
Scalability of Parallel Simulation Cloning

Maria Hybinette Richard M. Fujimoto

Computer Science Department College of Computing
University of Georgia Georgia Institute of Technology

Athens, GA 30602-7404, USA Atlanta, GA 30332-0280, USA

maria@cs.uga.edu fujimoto@cc.gatech.edu

Abstract
In previous work we presented an algorithm for

cloning parallel simulations that enables multiple sim-
ulated execution paths to be explored simultaneously.
The method is targeted for parallel discrete event simu-
lators that provide the simulation application developer
a logical process (LP) execution model. The cloning
algorithm gains efficiency by cloning logical processes
only as necessary. In this work we examine the scal-
ability of cloning in detail. Specifically, we examine
how the number of clones impacts the performance of
cloning as we vary the “size” of the simulation prob-
lem.

1 Introduction

Parallel processing has traditionally been applied
to executing discrete event simulation programs in at
least two different ways. The first, called parallel dis-
crete event simulation, involves distributing the exe-
cution of the simulation program across multiple pro-
cessors in order to reduce execution time. A major
challenge is ensuring the simulation is properly syn-
chronized, and a variety of techniques have been de-
veloped to address this problem (Fujimoto 2000). The
second approach, referred to as replicated trials, in-
volves executing independent simulation runs on dif-
ferent machines. This approach yields trivial paral-
lelization because there is no need to address synchro-
nization issues during the execution of the simulation
programs. Both techniques are useful in different situ-
ations. Parallel discrete event simulation is applicable
if simulation results are required quickly (e.g., for de-
signers trying to understand the behavior of a system)
or the simulation requires more memory than is avail-
able on a single machine. Replicated trials is the pre-
ferred approach if throughput is the primary goal, e.g.,
completing many runs to evaluate different parameter
settings where users are willing to wait possibly long
periods of time for the different runs to complete.

Here, we are concerned with the simultaneous appli-
cation of both of these techniques. We envision parallel
discrete event simulation techniques to be used to re-
duce the execution time of each run to an acceptable
level, and exploitation of replicated trials to complete
as many simulation runs as possible given the available
hardware resources and time to yield results.

Further, we seek to achieve additional speedup be-
yond that which each of these techniques can achieve.
Both parallel discrete event simulation and replicated
trials can achieve at most N-fold speedup using N
processors, except in rare situations where superlinear
speedup can be obtained due to (for instance) memory
caching effects. Obtaining greater speedup requires the
use of more sophisticated techniques. We focus on one
such technique called simulation cloning. As discussed
momentarily, the basic idea behind cloning is to share
simulation computations that are common among mul-
tiple runs. These computations are performed only
once, and their results are shared across the multi-
ple runs. Simulation cloning was proposed in prior
work (Hybinette and Fujimoto). Here, we extend this
work to examine scalability issues concerned with the
cloning technique.

The paper is organized as follows: The cloning
mechanism is briefly described next. We then describe
its implementation in Section 3. Next, we discuss the
scalability of cloning. We conclude with a summary
and a discussion of future directions.

2 Simulation Cloning
Simulation cloning is a technique that replicates a

running sequential or parallel simulation program dur-
ing its execution in order to explore different possible
futures of the simulation. It can be used, for instance,
to concurrently explore alternate courses of action to
deal with emerging events. For example, in an air traf-
fic control setting, one might wish to use simulation
to compare alternate approaches to managing the flow
of aircraft when inclement weather is forecast for one

portion of the air space. This may require controllers
to restrict the number of aircraft entering this portion
of the airspace. Operationally, this is handled by in-
creasing the spacing between aircraft (called the miles
in trail or MIT) restriction. One might wish to evalu-
ate the overall impact of such restrictions on the flow
of traffic throughout the entire traffic network, since
delaying certain flights will have a “ripple” effect that
propagates throughout the system.

