
Copyright (c) 1999 by Simulation Councils, Inc.

The Parsimony Project: A Distributed Simulation Testbed in Java

Bruno R. Preiss and Ka Wing Carey Wan
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L 3G1, Canada

Keywords: distributed, discrete-event simulation; optimistic syn-
chronization; conservative synchronization; Java.

Abstract

The Parsimony Project is a vehicle for conducting research in dis-
tributed, network-centric computing. The primary objective is the
development of a Java-based testbed for distributed discrete-event
simulation. In this paper, we present requirements for the imple-
mentation of a distributed, discrete-event simulation system based
on our earlier research in the area. We show how the Java lan-
guage and virtual machine support directly these requirements.
Finally, we describe briefly a suite comprised of eight different,
yet compatible simulators. A user-defined simulation can be run
using any of the simulators without modification or even recom-
pilation.

1 Overview

This paper describes The Parsimony Project[1], the latest phase
in an on-going program of research in parallel and distributed
discrete-event simulation[2–5]. The Parsimony Project is the di-
rect descendant of Yaddes, a simulation specification language
and execution environments that were used to study the perfor-
mance of distributed, discrete-event simulation[6, 7]. The Parsi-
mony Project has emerged at this time because of the advent of
the Java language and the related technologies which support dis-
tributed, network-centric computing. In Section 2 we review the
requirements for distributed, discrete-event simulation that were
identified in previous research and in Section 3 we show how the
features of Java and its related technologies support directly the
implementation of network-centric simulation. Section 4 presents
the modeling methodology used in Parsimony and shows the rela-
tionships between the user-defined classes and system classes. In
Section 5 we describe the the eight simulation engines currently
available—a user-defined simulation can be run using any of these
simulators without modification or even recompilation. Finally, in
Section 6 we illustrate the Parsimony simulation paradigm using
a simple queueing network example.

2 Requirements for Distributed Discrete-Event Simula-
tion

On the basis of our earlier experience in the implementation of
systems for parallel and distributed discrete-event simulation, we
have identified the following requirements for the development
language and environment:

2.1 Modeling Support

In parallel and distributed discrete-event simulation (PDES), the
real-world system is viewed as a network of interacting, physical
processes (self-contained, discrete-event systems)[8]. The physi-
cal processes exchange information periodically, at discrete points
in time. Each such exchange of information is equivalent to an
event.

The network of physical processes is simulated by a collection
of logical processes that exchange messages. Each message car-
ries the information associated with an event and the time at which
the event occurs. The description of the state and the behavior of
a logical process is called a model. The simulated system is a
network of instantiated models.

Therefore, the development language must support the speci-
fication of models (state and behaviour). It must support the in-
stantiation of models and the concurrent execution of model in-
stances.

2.2 Dynamic Loading

A simulator must be extensible in the sense that user-defined mod-
els can be simulated without requiring the simulator itself to be
recompiled.

This kind of extensibility can be support in one of several dif-
ferent ways: (1) user-defined models may be specified using a
“simulation language” that is either compiled or interpreted by
the simulator; (2) the user-defined model is specified in a conven-
tional programming language which is then compiled and linked
with a simulation library; or (3) compiled user-defined models
can be linked dynamically to an existing simulator (e.g., using a
mechanism like that of a dynamic-linked library). Ideally, models
can be selected and linked into a running simulation on demand.

2.3 Support for Multiple Execution Threads

The modeling paradigm used in PDES leads naturally to an imple-
mentation consisting of a network of communicating logical pro-
cesses. While it is possible to implement the required behaviour
in a language that does not support concurrency explicitly, our
experience has shown that it is far more natural and expedient
to implement such a system using a language/environment that
supports user-level concurrency (threads). Since concurrent pro-
gramming is difficult to get right, we do not expect (or require)
that the simulation user make use of threads. Rather, the modeling
paradigm automatically yields a simulation that can be partitioned
for parallel/distributed execution.

2.4 Transparent and Extensible Networking Support

In order to build a distributed simulation, it is necessary to be able
to distribute model instances over multiple processors and to al-
low those instances to exchange information. However, both the
models and the messages they send are defined by the simulation
user. Therefore, the simulator must support the dynamic distribu-
tion of models, which comprise both state (data) and behaviour
(code), as well as the exchange of arbitrary, user-defined mes-
sages. Thus, the development language/environment must sup-
port transparently extensible networking in that it automates the
marshaling and unmarshaling of simulation entities (both model
instances and messages).



