that
event’s Cell. Application-specific extensions to the virtual
CPU are realized as subclasses of PEP_VCPU, and extend-
ing its begin() and end() methods.

3.4 Abstract Virtual PEP Application

An abstract model of a PEP-based application can be virtu-
alized as follows. The Chombo package (Colella 2005) is
used to organize the volumes and other data structures in
the grid-based model in terms of discrete-space boxes.

class VCPU : public ThreadedSimProcess
{
 virtual void perform_synchronization(VTime vt, VTime dt);

 virtual void begin() = 0;
 virtual void end() = 0;
 virtual void process_next(double *wctime, double *mem) = 0;
 virtual void get_min_ts(VTime *vt, VTime *vdt) = 0;

 int myvcpu_num;
 class LBTSInfo { … } lbts;
 class ResourceUsage { … } resources;
}

class PEP_VCPU : public VCPU
{
 virtual void begin();
 virtual void perform_synchronization(VTime vt, VTime dt);
 virtual void pulldown_timestamps(VTime vt, VTime dt);
 virtual void process_next(double *wctime, double *mem);
 virtual void get_min_ts(VTime *vt, VTime *vdt);
 virtual void end();

 EventPQ event_pq;
 virtual void schedule(VEvent *ve);
 virtual void deschedule(VEvent *ve);
}

359

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

The domain is partitioned into B boxes, and mapped to
P processors, as shown in Figure 3.

Figure 3: Box to Processor Mapping in Chombo

Each box Boxb is mapped to a processor pb. The setup

is done during initialization in each PEP_VCPU instance.
Each box is further organized in terms of grid data ele-
ments as shown in Figure 4.

Figure 4: Grid-based Cell Modeling using Chombo

Db is the LevelData item associated with Boxb. Each

Db is in fact a BaseFab<Cell>. As with any BaseFab,
each element within the BaseFab is associated with spe-
cific coordinates i,j,k in the domain of the containing box.
In our case, each element of the BaseFab is a Cell. Each
Cell within a data item Db, thus, is identified by its coordi-
nates i,j,k within the domain of Boxb. Each Cell contains a
priority queue of particles, as depicted in Figure 5.

Figure 5: Cell Model Containing Priority Queue of Particles

Each Cell schedules two events into the event queue of
the PEP_VCPU instance to which the cell belongs. One
event corresponds to the next time of its field update. The
other event corresponds to the time of the earliest particle
update in the cell. These events’ timestamps are subjected
to PEP if/as necessary, and later get scheduled by
PEP_VCPU. Upon processing one of these events, the Cell
re-schedules the same event appropriately into the future.

3.5 Virtualizing Chombo

The Chombo library was originally designed to be used as
a “single instance per process,” linked to an executable in a
single address space. However, virtualized execution re-
quires that multiple instances be realized with the same
process address space – one Chombo instance for each vir-
tual CPU. In order to use multiple logically distinct in-
stances of Chombo framework within the same UNIX
process, it is necessary to ensure the instances stay distinct
do not overlap and interfere with each other. When the
code associated with a particular virtual CPU is active, the
environment must be arranged such that Chombo function-
ality for that (and only for that) corresponding virtual CPU
is activated.

This is achieved in PDES2 via a combination of fea-
tures. First, Chombo is fortunately written by its authors to
be reentrant, which we exploit to keep multiple copies of
root Chombo objects distinct as long as the identity of the
invoking processor is updated at runtime. Next, Chombo
provides a sequential mode of compilation which excludes
multi-processor, MPI-based support. This mode is used to
compile Chombo to avoid undesirable conflict with virtual
CPUs, and with µsik’s own MPI communication. Finally,
a small set of modifications are incorporated into
Chombo’s query functions that return the processor ID and
number of processors in the system. Instead of returning
the default MPI-based processor rank and size, the values
corresponding to the virtual execution are returned. The
changes are only limited to less than a dozen lines of code.

The PEP_VCPU class invokes this added support for
switching among multiple logically-distinct instances of
Chombo library, by setting and unsetting the Chombo pro-
cid variable dynamically, in direct correspondence to mul-
tiple virtual CPU instances.