In this example, the simulation can be initialized
with the current state of the traffic space, and exe-
cuted forward until reaching the point where new re-
strictions are to be imposed. The simulation can then
be cloned (replicated), with each clone simulating the
traffic space with a different MIT restriction. The
point where the simulation is cloned is referred to as
a decision point. The cloned simulations can execute
concurrently, and will produce identical results as a
traditional replicated simulation experiment where the
entire simulation is executed, from the beginning, us-
ing different MIT restrictions that are imposed at the
time of the decision point.

Simulation cloning can improve the performance of
the simulation in two different ways. First, it is clear
that the computation prior to the decisions point is
performed only once, and its results are shared among
the different clones. This is in contrast to a replication
experiment where this computation will be repeated
for each replication.

Second, it is often the case that there is much com-
putation that is common among the clones, even after
the decision point has been reached. For example, traf-
fic congestion in the eastern part of the U.S. will not
affect traffic on the west coast for some time. There-
fore, the simulation of air traffic in the west coast will
be identical immediately after the clones are created.
One would like to also perform these computations only
once, and share their results, rather than repeat them
within the different clones.

A technique called incremental cloning has been de-
veloped to allow computations after the decision point
to be shared among the different clones (Hybinette and
Fujimoto). The basic idea in incremental cloning,
elaborated upon below, is to provide mechanisms to
detect when portions of the cloned simulations diverge
from each other, and replicate portions of the simula-
tion only as needed.

The incremental cloning algorithm assumes a
message-based computation paradigm like that com-
monly used in parallel discrete event simulations.
Specifically, the simulation is composed of a collection
of logical processes (LPs) that communicate exclusively
by exchanging time stamped events or messages. A

synchronization algorithm is used to ensure that each
LP processes its events in time stamp order, or in the
case of optimistic simulation protocols, the net effect
of each LP’s computation is as if its events were pro-
cessed in time stamp order. The incremental cloning
algorithm described here can be used with either con-
servative or optimistic synchronization techniques.

The cloning mechanism is implemented by defining
an abstraction called a virtual simulation. A virtual
simulation is defined for each clone. Virtual simula-
tions are composed of virtual LPs that communicate
by exchanging virtual messages. As its name implies,
virtual simulations are not “real” in the sense that they
do not include memory to hold state, nor simulation
code. Rather, virtual LPs and virtual messages map to
physical LPs and physical messages that perform the
actual simulation computations.

Virtual and physical simulations are analogous to
virtual and physical memory. Like virtual memory,
a virtual simulation appears to the user as an actual
running simulation. However, in actuality, the virtual
simulation only consists of data structures that map
the virtual simulation to physical LPs and messages.
Each virtual simulation is referred to as a version of
the original simulation. Replicating a virtual simula-
tion requires very little computation since one need not
replicate the state of the simulation; rather, only a few
data structures need to be updated to create a new
version (clone). Each virtual LP and each virtual mes-
sage maps to exactly one physical LP and one physical
message, respectively.

When a new version (clone) of the simulation is cre-
ated, all of the virtual LPs making up the version are
replicated. However, as mentioned earlier, replicating
virtual LPs requires very little computation because
one need only update a few internal data structures.
Only those physical LPs that are different in the two
clones need be replicated when the clone is created.
Replicating a physical LP is a more expensive opera-
tion, requiring replication of the LP’s state variables.
Virtual LPs that are identical in the two clones map
to the same physical LP, while those that are different
in the clones map to different physical LPs.

Computation sharing is accomplished by mapping
virtual LPs corresponding to different virtual simula-
tions (clones) to the same physical LP. For example,
in the air traffic example, suppose an LP is defined to
model each airport. Suppose two clones are created
to evaluate alternate policies for managing inclement
weather on the east coast. In this case, two virtual sim-
ulations are created. The virtual LPs corresponding
to airports on the west coast that are not immediately
impacted by the inclement weather are mapped to the

same physical LPs. Computations by this physical LP
are automatically shared between the two clones. The
LPs modeling east coast airports that are immediately
impacted by the inclement weather are realized by dis-
tinct LPs, since their computations in the two clones
will differ.