Copyright (c) 1999 by Simulation Councils, Inc.

3 How Java Supports Distributed Discrete-Event Simu-
lation

In this section we discuss the requirements for the implementation
of a distributed, discrete-event simulator and we show how those
requirements are supported by the mechanisms provided in the
Java language and the Java virtual machine.

3.1 Models as Classes, Events as Runnable Objects

That the object-oriented paradigm is a natural one for the spec-
ification of simulations, especially discrete-event simulations, is
well understood. In particular, the class concept admits a natu-
ral mapping from the simulation application to programming lan-
guage constructs. Specifically, classes, which encapsulate state
and behaviour, are a natural way to represent simulation models
and instances of such classes correspond to simulation entities.

In Parsimony we go one step further—events are represented
as timestamped, runnable objects. (In Java, a runnable object is
one that implements the interface java.lang.Runnable). Thus,
to simulate an event, we simply run the corresponding object.
(Events objects are run at most once.)

In a discrete-event simulation, the execution of an event typ-
ically results in modification of the system state as well as the
scheduling of future events. Since the state of the simulation re-
sides in the instances of models, there needs to be a coupling be-
tween event objects and model instances.

Thus the coupling between event objects and model instances
is naturally facilitated by Java’s inner classes. The following code
fragment illustrates the basic idea:

class Model
{

State state = new State();
class Event implements java.lang.Runnable
{

public void run()
{ modify(state);

schedule(new Event());
}

}
}

In Java, an inner class (e.g., Event) is a class defined within
another class (e.g., Model). Every instance of a (non-static) inner
class is implicitly bound to an instance of the outer class. Further-
more, the methods defined in the inner class (e.g., run) have direct
access to the fields (e.g., state) of the outer class instance. This
coupling has turned out to be an extremely useful Java feature and
it is used extensively in the implementation of Parsimony.

3.2 Logical Processes as Threads

Java’s support for concurrent programming directly facilitates
the implementation of parallel/distributed simulations. The con-
currency mechanisms in Java (e.g., monitor-like synchronization
primitives) have precisely defined semantics which are supported
directly by the Java compiler and the Java virtual machine[9, 10].
This is in direct contrast to languages such as C and C++ which
provide no support for concurrency (in the language) and in which
compiler optimizations that are perfectly legal for sequential code
may violate the semantic requirements of concurrent code.

In Parsimony, the system to be simulated is viewed as a net-
work of physical processes. The physical processes are simulated
by instances of user-defined model classes. Each model instance
is managed by an instance of a logical process system entity. Each
logical process runs as a separate thread. The logical processes
self-synchronize and ensure that events are executed in a proper
sequence (i.e., without causality violations).

3.3 The Java Virtual Machine as Simulation Engine

A general-purpose simulation engine needs to be able to load and
execute user-defined models. Since a user-defined model com-
prises both state and behaviour, this requirement is satisfied by
the ability to dynamically load, link, and instantiate user-defined
classes.

In this regard, the facilities of the Java language and virtual
machine are ideal. A Java virtual machine can load classes on
demand—the actual classes loaded need not be known to the sim-
ulator. Furthermore, a Java virtual machine can be made to load
classes from a remote site. Using this feature, it is quite simple to
implement a distributed simulation engine as a network of inter-
connected Java virtual machines.

The security features of Java (e.g., strict compile- and run-
time type checking, the bytecode verifier and security managers)
significantly enhance the robustness of the resulting simulator. In
particular, it has been our experience that these features greatly
assist in the debugging of simulation models.

3.4 Object Serialization and Remote Method Invocation

In a distributed simulator, logical processes and the model in-
stances they manage are distributed over multiple processors.
That is, they execute in separate Java virtual machines. In order
to effect the simulation, the logical processes need to exchange
user-defined information (event messages).

The distribution of model instances as well as the exchange of
event messages, requires the ability to move objects from one Java
virtual machine to another. Fortunately, Java supports directly and
transparently object serialization[11]. I.e., any instance of a class
that implements the interface java.io.Serializable is easily trans-
fered from one Java virtual machine to another one over a TCP
connection. The marshaling of the object in the sender and the
unmarshaling at the receiver is automatic. In Parsimony, the dis-
tribution of model instances and the transmission of event mes-
sages is facilitated by Java’s object serialization.

