
SPADES
System for Parallel Agent Discrete Event

Simulation
User’s Guide and Reference Manual

For Version 0.91

http://spades-sim.sourceforge.net

Patrick Riley
pfr+@cs.cmu.edu

December 7, 2003

http://spades-sim.sourceforge.net
pfr+@cs.cmu.edu

Copyright c© 2002, 2003 Patrick Riley. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections, with no Front-
Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

Contents

List of Figures vii

List of Tables ix

Acknowledgments xi

Typographical Conventions xiii

1 Introduction 1
1.1 What is SPADES? .1
1.2 What SPADES Provides .2
1.3 How to Use This Manual .3

2 System Structure 5
2.1 Component Organization .5
2.2 Event-Based Simulation .6
2.3 Sense-Think-Act .7

3 Getting Started 9
3.1 Configuration and Installation .9

3.1.1 Configuration Parameters .9
3.1.2 Files Installed .11

3.2 Sample World Model and Agents .11
3.2.1 Description .12
3.2.2 Running .12
3.2.3 Log files .13

4 Creating a SPADES Simulation 15
4.1 Basic Simulation Process .15

4.1.1 Running a Simulation .15
4.1.2 World Model’s Perspective .16

iii

iv CONTENTS

4.2 Events .17
4.2.1 Definition .17
4.2.2 Interface Description .18

4.3 World Model .21
4.4 Simulation Engine Interface .23
4.5 Agent Types .25

4.5.1 External Agents .25
4.5.2 Integrated Agents .25
4.5.3 Placeholder Agents .26
4.5.4 Working with the Agent Database .26

4.6 Agent Interface .26
4.6.1 External Agent Perspective .27
4.6.2 Integrated Agent Perspective .28
4.6.3 World Model Perspective .28

4.7 Agent Monitoring .29
4.7.1 Agent Timers .29
4.7.2 Agent Process Tracking .31
4.7.3 Checking on Agents .31

4.8 Monitor .32
4.9 DataArray .33
4.10 Achieving Parallelism .34
4.11 Randomness and Reproducibility .35

5 Miscellaneous Features 37
5.1 Action and Error Logging .37

5.1.1 Basic Usage .37
5.1.2 Parameters .39
5.1.3 Advanced Usage .39

5.2 Parameter Reading .39
5.3 Agent Migration .41
5.4 Integrated Communication Server .41
5.5 Agent Shutdown Management .41
5.6 Limited Rate Run Mode .42

6 Technical Details 45
6.1 Parameters .45

6.1.1 Shared Parameters .46
6.1.2 Communication Server .51
6.1.3 Simulation Engine .51
6.1.4 Sample World Model .54

6.2 Agent Database .56

CONTENTS v

6.3 Length Prefixed I/O Format .58
6.4 External Agent Input/Output .58

6.4.1 Agent Input Format .58
6.4.2 Agent Output Format .60

6.5 Integrated Agent Input/Output .61
6.6 Monitor Interface .63
6.7 Agent Thinking Time .64

6.7.1 Tracking for Jiffies Timer .64
6.7.2 Tracking for Perfctr Timer .65
6.7.3 Recorded File Format .65

6.8 Algorithms .66

A GNU Free Documentation License 73
A.1 Applicability and Definitions .73
A.2 Verbatim Copying .74
A.3 Copying in Quantity .75
A.4 Modifications .75
A.5 Combining Documents .77
A.6 Collections of Documents .78
A.7 Aggregation With Independent Works .78
A.8 Translation .78
A.9 Termination .78
A.10 Future Revisions of This License .79

Bibliography 81

Index 83

vi CONTENTS

List of Figures

2.1 Overview of the architecture of the SPADES system. The shaded components are
provided by the users of the system, not by SPADES itself. The dotted lines denote
machine boundaries. .5

2.2 Example timeline for the sense-think-act loop of an agent8

4.1 Event class hierarchy provided by SPADES. When two classes are connected, the
lower one is a subclass of the upper. .18

4.2 Time line showing the events and method calls relevant for the sense think act cycle
of the agents .29

6.1 Example timeline for the sense-think-act loop of an agent to illustrate overlapping
cycles .68

6.2 The events in the sense-think-act cycle of an agent. The “Act Sent” time is circled
because unlike the other marks that represent events in the queue, “Act Sent” is
just a message from the communication server to the engine and not an event in the
event queue. .68