As time goes on, the simulations in the western part
of the U.S. for the different clones will typically diverge.
The incremental cloning algorithm replicates LPs as
their behavior diverges. The incremental cloning soft-
ware can detect when the computations diverge by
monitoring the messages sent among the LPs. For ex-
ample, suppose there are two (virtual and physical)
LPs modeling the Atlanta airport in the two clones (See
Figure 1). Suppose the LP modeling Orlando is real-
ized by two virtual LPs that map to the same physical
LP because Orlando has not yet been affected by the
inclement weather. Suppose the Atlanta LP in the first

Virtual Layer

Physical Layer

Physical Clone 1
Orlando

Physical Clone 1
Atlanta

Atlanta
Physical Clone 2

Orlando
Virtual Clone 2

Virtual Clone 1
Orlando

Virtual Clone 1
Atlanta

Atlanta
Virtual Clone 2

Figure 1: An instance in an air traffic control simulation:

Atlanta LP in the first clone (virtual simulation) sends a

message to Orlando indicating a new flight arrives at Or-

lando at 5 PM.

clone (virtual simulation) sends a message to Orlando
indicating a new flight arrives at Orlando at 5 PM,
but no such message is generated in the second clone
because that flight has been delayed in that execution.
The cloned simulations for Orlando will thus diverge at
simulated time 5 PM. The cloning mechanism, which
can be implemented as a layer of software that resides
between the simulation application and the underly-
ing simulation executive, can detect this, and replicate
the Orlando LP at 5 PM. In this way the cloned sim-
ulation is incrementally replicated as portions diverge
from each other.

The cloning mechanism intercepts the sending and

delivery of messages from and to the application. It
must determine which physical LPs must receive mes-
sages that are sent. It also determines whether phys-
ical processes and/or messages must be cloned, and
invokes primitives to clone these portions of the simu-
lation as needed. This requires knowledge of the ver-
sions of the simulation that are sending/receiving the
message. This information is provided to the cloning
software by appending the virtual send and virtual re-
ceive set of processes to each message.

The virtual send and receive set information at-
tached to each message is used to determine when pro-
cesses must be cloned. A physical logical process is
cloned if (1) there is a virtual logical process in the re-
ceive set that should not be influenced by the incoming
message or if (2) the destination address of the mes-
sage is a physical logical process that has not yet been
created.

Details of the cloning mechanism and its implemen-
tation are beyond the scope of this paper, but are de-
scribed elsewhere (Hybinette and Fujimoto). Here, we
are primarily concerned with the scalability of these
cloning mechanisms. Before proceeding to the discus-
sion on scalability we discuss how cloning is imple-
mented.

3 Cloning Implementation
The goals for implementing cloning are:
- efficiency,
- transparency and
- simulator independence

Efficiency is in terms of the number of alternatives
evaluated in a time-constrained period and memory
resource usage. Efficiency is achieved by enabling mul-
tiple scenario analysis and allowing different versions
of the simulation to share computations between each
other. Transparency is with respect to the simulation
application and is accomplished by monitoring pre-
existing primitives (send and receive). Simulator in-
dependence refers to the choice of optimistic or conser-
vative synchronization. Clone-Sim provides simulator
independence with respect to this framework.

A simulation consists of a simulation application
(provided by the user) and a simulation executive that
implements the synchronization protocol. The simu-
lation executive provides primitives that allow simu-
lation programmers to define their own applications.
This is a layered system, with the operating system at
the bottom, the simulator executive in the middle and
the simulation application at the top (See Figure 2).

The cloning mechanism is implemented in a pack-
age called Clone-Sim. Clone-Sim enables on-demand
“cloning” of parallel and distributed discrete event sim-

LP

LP LP

LP

LPLP

LP

LP LP

LP

LPLP

Simulation Executive

Simulation Executive Clone−DBInteractive−Sim

Simulation ApplicationSimulation Application

Parallel or Distributed Computer Hardware

Figure 2: Views of simulations: Traditional parallel dis-

crete event simulation is shown on the left; the monitor-

ing layer called interactive-sim in relation to the simulation

executive and the simulation application is shown on the

right.

ulations. Clone-Sim achieves efficient cloning by inter-
cepting the communication primitives between the user
application and the simulator executive. The package
can be used in interactive as well as non-interactive en-
vironments. Both optimistic and conservative simula-
tors can be supported. Currently, Clone-Sim has been
implemented with Georgia Tech’s Time Warp simula-
tion executive (Das et al. 1994) called GTW, an opti-
mistic simulator.