3.6 Hybrid Shock Simulation

As a benchmark for validating our PDES2 prediction
framework, a 1-dimensional hybrid shock simulation pro-
gram is used (Karimabadi et al 2005). In this hybrid shock
code, ions are treated as macro particles whereas electrons
are treated as a fluid (electron moments up to and including
temperature are retained).

Hybrid codes are ideally suited for physical phenom-
ena that occur on ion time and spatial scales and where a

Box1

Processor 1 Processor P

Box2

Boxb

BoxB

…

Processor 2

Cell0,1,0

Cell0,0,0

Cell0,0,1 Db

…

…

Celli,j,k

Priority Queue
of Particles

360

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

kinetic description of the electrons is not required. Max-
well's equations are solved by neglecting the displacement
current in Ampere's law (Darwin approximation) that
eliminates light waves, and by explicitly assuming charge
neutrality.

The model problem uses the piston method where in-
coming plasma moving with flow speed larger than its
thermal speed is reflected off the piston located on the
most right hand boundary. This leads to the generation of
a shock which propagates to the left. The simulation do-
main is divided into cells, and the ions are uniformly
loaded into each cell.

The original 1-D hybrid shock model is written as a
µsik (Perumalla 2005) application, and has been ported to
run on up to 512 CPUs of the DataStar supercomputer at
the San Diego Supercomputing Center. Since the simula-
tion runs on actual large-scale supercomputing platform, it
serves as an ideal test case to verify if the PDES2 frame-
work accurately predicts the observed performance. In
fact, the same supercomputer is also used for virtual execu-
tion as well, albeit on much smaller number of processors.
In the largest configuration, up to 16 virtual CPUs are
hosted per real CPU, giving 512 virtual CPUs on 32 real
CPUs for a high-resolution predictive simulation of the 1-
D hybrid code, as described later.

4 TRACE-BASED METHODOLOGY

A trace-based methodology is employed to configure and
tune the prediction model to the actual simulation, as illus-
trated in Figure 6. In this, the actual simulation is first exe-
cuted sequentially on one processor to generate a runtime
trace of all events scheduled by the model. Important as-
pects of each event included in the trace are: the event’s
timestamp increment, δ; its elapsed wallclock time for exe-
cution, ω; and the event’s type (particle motion, field up-
date, etc.).

The “replicated scaling” methodology for extending
the model to larger problem sizes makes the process of vir-
tualization easier. The δ and ω time statistics are generated
from a single processor execution, and they are replicated
on larger no. of processors.

Figure 6: Trace-based Configuration of Virtual Execution

A sequential simulation is used to generate a trace file
containing comprehensive event processing statistics, in-
cluding event types, source and destination cells and com-
putation time per event. From the trace file, a set of tuples
is extracted: {<ξ, ω, η, δ>}, where ξ is an event type, ω is
wallclock time to process an event of type ξ, η is the num-
ber of events generated by each event of type ξ, and δ is
the simulation time delay added to newly generated events
by an event of type ξ. Note that the total number of event
types, ξ, is a constant for any given simulation run. For
each event type, ω, η and δ represent random variables. In
particular, the trace file provides sufficient information to
set the range of low and high values for each variable.

For the hybrid shock application, a uniform distribu-
tion between the low and high values seems to fit the dis-
tribution well for ω and δ. Also, η always equals unity in
the hybrid shock simulation because each cell update event
schedules exactly one (next) cell update event, and each
field update event schedules exactly one (next) field update
event.

5 EXPERIMENTAL STUDY

We now focus on experimental study to validate our virtu-
alization models and trace-driven methodology. As men-
tioned previously, the 1-D hybrid shock plasma simulation
is used as the benchmark in our validation experiments.
The aim of the validation experiments is to verify how
closely the performance metrics match between the pre-
dicted values and actual observed values, for a range of
application scenarios.

5.1 Experiment Platform

All performance data reported here are collected on the San
Diego Supercomputing Center’s IBM DataStar supercom-
puter. The DataStar is a cluster of 8-way IBM P655 nodes,
each node with 8 Power4 1.5GHz processors and 16GB
memory (shared by the 8 processors). The nodes are con-
nected by an IBM Federation Switch providing low latency
and high bandwidth communication.

For virtual execution, the following number of real
CPUs are used for varying number of virtual CPUs (real
CPUs→virtual CPUs): 1→1, 2→2, 4→4, 8→8, 8→16,
8→32, 8→64, 16→128, 32→256, 32→512.