6.3 An example illustrating possible parallelism that the simple parallel agent algo-
rithm fails to exploit. .70

vii

viii LIST OF FIGURES

List of Tables

6.1 Inner loop for basic serial discrete event simulator66
6.2 Code to determine the minimum time that an agent can affect the simulation. . . .69
6.3 Code for parallel agent discrete event simulator for strict timestamp order.69
6.4 Code for maintaining the per agent fixed agent event queues71
6.5 Code for efficient parallel agent discrete event simulator as used by SPADES . . .72

ix

x LIST OF TABLES

Acknowledgments

SPADES originally grew from a graduate class project in 15-712: Advanced Operating Systems
and Distributed Systems at Carnegie Mellon University. I am grateful to my partner Emil Talpes
who worked with me on the initial implementation. I would also like to thank the instructor Dr.
Greg Ganger and the TA Jay Wylie for their comments and advice. Lastly, I would like to thank
my adviser Dr. Manuela Veloso for permitting this hopefully small side project while I work on
my own Ph.D. thesis.

xi

xii ACKNOWLEDGMENTS

Typographical Conventions

The following typographical conventions are used throughout the text.

• All program parameters appear in slanted type, e.g.my program parameter

• All method and class names appear in monospaced type, e.g.myMethod , MyClass

• All exact code or things to be typed appear in monospaced type (e.g.type me), and vari-
ables are then italicized (e.g.My name is yourname).

• Specialized SPADES terms are in sans serif (e.g.my new term). Note that these terms are
formatted in regular font in the index.

xiii

xiv TYPOGRAPHICAL CONVENTIONS

Chapter 1

Introduction

1.1 What is SPADES?

The System for Parallel Agent Discrete Agent Simulation (SPADES) is a middleware system for
agent-based distributed simulation. It is targeted mainly at the artificial intelligence community
where the “thinking” of an agent is a significant amount of the computation involved in a simula-
tion. SPADES is designed to ease the creation of agent-based simulations which can be distributed
across machines while still being repeatable and efficient.

The agent is a central feature of SPADES. By “agent,” we simply mean a computational entity
that receives sensations from the simulated world, goes through some amount of computation, then
returns some actions to be executed. SPADES explicitly tracks the latencies inherent in sensing,
thinking, and acting and reflects those in the simulation.

SPADES provides an abstraction that allows the designers of world models and designers of
agents to ignore networking issues and reasoning about distributed event distribution. The world
model operates with a view of simulation events being realized one by one, and the agents simply
receive sensations and send actions.

Several of the important features of SPADES are:

• Agent based execution, including explicit support for modeling latencies in sensation, think-
ing, and acting. The modeling of the thinking latency (the time to return a set of actions after
receiving a sensation) is done by tracking the amount of computation done in response to a
sensation being sent.

• Agents can be distributed among multiple machines. SPADES does all the necessary reason-
ing so that world model and agent designers do not need to do anything different based on
how many computers are being used for the simulation.

• The result of the simulation is unaffected by network delays or load variations among the
machines. Naturally, these factors can affect the speed of the simulation.

1

2 CHAPTER 1. INTRODUCTION

• The architecture for the agents is unconstrained. SPADES does not require that the agents
are written in a particular programming language. The only requirement is that the agent
processes can read and write to pipes.

• The agents’ actions do not have to be synchronized in the domain. Unlike many simula-
tion environments for the artificial intelligence community, the agents do not take a single
joint action at a particular time. Rather, their actions can take effect at varying times in the
simulation.

1.2 What SPADES Provides

SPADES is a simulation middleware that is not tied to the simulation of any one particular domain.
There are two pieces that need to be added to SPADES to make a complete simulation: agents
(computational entities) which sense, think, and act; and the world model which simulates the
“ground truth” of the world and all agent interactions.

SPADES provides the following to aid the creation of simulations:

• An abstraction for an event based simulation is provided to the world model. A simulation
consists of events being realized in time order (this is known as discrete event simulation).
The world model can create simulation events and do arbitrary processing as the events are
realized (i.e. have their effect on the world).

• An abstraction of sensations and actions is provided to the agent. The agent simply needs to
read data from a pipe (in a format determined by the world model) and send actions back on
another pipe. The agent does not need to do networking or explicit time management, except
perhaps to limit the amount of computation done.

• SPADES tracks the amount of computation used by agents in responding to a sensation. This
is done to simulate the fact that an agent which uses more computation will respond more
slowly.

• All networking is managed. Neither the world model nor the agents need to create sockets,
know network addresses, or do any other network management.