Clone-Sim consists of two modules: the
Interactive-Sim module which is layered be-
tween the simulation executive and the application
simulation program and the Clone-DB database that
is independent of the synchronization primitives of the
simulation executive. The key function of Interactive-
Sim is (1) to intercept message sends and (2) to
process events. For example, Interactive-Sim needs to
know the message send and message receive primitives
in order to intercept the invocation to process events
or to forward copies of a message to cloned LPs. After
interception, Interactive-Sim queries Clone-DB to
determine message or process cloning (via respective
inquire functions). The architecture of Clone-Sim is
shown on the right of Figure 2. From the point of
view of the simulation executive, Interactive-Sim is a
simulator application. In the context of the layered
system Interactive-Sim is between the simulation ex-
ecutive and the user’s application simulation program.
Interactive-Sim itself is decomposed into sub-modules,
where each is implemented for a particular simulation
executive. The sub-modules are “pluggable” in that
the appropriate submodule is plugged in for a spec-
ified simulation executive. New sub-modules can be
implemented using a specified application interface.
The general idea behind Interactive-Sim is that it is
transparent to the simulation program, and also to
the programmer utilizing the cloning primitives.

4 Assumptions
We assume the simulation executive pro-

vides ScheduleEvent (send and schedule) and

ProcessEvent (receive) primitives. The relationship
between the user application and the simulation exec-
utive is illustrated on the left of Figure 2. Here, the
user application defines the events and the simulation
executive manages synchronization. If the application
uses GTW as a simulation executive, it must define
ProcessEvent, and tell GTW when to schedule the
event. GTW then schedules a call to ProcessEvent
at the appropriate time.

Clone-Sim also assumes that the simulation execu-
tive supports dynamic LP creation and allocation, ini-
tialization and copying of LPs. It is assumed that one
can schedule events conservatively, i.e. the event can
be scheduled with the assumption that it will never
roll back, (this is trivial if the simulation executive is
conservative).

Another assumption is that simultaneous events are
addressed by the underlying simulation engine (e.g.
by prioritization). Clone-Sim ensures, that simultane-
ous events do not interfere with cloning. This is done
by prioritizing cloning events (such as instantiations
of new simulations and physical processes) above all
other events. To summarize, Clone-Sim assumes that
the simulation executive supports:

• a send and schedule primitive (ScheduleEvent)
- including the capability to schedule an event

conservatively,

• a process event primitive (ProcessEvent), and

• a capability to clone individual logical processes
and

• simultaneous events

The next section will describe the simulation appli-
cation programmer interface to the Cloning functions.
These are the primitives that enables a programmer to
clone simulations.

5 Simulation Application
Clone-Sim accounts for the mapping of virtual LPs

to physical LPs by assigning identifiers to each physical
LP. There are three types of identifiers:

- unique
- global and
- simulation.

The unique identifier (UID LP) distinguishes physical
logical processes. In addition to a unique identifier a
physical logical process is assigned to a global identifier
(GID LP), the same global identifier may be shared by
multiple physical logical processes. The GID LP cor-
responds to the original physical ID (before cloning)
of the LP at time 0 (if this physical logical process is

cloned the GID LP may corresponds to multiple physi-
cal processes). Finally each simulation or cloned sim-
ulation is associated to a unique simulation identifier
(Clone ID). Each version of a simulation consists con-
sists of a set of virtual LPs. These identifiers can be
accessed by specified functions that are described be-
low.

There are six cloning functions available to the simu-
lation application. These are primitive functions; com-
plex cloning scenarios are developed by composing the
primitives appropriately. We list the function names
below, then describe them in detail later. The API
functions are

void CloneSim InitAppl(int argc, char ** argv)
void CloneSim CloseAppl(void)
int CloneSim Create(int UID LP, double cur-
rent sim time)
int CloneSim Delete(int clone, double start,
double end, CSFunc p trig)
int CloneSim GetCloneID(int LP)
int CloneSim GID(void)
int CloneSim UID(void)

The utility of each function depends on the state of the
simulation.