An even more powerful capability of Java that is used to great
effect in Parsimony is the notion of remote method invocation[12].
Java implements remote procedure calls in an extremely transpar-
ent fashion. Since all objects in Java are manipulated through a
reference, it does not matter to the user of the object whether the
object to which a reference refers is a local object or a remote one.
In the case of a remote method invocation (RMI), the arguments
are serialized in the virtual machine of the caller and transmitted
to the virtual machine of the callee. Similarly, the return value is
serialized at the callee and returned to the caller.

The distributed Parsimony simulators turned out to be ex-
tremely easy to implement using RMI. We approached the prob-
lem in two steps. First, we implemented a threaded simulator in
which each logical process executes as a separate thread. Then,
we arranged to have the various threads distributed over multiple
processors. By carefully writing the threads to eliminate the re-
liance on shared global data, the distribution of the threads was
accomplished without the need to modify the code.

4 Modeling and Simulation in Parsimony

The first step in writing a simulation is to construct a model of the
real-world system to be studied. The real-world system is mod-
eled as a collection of communicating, discrete-event processes
called physical processes (PPs). The state of a discrete-event PP
changes discontinuously at discrete points in time. In addition, the
PPs periodically exchange information at discrete points in time.

The simulation of the real-world system is obtained by writing
a simulation program in which the behaviour of each PP is mim-



Copyright (c) 1999 by Simulation Councils, Inc.

icked by a logical process (LP). Each LP comprises application-
specific state and behaviour and, in addition, each LP maintains
its own internal (future) event list. The exchange of information
by the PPs is mimicked in the simulation by the exchange of mes-
sages by the LPs. Since the computer simulation does not execute
in real time, each LP has its own notion of simulation time and
each message is tagged with the time of the corresponding real-
world event.

To ensure the correctness of the simulation, each LP must sat-
isfy a local causality constraint—events and messages must be
processed by an LP in non-decreasing timestamp order.

In Parsimony, we isolate the modeling domain from the do-
main of the simulation engine (the simulator). The user writes
the application-specific simulation code. The Parsimony system
provides the generic simulator code. In this way, the user needs
only to be concerned with the details of the application and not
with the nitty-gritty details of writing a causally-correct simula-
tor.

4.1 The Entity Model and System Model Classes

Having obtained a model of the real-world system that consists
of a network of PPs, the user prepares the simulation program by
writing entity model classes and a system model class. Figure 1
shows the relationship between the user-defined entity and system
model classes and the classes provided by Parsimony.

AbstractEvent

extends

AbstractModelAbstractSimulation MessageHandler

events message
handlers

entity models

extends

system model

extends

User-defined Classes

Classes defined in the Parsimony Package

instantiates

implements

Figure 1: Relationship between User-defined and Parsimony Sys-
tem Classes

Each entity model class is derived from the Parsi-
mony.AbstractModel abstract class. An entity model encapsu-
lates state and defines events and message handlers. As described
in Section 3.1, each event is an instance of a runnable inner class
defined within a model class. As shown in Figure 1, events are
derived from the Parsimony.AbstractEvent class.

The model class inherits from the AbstractModel base class
the methods schedule and send. The former is used to schedule
events in the future, the latter is used to send messages to other
LPs. Every model that receives messages defines one or more
message handlers. As shown in Figure 1, a message handler is an
inner class defined within a model class. When a message is re-
ceived at an LP, it is bound to a message handler. The combination
of message handler and a message is equivalent to an event—it is
a runnable object that, when run, modifies the state of the model
as required.

To complete the specification of the simulation, the user de-
fines a system model class. As shown in Figure 1, the system
model class is derived from the Parsimony.AbstractSimulation
abstract class.

A simulation is a runnable object. Its run method is required
to create the network of LPs that make up the simulation. It in-
herits from the base class the methods createChannel and cre-
ateProcess. The former is used to establish communication
channels between LPs. The latter is used to instantiate the LPs
themselves.

4.2 Achieving the Separation of Concerns

An important element in the success of our approach has been the
separation of the user-defined, application-specific domain from
the domain of the simulator. Figure 2 illustrates how this has been
achieved.

entity model
instance

system model
instanceinstance

simulator

system process
instance

is bound to

is bound to

createProcess

send(Message m)
schedule(Event e)

calls method

calls methods

creates creates

logical process

user-definedprovided by Parsimony

Figure 2: Achieving the Separation of Concerns

As discussed in the preceding section, a complete simulation
is obtained by binding an instance of a user-defined system model
class with an instance of a Parsimony simulator class. To be-
gin execution, the simulator runs the system model. The system
model instantiates the network of LPs and establishes the commu-
nication channels between the LPs.