• All reasoning to manage distribution among machines is done. It is a tricky problem to
distribute a simulation across machines in a way that maintains correctness (does not vio-
late causality among events) and efficiently uses the resources available. The results of a
SPADES based simulation are not affected by variations in number of machines used, net-
work load, or machine load. The world model and agent designers can largely ignore all
issues of distribution.

• Various logging facilities are provided. Logging for errors and traces of execution, as well
as a record of the states of the simulations can all be managed by SPADES.

1.3. HOW TO USE THIS MANUAL 3

1.3 How to Use This Manual

This manual is the primary documentation of SPADES and is targeted at a variety of users. Here is
the recommended way to read this manual for different uses:

User of a complete simulation If you have a complete SPADES based simulation that you want to
use, you may still need some basic information about SPADES. Chapter 2 gives an overview
and Chapter 3 talks about how to get started running the system. You will need to understand
the agent database described in Sections 4.5 and 6.2. Lastly, you might be interested in the
parameters described in Section 6.1.

Agent designer If you would like to create an agent to function in a SPADES simulation which
already exists, you should also start with Chapter 2 to get an overview of the system, then
read Chapter 3 for how to get started. You will probably then be most interested in the
Sections 4.5, 4.6, 4.7 5.5, 6.2, 6.3, 6.4, and 6.7

World model designer If you want to create a new simulation using SPADES, you will need to
create a new world model. You should first read Chapters 2 and 3 to get an overview of the
system, and then Chapter 4 is your primary source of information. You should refer to the
later chapters as needed, so a quick scan to see what is there is probably in order.

Simulation researcher A more concise summary of SPADES is provided in technical papers
along with experimental results. Riley [2003] and Riley and Riley [2003] are probably better
places to start. In this document, you might want to read Chapter 2, then Section 6.8.

Programmer interested in working on SPADES You should read the whole thing, probably in
order. Then, you’ll need to start reading lots of source code and the comments in the code.
Then, you may still be confused and you’ll have to discuss it on the developer mailing list:

spades-sim-devel@lists.sourceforge.net

4 CHAPTER 1. INTRODUCTION

Chapter 2

System Structure

This chapter describes the basic structure of all SPADES based simulations. This chapter is a good
place to start for anyone who is working with SPADES.

2.1 Component Organization

Figure 2.1 gives an overview of the structure of the entire SPADES system, along with the com-
ponents users of the system must supply (shaded in the diagram). The simulation engine and the
communication server are supplied as part of SPADES. The world model and the agents are created
by a user to simulate a particular environment.

The simulation engine is the heart of the discrete event simulator. All pending events are queued
here, and the engine coordinates all network communication. A communication server must be run
on each machine on which agents run. The communication server manages all communication
with the agents (through a Unix pipe interface) as well as tracking the CPU usage of the agents
to calculate the thinking latency (see Section 6.7.1). The communication server and simulation

Communication
Server Simulation

Engine
World
Model

Agent

Figure 2.1: Overview of the architecture of the SPADES system. The shaded components are
provided by the users of the system, not by SPADES itself. The dotted lines denote machine
boundaries.

5

6 CHAPTER 2. SYSTEM STRUCTURE

engine communicate over a TCP/IP connection.1 Note that if you want a communication server
and the simulation engine to run on the same machine, you can run an integrated communucation
server which runs in the same process as the simulation engine.

The world model is created by a user of SPADES to create a simulation model of a particular
environment. The simulation engine is a library to which the world model must link, so the sim-
ulation engine and world model exist in the same process. The world model must provide such
functionality as advancing the state of the world to a particular time and realizing an event (chang-
ing the state of the world in response to an event occurring). SPADES provides a collection of C++
classes from which objects in the world model can inherit in order to interact with the simulation
engine.

Lastly, the agents are the computational entities whose interactions are being simulated. Sec-
tion 2.3 describes their interaction with the system in more detail, but the agents communicate with
the communication server via pipes, therefore the agents are free to use any programming language
and any architecture as long as they can read and write to pipes.

2.2 Event-Based Simulation

SPADES is a hybrid of a continuous and discrete event simulator. A continuous simulation is one
in which a small time quanta is chosen and the simulation advances by processing for each time
quanta in turn. A discrete event simulation is one in which the state of the simulation is changed
by a series of events with each taking place at a discrete time.

In the interaction with the world model, SPADES is a continuous simulator. The simulation
engine calls to the world model to advance some number of time quanta. This is especially useful
for simulating an underlying continuous process such as physical interactions.