We view the state of the simulation as moving
through three phases: initialization, execution, and
wrap-up. The initial number of logical processes, the
mapping between processes and processors, and event
handler specification is determined at initialization.
Events are scheduled and event handlers are called at
appropriate times during the execution phase. In the
wrap-up phase the simulation is complete and cleanup
functions are called before the application terminates.
These phases are described in more detail below.
5.1 Initialization Phase

Clone-Sim assumes that the simulation executive al-
lows the user application to set up the assignment of
LPs to processors. The assignment is thus exposed and
Clone-Sim can manipulate it. This is important, be-
cause Clone-Sim exploits this ability to maintain LP
assignments transparently from the simulation appli-
cation’s point of view.

To initialize Clone-Sim,
void CloneSim InitAppl() is called at the end of the
initialization phase. The function has two arguments:
argc and argv that specify command line parame-
ters for Clone-Sim. Initializing Clone-Sim sets up data
structures that: (1) control the mapping between log-
ical processes and processors, (2) provide buffer space
for cloned physical logical processes and (3) determine
message or process cloning or determine child, sibling,
and parent relationships between cloned simulations.

The assignment of logical processes to processors

is assumed to be static after the initialization phase,
however the mapping can be easily made to be dynamic
if these systems include load balancing functions. An
example initialization is shown below:

void InitializationPhase(int argc, char **argv)

{

/* code initialization is defined here */

/* call cloning initialization procedure */

CloneSim_InitAppl(argc, argv);

}

5.2 Execution Phase
During the execution phase, cloning allows

for the insertion and deletion of decision points
via the cloning primitives CloneSim Create() and
CloneSim Delete(). This can be implemented in-
teractively or non-interactively by the simulation pro-
grammer. An event that clones a simulation must be
conservative (guaranteed to never rollback). If the
decision point occurs on a set of LPs then a conserva-
tive event must be scheduled at the same simulation
time by each of the LPs in the set. Successive LP
clones within a new version may occur optimistically
and may be rolled back.

A call to CloneSim Create returns the identification
number of the newly cloned simulation, so that one
can refer to the clone when deleting or pruning it. A
negative number is returned upon error.

This (decision) point represents the location in the
execution path where the state of the newly created
version starts to diverge from the version that called
it. When the function is called, the physical logical
process calling the primitive is replicated. Any assign-
ment to variables or calls to functions within this con-
servative event after the call only affect the original
clone. Assignment or calls to functions within the con-
servative event before CloneSim Create() affect both
versions of the simulation: the newly created clone and
the original clone.

During the execution phase, Clone-Sim provides ac-
cess to three LP identifiers that are helpful to the user:

1. unique: the unique identifier UID LP can be used
to distinguish between all physical logical pro-
cesses.

2. global: each logical process is assigned a global
identifier, GID LP that corresponds to the ID of the
original LP (before cloning) to which the current
LP corresponds. The same global identifier may
be shared by multiple physical logical processes.

3. simulation: the Clone ID identifies the version
of the simulation in which the LP is running.

These identifiers can be accessed using the correspond-
ing functions described above.

An example use of the function that creates a sim-
ulation is included below:

void A_Conservative_Event(arguments)

{

int unique_LP_identifier;

int clone_identifier;

/* code that effects both original LP and

instantiated LP below */

/* access the unique logical process identifier

of callee */

unique_LP_identifier = CloneSim_UID();

/* instantiates a new clone, a new logical process

is created */

clone_identifier

= CloneSim_Create(unique_LP_identifier,

current_sim_time);

/* code here and below only effects caller LP

of original simulation. The new LP created via

the Clone_SimCreate is un-effected */

}

In addition to creating clones, Clone-Sim pro-
vides a mechanism to eliminate simulations that are
not needed. This is done by installing a “trig-
ger”. To install a trigger, the application should call
CloneSim Delete(). The function can be called inter-
actively or non-interactively. The prototype to delete
a simulation is:

int CloneSim Delete(int clone double start
double end CSFunc p trigger)