For all experiments, the end-to-end communication la-
tency is set to 100 microseconds, based on latency bench-
marks run separately. Thus, each message sent across
processors in α are sent as events in β with a simulation
time delay of 100 microseconds. Consequently, this delay
also serves as the lookahead for conservative parallel exe-
cution of β.

Sequential
Simulation

Trace File

{<ξ,ω,η,δ>}

Generate Extract

Virtual

Simulation

Event time
Blocking time

Speedup

Configure Predict

361

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

5.2 Metrics of Interest

Some of the metrics that are of interest for prediction in-
clude the total number of events processed by the simula-
tion, and the amount of elapsed/wallclock time consumed
by the simulation to reach a certain simulated end-time.
The event-counts provide information about overall speed
of simulation. The predicted wallclock time gives an es-
timate of how much supercomputing CPU time is expected
to be allocated to simulate a given phenomenon to comple-
tion.

In case of ill-balanced scenarios, additional per-
processor statistics are useful. Such statistics include per-
processor event-counts and time spent blocked in synchro-
nization/communication. In fact, PDES2 is fully equipped
to generate such blocking time statistics, but this feature is
not exercised for this document, and detailed experimental
numbers for the same are not reported here. However, to
facilitate analysis, our virtual framework is indeed capable
of producing all such statistics, without perturbing the vir-
tual distributed execution.

5.3 Validating Total No. of Events

Figure 7 shows the prediction of number of simulated
events executed within a given simulation end time in α. It
is seen that the predicted event counts match extremely
well with the observed values in actual execution, even
across configurations differing in event load by an order of
magnitude. The match holds not only along multiple
scales of number of processors, but also on the scenario
size (number of cells per CPU).

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1 10 100 1000
No. of CPUs

To
ta

l n
o.

 o
f e

ve
nt

s

1500 cells/CPU Predicted 1500 cells/CPU Actual

150 cells/CPU Predicted 150 cells/CPU Actual

Figure 7: Prediction of Number of Events Executed in α by Simu-
lation End-time of 100.0 in 1-D Hybrid Shock Model

5.4 Validating Wallclock Time

Figure 8 shows the prediction accuracy with respect to
wallclock time taken (by α). Again, excellent match is ob-
served between predicted and actual performance, except
for two values. A runtime aberration in actual execution
on 256 CPUs is clearly not captured by the prediction,
since no platform artifacts (such as operating system
schedulers) are modeled. Also, a slight inversion of rela-
tive positions of predicted and actual lines happens on 512
CPUs for 1500 cells/CPU. However, the deviation appears
to be well within tolerance levels for the purposes of per-
formance estimation.

1

10

100

1 10 100 1000

No. of CPUs

El
ap

se
d

tim
e

(s
ec

on
ds

)

1500 cells/CPU Predicted 1500 cells/CPU Actual

150 cells/CPU Predicted 150 cells/CPU Actual

Figure 8: Prediction of Elapsed Wallclock time (RTα) to Reach
Simulation End-time of 100.0 in 1-D Hybrid Shock Model

5.5 Speed of Prediction

Figure 9 shows the speed of prediction relative to the
speed of actual simulation, normalized to same number of
processors. . Both virtual and actual execution times are
normalized to same number of CPUs. Value greater than
unity implies virtual execution is faster than actual simula-
tion; less than unity implies virtual execution is slower
than actual simulation. Some amount of slowdown is ex-
pected since the hybrid shock model is fine-grained.

6 STATUS AND FUTURE WORK

Novel parallel discrete event models in fields such as
plasma physics simulations are being developed, aimed at
execution on supercomputing platforms. Predictive virtual
execution of such models, as opposed to actual simulation,
is useful to uncover performance problems ahead of time,
without needlessly expending supercomputing resources.

362

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

0

0.5

1

1.5

2

2.5

1 10 100 1000

No. of CPUs

Pr
ed

ic
tio

n
Sp

ee
du

p/
Sl

ow
do

w
n

1500 cells/CPU 150 cells/CPU

Figure 9: Speed of Prediction on 1-D Hybrid Shock Model Rela-
tive to Actual Simulation

Here, a generalized PDES virtualization system, called
PDES2, for parallel simulation of parallel simulations is
presented. The system shows excellent scalability proper-
ties, low slowdowns and high predictive accuracy. The
system has been validated using a 1-D Hybrid Shock
model, which is a complex plasma simulation application.
The system is also currently operational on large super-
computing platforms. While retaining high modeling reso-
lution for accuracy, the system also exhibits good scalabil-
ity, supporting up to 16 virtual CPUs per real/host CPU.
The tool is now poised for use in our projects towards in-
vestigation of best partitioning strategies and load balanc-
ing schemes and their performance effects.