Because each LP comprises both user-defined and system-
defined behaviour, each LP is, in fact, a pair of objects—an in-
stance of a user-defined entity model and an instance of a sim-
ulator process class. The entity model instance encapsulates
application-specific state and behaviour. The simulator process
instance encapsulates the LP’s local event list and it implements
the send and schedule methods.

The bindings between the system model instance and simu-
lator instance and between entity model instance and simulator
process instance are established dynamically at run-time. Conse-
quently, the user-defined simulation code is completely indepen-
dent of the simulator code, allowing the latter to be implemented
in many different ways. In the following section, we describe
eight different simulators currently implemented. The beauty of
Parsimony is that, because of the separation of concerns, the user-
defined simulation can be run using any one of the eight simula-
tors without recompilation!



Copyright (c) 1999 by Simulation Councils, Inc.

5 Simulators

To date, we have implemented eight different simulators. The
simulators are completely interchangeable. I.e., a given user-
defined simulation will run with any one of the simulators, and
in (almost) all cases the the results of the simulations are identi-
cal. Slight differences arise because the implementations do not
impose a total order on events—events having exactly the same
timestamp may execute in a different order in different simula-
tors. Thus, different behaviour is only possible if the user-defined
models are affected by the execution order of simultaneous events.

Because Java supports the dynamic loading of classes, our im-
plementation dynamically loads the simulator as well as the user-
defined simulation. I.e., the choice of simulator is only bound at
run time. Table 1 lists the eight simulators currently implemented
and briefly describes their characteristics.

5.1 The Distributed Simulators

The Parsimony package includes three different distributed
simulators—DistributedMLSimulator, DistributedCMBSimu-
lator, and DistributedTWSimulator. A distributed simulator is
one in which a given user-defined simulation is executed using
multiple Java virtual machines running on different host comput-
ers.

AbstractDistributedSimulator

X.Master

ThreadedXSimulator

X.Slave

DistributedXSimulator

extends extends

aggregates n

Figure 3: Making a Distributed Simulator from a Threaded One

In each case, we be-
gan by implementing a non-distributed simulators using multiple
Java threads—ThreadedMLSimulator, ThreadedCMBSimula-
tor, and ThreadedTWSimulator. In these simulators each logi-
cal process executes as a separate thread. What differs is how the
threads synchronize in order to guarantee that the local causality
constraint is not violated.

Figure 3 illustrates how we derived the implementations of the
distributed simulators from the non-distributed, threaded ones. A
distributed simulator consists of a single, master simulator and
one or more slave simulators. The master simulator runs the sys-
tem model entity and the logical processes are distributed among
the slave simulators.

This distribution is easily achieved by making use of the Java
remote method invocation mechanism. As Figure 3 shows, we
implement a slave simulator by extending the threaded simulator.
Because Java remote method invocation is transparent, the exten-
sion is trivial. (In each case only a few tens of lines of code were
required!)

6 An Example—A Single-Server Queueing Network

In this section we present an example that illustrates how a queue-
ing system is modelled in Parsimony. Figure 4 shows a sim-
ple queueing system. The system is comprised of three physical
processes—the source process, the queue-and-server process, and

the sink process. The behaviour of each of theses processes is
modelled by a separate model class.

chan0 chan1

Source QueueAndServer Sink

customers

Figure 4: A Simple Queueing Network

6.1 Source Model

The code which describes the source model is given below. As
shown in Figure 4, the source model has no inputs and a single
output. The number of inputs and outputs are specified in the call
to the super-class constructor.

The source process shown models a Poisson process. I.e., the
customer inter-departure times are exponentially distributed. The
Parsimony package includes several random variable classes, in-
cluding the ExponentialRV used here.

The source model comprises a single event type—a customer
departure. Customer departure events are represented as instances
of the inner class, Departure. Invoking the run method of a de-
parture event sends a message which represents a customer to the
queue-and-server model, and then creates and schedules a new
departure event.

class Source extends AbstractModel
{

RandomVariable interDepartureTime;

public Source (long mean)
{ super(0, 1);

interDepartureTime =
new ExponentialRV(mean);

}

public void initialize (long time)
{ schedule(new Departure(time)); }

class Departure extends AbstractEvent
{

Departure(long time) { super(time); }

public void run ()
{ send(new VoidMessage(getTime()));

schedule(new Departure(
Math.round(getTime() +
interDepartureTime.nextDouble())));

}
}

}

6.2 Sink Model

As shown in Figure 4, the sink model has a single input and no
outputs. The behaviour of the sink model is achieved by defining
a message handler to process input messages. A the run method



Copyright (c) 1999 by Simulation Councils, Inc.