The trigger is a condition defined by the argument
trigger that is sampled within the simulation period
specified by the arguments: start, and end. The in-
stallation of the trigger only effects the logical process
that installs it and only the simulation whose version
is given by the first argument: clone. So if all ver-
sions in the simulation need to be monitored the trigger
needs to be installed for each version. If trigger is NULL
the version that calls CloneSim Delete() is pruned
un-conditionally (at the appropriate time given by the
argument specifying the time period). Currently, the
pruning function only provides un-conditional pruning,
conditional pruning is only available in an un-released
version of Clone-Sim.

An example use of the function that deletes a sim-
ulation is included below:

void Some_Event(arguments)

{

/* simulator dependent code here */

if(some condition)

{

/* prune if the simulation time of the callee

is within the simulation period:

[0.00, END_TIME] */

CloneSim_Delete(cloneID, 0.00, END_TIME, NULL);

}

/* simulator dependent code here */

}

5.3 Wrap-up Phase
When the simulation completes CloneSim Close(

void) is called to clean up data structures and compute
statistics. It is called after the simulation code has
completed and before terminating the program. The
prototype of this function is defined below:

int CloneSim Close(void)

6 Scalability
Here, we investigate scalability in terms of problem

size. We evaluate the performance of our system as
the size of the problem increases. For a replicated sim-
ulation application with N execution paths, each LP
is duplicated N times. In many cases, messages are
duplicated N times as well. On average, we expect
a replicated simulation to consume N times the re-
sources (in terms of space and time) as a simulation
with a single execution path.

When evaluating the performance and scalability of
a cloned simulation it is important to keep in mind
that there are three key phases of an application’s “life
cycle” as follows:
• Before decision point: in this phase the simula-

tion has not been cloned, and there is a single ex-
ecution path. It is during this phase that cloning
offers a tremendous advantage over replicated sim-
ulations. All events processed in this phase run
once, whereas in the replicated case the events
must be processed redundantly in each copy of
the simulation.

• Spreading: our approach uses an incremental
method that only duplicates (clones) LPs as nec-
essary. At the decision point only a small number
of LPs must be replicated. In this phase a large
proportion of computations can be shared, and
the approach retains a significant advantage over
replicated simulations. However, as the replicated
LPs interact with other LPs it becomes necessary
to clone the affected LPs as well.

• Spreading complete: eventually all LPs will
have been cloned. From this point on, the fully
cloned simulation must process the same number
of events as a replicated simulation. The addi-
tional overhead of cloning in this case is a single
comparison per event. Cloned simulations in this

phase are only slightly more expensive than repli-
cated simulations.

The performance improvement of a cloned simula-
tion in comparison to replicated simulations depends
on the relative length of each of these phases. For
instance, if the decision point occurs late in the sim-
ulation, the cloned simulation would have a tremen-
dous performance advantage over replicated simula-
tions. On the other hand, the worst case for cloned
simulations is an early decision point combined with
rapid spreading. In this case the cloned simulation’s
performance will be slightly worse than a replicated
simulation (an extra comparison for every event).

In this research we consider how the “size” of the
simulation effects scalability. The size of a simula-
tion problem, or application, is reflected in the number
of LPs used and the number of messages generated.
Cloning does not introduce additional dependencies
between LPs and can only reduce the number of mes-
sages in the system relative to a replicated approach.
Further it does not impact how the messages are re-
ceived and processed. For these reasons, the cloning
algorithm will scale to the extent that the underlying
simulation engine scales as the size of the simulation is
increased.

7 Performance
To evaluate how the number of clones impacts per-

formance, a suite of experiments were run on an SGI
Origin 2000 with sixteen 195 MHz MIPS R10,000 pro-
cessors. The first level instruction and data caches are
each 32 KB. The unified secondary cache is 4 MB. The
main memory size is 4 GB.