Currently, PDES2 only supports conservative execu-
tion in both α and β layers. It is desirable to also explore
and understand the performance benefits possible with op-
timistic execution in α. Similarly, it is useful to explore
speed improvements in the prediction runs by employing
optimistic simulation in β.

Also, it is currently possible to track memory con-
sumption and hence perform virtual executions to estimate
memory requirements. This feature however remains to be
tuned and validated against actual simulations.

ACKNOWLEDGMENTS

This work was supported in part at Georgia Tech by the
National Science Foundation grant ATM-0326431.

REFERENCES

Colella, P., D. T. Graves, T. J. Ligocki, D. F. Martin, D.
Modiano, D. B. Serafini, and B. V. Straalen. 2005.
Chombo software package for AMR applications: De-
sign Document. http://seesar.lbl.gov/
anag/chombo/.

Dickens, P., P. Heidelberger, and D. M. Nicol. 1996. Paral-
lelized direct execution simulation of message-passing
programs. IEEE Transactions on Parallel and Distrib-
uted Systems, 7: 1090-1105.

Karimabadi, H., J. Driscoll, Y. Omelchenko, and N.
Omidi. 2005. A new asynchronous methodology for
modeling of physical systems: breaking the curse of
courant condition. Journal of Computational Physics,
205.

Karimabadi, H., J. Driscoll, Y. Omelchenko, K. S. Peru-
malla, R. M. Fujimoto, and N. Omidi. 2005. Parallel
discrete event simulation of grid-based models: asyn-
chronous electromagnetic hybrid code, Lecture Notes
in Computer Science, in press.

King, S. T., G. W. Dunlap, and P. M. Chen. 2003. Operat-
ing system support for virtual machines, presented at
Annual USENIX Technical Conference.

 Liu, J., D. M. Nicol, B. J. Premore, and A. Poplawski.
1999. Performance prediction of a parallel simulator,
presented at Workshop on Parallel and Distributed
Simulation, Atlanta, GA.

Mattern, F. 1993. Efficient algorithms for distributed snap-
shots and global virtual time approximation, Journal
of Parallel and Distributed Computing, 18: 423-434.

Omelchenko, Y. 2005. Scientific discrete event simulation
(SciDES) tools, SciberQuest Inc., Technical Report.

Perumalla, K. S. 2005. µsik - a micro-kernel for paral-
lel/distributed simulation systems,” presented at
Workshop on Principles of Advanced and Distributed
Simulation, Monterey, CA.

Prakash, S. and R. Bagrodia. 1998. MPI-Sim: using paral-
lel simulation to evaluate MPI programs,” presented at
Winter Simulation Conference.

Reinhardt, S. K., M. D. Hill, J. R. Larus, A. R. Lebeck, J.
C. Lewis, and D. A. Wood. 1993. The Wisconsin wind
tunnel: virtual prototyping of parallel computers,” in
Proceedings of the 1993 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 21:
48-60.

Wilmarth, T., G. Zheng, E. J. Bohm, Y. Mehta, N. Choud-
hury, P. Jagadishprasad, and L. V. Kale. 2005. Per-
formance prediction using simulation of large-scale in-
terconnection networks in POSE, presented at
Workshop on Principles of Advanced and Distributed
Simulation, Monterey, CA.

Zheng, G., G. Kakulapati, and L. V. Kale. 2004. BigSim: a
parallel simulator for performance prediction of ex-
tremely large parallel machines, IPDPS.