Table 1: Characteristics of the Various Simulators

SequentialSimulator A single-threaded, sequential simulator implemented using a common event list.
MultiListSimulator A single-threaded, sequential simulator in which each logical process maintains its own event list.
ThreadedMLSimulator A multi-threaded simulator in which each logical process runs as a separate thread. The threads are

scheduled by a central scheduler.
DistributedMLSimulator A distributed, multi-threaded simulator in which each logical processes runs as a separate thread in a

remote, slaved simulator. The threads are scheduled by a central, master scheduler.
ThreadedCMBSimulator A multi-threaded simulator implemented using the distributed, conservative synchronization method

due to Chandy, Misra, and Bryant.
DistributedCMBSimulator A distributed, multi-threaded simulator in which each logical processes runs as a separate thread in a

remote, slaved simulator. The threads are scheduled using the distributed, conservative synchroniza-
tion method due to Chandy, Misra, and Bryant.

ThreadedTWSimulator A multi-threaded simulator implemented using the distributed, optimistic synchronization method
known as Time Warp[13]. This simulator does completely transparent copy state saving (checkpoint-
ing) and rollback error recovery.

DistributedTWSimulator A distributed, multi-threaded simulator in which each logical processes runs as a separate thread in a
remote, slaved simulator. The threads are scheduled using using the distributed, optimistic synchro-
nization method known as Time Warp.

of the message handler is invoked for every received message. In
this case, the run method is empty.

class Sink extends AbstractModel
{

Sink ()
{ super(1, 0);

setMessageHandler(new ArrivalHandler());
}

class ArrivalHandler
implements MessageHandler

{
public void run(Message message) {}

}
}

6.3 Queue-and-Server Model

The specification of the queue-and-server model is given below.
The model shown implements a first-in, first-out queue and a
single-server that provides non-preemptive service with exponen-
tially distributed service times.

The queue-and-server model has one input and one output.
The model encapsulates two inner classes:

ArrivalHandler A message handler invoked each time a cus-
tomer arrives.

Departure A customer departure event invoked when the server
finishes serving a customer.

A message is received by the queue-and-server model repre-
sents the arrival of a customer. The behaviour of the arrival han-
dler is determined by the state of the model. If the server is busy
when a customer arrives, the customer joins the queue. Otherwise,
a new customer departure event is scheduled.

The behaviour of the departure event is also determined by the
state of the model. Invoking the run method of a departure event
sends a message which represents a customer to the sink model.
If there are still more customers in the queue, a new customer
departure event is created scheduled.

class QueueAndServer extends AbstractModel
{

RandomVariable serviceTime;
int numberInQueue = 0;
boolean serverBusy = false;

QueueAndServer (long mean)
{ super(1, 1);

serviceTime = new ExponentialRV(mean);
setMessageHandler(new ArrivalHandler());

}

class ArrivalHandler
implements MessageHandler

{
public void run (Message message)
{ if (serverBusy) ++numberInQueue;

else
{ serverBusy = true;

schedule(new Departure(
Math.round(getTime() +
serviceTime.nextDouble())));

}
}

}

class Departure extends AbstractEvent
{

Departure (long time) { super(time); }

public void run ()
{ send(new VoidMessage(getTime()));

if (numberInQueue == 0)
serverBusy = false;

else
{ --numberInQueue;

schedule(new Departure(
Math.round(getTime() +
serviceTime.nextDouble())));

}
}

}
}



Copyright (c) 1999 by Simulation Councils, Inc.

6.4 System Model

In Parsimony we define a simulation class to represent the sys-
tem to be simulated. A simulation is a runnable object (i.e., it
java.lang.Runnable). The run method of a simulation is ex-
pected to instantiate the logical processes that comprise a sim-
ulation as well as the communication channels that connect the
processes.