The experiments use 4 processors unless otherwise
indicated. The experiments use a benchmark called
P-Hold. P-Hold provides synthetic workloads using a
fixed message population. Each LP is instantiated by
an event. Upon instantiation, the LP schedules a new
event with a specified time-stamp increment and des-
tination LP (for more details on P-Hold see (Fujimoto
1990)). Each data point in these results represents at
least 15 runs.

In previous work we have evaluated scalability with
respect to the number of clones and compared its per-
formance to replicated simulation (Hybinette and Fu-
jimoto). These results showed that as the number of
clones increases, run time increases linearly. It also
showed that in all cases, cloning is more efficient than
replication. The advantages of cloning over replication
scale with respect to the number of clones. Cloning
also performs similarly using a commercial air-traffic
control simulation called the Detailed Policy Assess-
ment Tool, or DPAT. For more detail on DPAT please

see (Wieland 1998). In the previous work we also
showed that the algorithm did not have any sequen-
tial bottlenecks (i.e. speedup is linear with regard to
the number of PEs). In this paper we extend the in-
vestigation of scalability further by varying additional
parameters with the number of clones.
7.1 Number of LPs

To examine how the performance of cloning scales
with respect to the number of LPs we vary the number
of LPs and the number of clones and evaluate overall
run time. The number of LPs was varied from 4 to
512, while the number of clones was varied from 1 to
32.

The performance of cloned P-Hold simulations are
shown in Figure 3. These simulations were run using 4
processors on a SGI Origin. They use a fixed message
population of 128 and run for 300 simulated seconds.
Performance is measured as the running time of the
simulation excluding initialization and wrap-up time.
Clones are generated at 10 seconds of simulated time.
Other parameters are set so that the spreading is rapid
— in order to emphasize any overhead introduced by
the cloning mechanism. Each point in the plot repre-
sents the average of 5 runs. The plot shows that run
time increases linearly with the number of clones.

100
200

300
400

500
Number Logical Processes 5

10
15

20
25

30

Number Simulations

0
2
4
6
8

10
12
14
16
18
20

Run Time

Figure 3: Cloning scales with the number of LPs. Per-
formance is measured as the run time of the simulation,
excluding initialization and wrap-up. Smaller numbers in-
dicate better performance.

This suggests that the cloning scales with the num-
ber of clones and does not incur any significant over-
head as the number of LPs in the simulation increases.
Note that the simulation parameters ensure the worst
case for cloned simulations; we would expect even bet-
ter performance if cloning occurs later in simulated
time or spreading is slowed.

7.2 Message Population
The plot in Figure 4 shows how message population

impacts performance as the number of clones increase
(increasing the message population increases the work

400
800

1200
1600

2000
Message Population 5

10
15

20
25

30

Number Simulations

0
20
40
60
80

100
120
140

Run Time

Figure 4: Cloning scales with the message population. Per-
formance is measured as the run time of the simulation,
excluding initialization and wrap-up. Smaller numbers in-
dicate better performance.

required of each LP in the simulation). In this experi-
ment, the message population varies from 64 to 2048,
while the number of clones varies from 1 to 32. These
simulations were run using 12 processors on an SGI
Origin and 128 logical processes.

The plot shows that run time increases linearly with
the number of clones, and for each cloned simulation
the running time doubles as the workload is doubled
(the slope is linear). Also note that the slope is steeper
as the message population increases (i.e. there is a
larger difference between the run time of 1 clone and 32
clones with a message population of 2048 than the dif-
ference between the run time of 1 clone and 32 clones at
a message population of 64). As in the previous exper-
iment, these plots show a linear relationship between
performance and the number of clones.

8 Related Work
Cloning was suggested by von Neumann (von Neu-

mann 1956) more than 40 years ago to provide fault-
tolerance. Cloning is also suggested as a solution for
concurrency control in real-time databases (Bestavros
1994) and to improve accuracy of simulation results
(Glasserman et al. 1996; Vakili 1992). In the latter,
the approach is to run multiple independent replica-
tions then average their results at the end of the runs.