AUTHOR BIOGRAPHIES

KALYAN S. PERUMALLA is a research faculty member
in the College of Computing, Georgia Tech. His interests
include experimental research in Parallel and Distributed
Systems, Network Simulation/Emulation, Security and

363

Perumalla, Fujimoto, Thakare, Pande, Karimabadi, Omelchenko, and Driscoll

Parallel Combinatorial Optimization. He has published
over 40 papers on these topics in journals and conferences,
and has won three best paper awards. Several of his re-
search prototypes of parallel/distributed simulation systems
are disseminated and being used worldwide. Dr. Perumalla
received his Ph.D. degree in Computer Science from Geor-
gia Tech in 1999. He can be reached via email at
kalyan@cc.gatech.edu, and his homepage is at
www.cc.gatech.edu/fac/kalyan.

RICHARD M. FUJIMOTO is a Professor in the College
of Computing, Georgia Tech. He received the Ph.D. and
M.S. degrees from the University of California (Berkeley)
in 1980 and 1983 (Computer Science and Electrical Engi-
neering). He has been an active researcher in the parallel
and distributed simulation community since 1985. He has
published widely on his research, and has won three best
paper awards. Among his current activities, he is the tech-
nical lead concerning time management issues for the DoD
High Level Architecture (HLA) effort. He is an area editor
for ACM Transactions on Modeling and Computer Simula-
tion, and has also been chair of the steering committee for
the Workshop on Parallel and Distributed Simulation,
(PADS) since 1990, and co-program chair of
MASCOTS’05. Dr. Fujimoto can be reached via email at
fujimoto@cc.gatech.edu, and his homepage is at
www.cc.gatech.edu/~fujimoto.

PRASHANT J. THAKARE is a graduate student in the
College of Computing, Georgia Tech. He is a student of
Dr. Santosh Pande and is interested in Language and Com-
piler aspects of simulations. He can be reached via email
at thakare@cc.gatech.edu.

SANTOSH PANDE is an Associate Professor in the Col-
lege of Computing, Georgia Tech. His primary interest is
in investigating static and dynamic compiler optimizations
on evolving architectures. He has published over 40 papers
in journals and conferences. He served as a guest editor
and chair of several leading journals and conferences such
as PLDI and LCTES. Dr. Pande can be reached via email
at santosh@cc.gatech.edu, and his homepage is at
www.cc.gatech.edu/~santosh.

HOMA KARIMABADI is the founder of SciberQuest
and co-founder of three other startups. He has a unique
combination of expertise in supercomputing techniques
and information technology as well as strategic analysis
and business management. He has published over 50 arti-
cles in scientific journals on a wide range of topics includ-
ing cosmology, chaos theory, space plasmas, numerical al-
gorithms, and solar physics. Dr. Karimabadi is also
heading the space physics plasma simulation group at
UCSD. He received his B.S. in mathematics and astron-
omy from UC Berkeley and his PhD in plasma astrophys-

ics from the University of Maryland. He can be reached
via email at homa@san.rr.com, and his homepage is
www.sciberquest.com/about/?staff_id=3.

YURI OMELCHENKO is a recognized expert in compu-
tational plasma physics and high-performance scientific
computing. He has made seminal contributions to the the-
ory of ionospheric phenomena, magnetized ion rings and
compact field-reversed configurations (FRCs). Dr. Omel-
chenko developed a number of state-of-the-art, object-
oriented codes for modeling space and fusion plasma ex-
periments on massively parallel platforms at Cornell and
General Atomics. He spearheaded the development of
adaptive mesh refinement (AMR) simulation software for
radiation-hardened semiconductor devices at Dynamics
Research Corporation. He is leading the design and devel-
opment of numerical algorithms and distributed infrastruc-
ture for novel, self-adaptive, discrete-event simulation
(DES) models targeted for a broad range of physics-based
applications. Dr. Omelchenko received his M.S. and Ph.D.
degrees in applied mathematics and physics from the Mos-
cow Institute of Physics and Technology and completed
post-doctoral studies at Cornell University. He can be
reached via email at omelche@earthlink.net, and
his homepage is at www.sciberquest.com/
about?staff_id=4.

JONATHAN DRISCOLL is a software engineer at Sci-
berQuest, Inc.. Prior to his joining ScibrQuest, Inc., he
was awarded a fellowship to conduct research on digital
signal processing and test with computer simulation. He
developed digital signal processing methods for VERITAS
ground based gamma ray telescope. At SciberQuest, his
primary role has been working on discrete event simula-
tions as well as application of genetic programming tech-
niques to space plasmas. He can reached via email at
jdriscoll@copper.net.

364