The code for the class Queueing given below describes the
queueing network shown in Figure 4. The system comprises two
communication channels, chan0 and chan1, and three logical
(simulation) processes. The run method creates the channels and
processes and then invokes the simulate method in order to com-
mence the simulation.

class Queueing extends AbstractSimulation
{

public void run ()
{ Channel chan0 = createChannel();

Channel chan1 = createChannel();
createProcess(new Source(1000),

new ChannelHead[] {},
new ChannelTail[] { chan0 });

createProcess(new QueueAndServer(1000),
new ChannelHead[] { chan0 },
new ChannelTail[] { chan1 });

createProcess(new Sink(),
new ChannelHead[] { chan1 },
new ChannelTail [] {});

simulate();
}

}

7 Summary and Conclusions

The Parsimony Project is a vehicle research in network-centric
distributed simulation. In this paper we have briefly described the
goals of the project and the current project status. The principal
contribution of this paper is the identification of the requirements
of distributed, discrete-event simulation with respect to the un-
derlying implementation technologies. In addition, we show how
features of the Java language and the Java virtual machine directly
support these requirements.

7.1 Online Materials

More information about the Parsimony project is available from
the Parsimony website1. In particular, the queueing network sim-
ulation described in Section 6 is available as a Java applet2.

References

[1] B. R. Preiss. The Parsimony Project Website3, 1998.

[2] Y.-B. Lin and B. R. Preiss. Optimal memory management
for Time Warp parallel simulation4. ACM Trans. on Model-
ing and Computer Simulation, 1(4):283–307, October 1991.
(Accepted May 1992. Published September 1992.).

[3] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska.
Selecting the checkpoint interval in Time Warp parallel
simulation5. In Proc. 1993 Workshop on Parallel and Dis-
tributed Simulation, pages 3–10, San Diego, CA, May 1993.
Institute of Electrical and Electronics Engineers, Inc.

1http://www.pads.uwaterloo.ca/Bruno.Preiss/parsimony
2http://www.pads.uwaterloo.ca/Bruno.Preiss/parsimony/queueing-demo.html
3http://www.pads.uwaterloo.ca/Bruno.Preiss/parsimony
4http://www.acm.org/pubs/citations/journals/tomacs/1991-1-4/p283-lin/
5http://www.brpreiss.com/papers/published/1993/pads/paper.pdf

[4] B. R. Preiss and W. M. Loucks. Memory management tech-
niques for Time Warp on a distributed memory machine6.
In Proc. 1995 Workshop on Parallel and Distributed Simu-
lation, pages 30–39, Lake Placid, NY, June 1995. Institute
of Electrical and Electronics Engineers, Inc.

[5] B. R. Preiss, I. D. MacIntyre, and W. M. Loucks. On
the trade-off between time and space in optimistic paral-
lel discrete-event simulation7. In Proc. 1992 Workshop on
Parallel and Distributed Simulation, pages 33–42, Newport
Beach, CA, January 1992. Society for Computer Simulation.

[6] B. R. Preiss. The Yaddes distributed discrete event simu-
lation specification language and execution environments8.
In Proc. SCS Multiconf. on Distributed Simulation, pages
139–144, Tampa, FL, March 1989. Society for Computer
Simulation.

[7] B. R. Preiss and I. D. MacIntyre. YADDES—Yet An-
other Distributed Discrete Event Simulator: User manual9.
CCNG Technical Report E-197, Department of Electrical
and Computer Engineering and Computer Communications
Networks Group, University of Waterloo, 1990.

[8] J. Misra. Distributed discrete-event simulation. ACM Com-
puting Surveys, 18(1):39–66, March 1986.

[9] D. Lea. Concurrent Programming in JavaTM 10. The
JavaTM Series. Addison-Wesley, Reading, MA, 1996.

[10] T. Lindholm and F. Yellin. The JavaTM Virtual Ma-
chine Specification11. The JavaTM Series. Addison-Wesley,
Reading, MA, 1996.

[11] Sun Microsystems, Inc. JavaTM Object Serialization
Specification12, 1998.

[12] Sun Microsystems, Inc. JavaTM Remote Method Invocation
Specification13, 1998.

[13] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tup-
man, V. Warren, J. Wedel, H. Younger, and S. Bellenot. Dis-
tributed simulation and the Time Warp Operating System.
In Proc. 12th SIGOPS—Symposium on Operating Systems
Principles, pages 77–93, 1987.

6http://www.brpreiss.com/papers/published/1995/pads2/paper.pdf
7http://www.brpreiss.com/papers/published/1992/pads/paper.pdf
8http://www.brpreiss.com/papers/published/1989/emc/paper.pdf
9http://www.brpreiss.com/reports/ccng/E-197/report.ps

10http://www.awl.com/cseng/titles/0-201-69581-2/
11http://www.awl.com/cseng/titles/0-201-63452-X/
12ftp://ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.ps
13ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.ps