Related work in interactive parallel discrete event
simulation is described in (Steinman 1991) and in
(Franks et al. 1997). In (Steinman 1991) a message

type called an external event enables interaction with
the simulator. These events can steer, sample and
query the simulation in progress. The approach of
(Franks et al. 1997) allows for the testing of what-if
scenarios provided they are interjected before a dead-
line. Alternatives are examined one after the other
and the simulation must undo the effect of the previ-
ous alternative before considering another. In contrast
to these methods, our algorithm dynamically creates
and evaluates multiple alternatives concurrently using
a cloning mechanism. New versions of a simulation in
progress are cloned to evaluate alternatives. The alter-
native simulation proceeds in parallel with the original.
Thus an increasing number of alternatives can be eval-
uated before resolution.

The incremental update schemes of process migra-
tion algorithms such as (Zayas 1987) are similar in
philosophy to our virtual logical process scheme (cov-
ered in a later section). The common goal is to reduce
the cost of copying the virtual address space between
clones. The process migration algorithms differ in that
only one active clone is supported while we allow for
multiple clones. Our main motivation is to develop a
parallel model that supports an efficient, simple, and
effective way to explore and compare alternate scenar-
ios.

9 Summary
Simulation cloning enables the exploration of mul-

tiple possible futures in interactive parallel simulation
environments. The mechanism may be applied to sim-
ulations using either conservative or optimistic syn-
chronization protocols.

In this paper we discuss the programmer applica-
tion interface of cloning parallel simulations. We also
demonstrate that cloning scales with the “size” of the
simulation. The size of a simulation problem, or appli-
cation, is reflected in the number of LPs used and the
number of messages generated.

Acknowledgments
This work was supported by U.S. Army Contract

DASG60-95-C-0103 funded by the Ballistic Missile De-
fense Organization and the MITRE Corporation.

References
Bestavros, A. 1994. Multi-version speculative

concurrency control with delayed commit. In
Proceedings of the 1994 International Conference
on Computers and their Applications (1994).

Das, S., Fujimoto, R., Panesar, K., Allison,
D., and Hybinette, M. 1994. GTW: A
Time Warp system for shared memory multipro-
cessors. In Proceedings of the 1994 Winter Simu-

lation Conference Proceedings (December 1994),
1332–1339.

Franks, S., Gomes, F., Unger, B., and
Cleary, J. 1997. State saving for interac-
tive optimistic simulation. In Proceedings of the
11th Workshop on Parallel and Distributed Sim-
ulation (PADS-97) (1997), 72–79.

Fujimoto, R. M. 1990. Performance of Time
Warp under synthetic workloads. In Proceedings
of the SCS Multiconference on Distributed Sim-
ulation, Volume 22 (January 1990), 23–28. SCS
Simulation Series.

Fujimoto, R. M. 2000. Parallel and Dis-
tributed Simulation Systems. John Wiley & Sons,
New York, NY.

Glasserman, P., Heidelberger, P., and Sha-
habuddin, P. 1996. Splitting for rare event
simulation: Analysis of simple cases (December
1996). 302–308.

Hybinette, M. and Fujimoto, R. M. Cloning
parallel simulations. submitted.

Steinman, J. 1991. SPEEDES: Synchronous
parallel environment for emulation and discrete
event simulation. In Advances in Parallel and
Distributed Simulation, Volume 23 (January
1991), 95–103. SCS Simulation Series.

Vakili, P. 1992. Massively parallel and dis-
tributed simulation of a class of discrete event
systems: A different perspective. ACM Transac-
tions on Modeling and Computer Simulation 2, 3,
214–238.

von Neumann, J. 1956. Probabilistic logics and
the synthesis of reliable organism from unreliable
components. Princeton University Press.

Wieland, F. 1998. Parallel simulation for avi-
ation applications. In Proceedings of the IEEE
Winter Simulation Conference (December 1998),
1191–1198.

Zayas, E. 1987. Attacking the process mi-
gration bottleneck. In Proceedings of the 11th

ACM Symposium on Operating System Princi-
ples (1987), 13–24.