In the interaction with the agents (and all reasoning about distribution), SPADES is a discrete
event simulator. The assumption is that agents are doing nothing until they receive sensations from
the world (though note that agents can request a sensation at a particular time with arequest time
notify message). Events (e.g. sensations and actions) form the basis for an agent to be affected by
and to affect the simulation.

The world model has several primary jobs in the simulation. The first is to advance the state of
the simulation up to the time of the next event as requested by the simulation engine. The second
is to “realize” an event by putting the effects of that event into the state of the world. Lastly, the
world model needs to generate sensations to be sent to the agents and create events based on the
responses of the agents.

SPADES guarantees that the order of event realization will not violate causality, i.e. no events
which are causally related will be realized out of order. This means that events may not be realized

1Since the simulation needs the lowest latency traffic possible in order to achieve efficient simulation, Nagle’s algo-
rithm is turned off on the TCP sockets (using theTCP NODELAYsocket option in the Linux socket interface). Man-
ual bundling of messages is done to avoid sending an excessive number of small packets. See the parametersinter-
nal tcp packet size andagent packet size.

2.3. SENSE-THINK-ACT 7

in strict time order. Section 4.2 describes the exact guarantees that SPADES provides as well as
further details about events.

2.3 Sense-Think-Act

SPADES views an agent as a computational entity which receives sensation messages, does some
thinking (i.e. processing), and returns some actions. The agent is assumed to do no processing
outside of the receipt of a sensation (though note that agents can request their own sensations).
Therefore, from the agent’s perspective, the interaction with the simulation is fairly simple:

1. Wait for a sensation to be received

2. Decide on a set of actions and send them to the communication server

3. Send adone thinking message to indicate that all actions were sent

Since SPADES restricts an agent to only send actions in response to a sensation, the system
gives an agent a special action calledrequest time notify. A time notify is essentially an empty
sensation to which the agent can respond with actions as with any other sensation. For example,
this allows an agent to send an action at a particular time, even if no sensation would normally be
received then.

Another important concept for the sense–think–act cycle is the latencies in each step of that
cycle. Figure 2.2 represents a timeline for executions within a cycle. Consider the topmost timeline.
Time point A represents the point at which a sensation is generated, such as the frame of video from
a robot’s camera or a snapshot of stock market prices. The time between points A and B represents
the time to transfer and process a sensation to be used by the thinking component starting at point B.
For example, this could represent the time for a robot to capture a frame from its camera and extract
information from it. Between points B and C, some computation is done to determine which actions
must be taken in response to the sensation. Between points C and D, the action messages are sent
to the effectors and those actions begin to take effect at point D. For examples, this latency could
represent the time to transfer information to effectors. Note that we are not claiming that there is
a fundamental difference between the computation that happens in the sense and act components
of the cycle and the think component. However, a simulation system must necessarily create an
abstraction over whatever world is being modeled. Since the simulation provides information and
receives actions in a processed form, the use of an explicit latency allows the simulation to account
for the time that that would be needed in the real world to convert to and from that processed form.
Note that SPADES doesnot require that all sensations and actions have the same latency.

In many agents, the sense, think, and act components can be overlapped in time as depicted in
Figure 2.2. SPADES explicitly allows all overlaps with one major exception. In our environment,
the think cycles for a single agent may never overlap. This is a reasonable model of real–world
agents, given that these agents are typically implemented using a single processing unit per agent.

8 CHAPTER 2. SYSTEM STRUCTURE

Time ThinkSense Act
ThinkSense Act

Sense Think

A B C D

Figure 2.2: Example timeline for the sense-think-act loop of an agent

It would not make sense to allow our model of agent processing to think about several sensations
at the same time, when the actual implementation of such an agent cannot do so.

One of the communication server’s primary jobs is to track the thinking time of the agent
to model the thinking latency. When sending a sensation to an agent, the communication server
begins tracking the CPU time used by the agent, which is provided by the Linux kernel. When
the done thinking message is received, the communication server calculates the total amount of
CPU time used to produce these actions and the CPU time is translated into simulation time (see
Section 6.7.1). All actions are given the same time stamp of the end of the think phase.

Also, if the jiffies timer is used, the current time slice reported by the Linux kernel is in 10ms
increments known as jiffies. With the randomness in interrupts and other system activity, CPU
usage numbers are unfortunately not perfectly repeatable, in contrast to a more language specific
time tracking system like Anderson [1995, 1997]. However, our experiments indicate this effect is
small [Riley and Riley, 2003].

The use of theperfctr timer can alleviate this problem by tracking the number of instructions
processed. However, use of the perfctr timer currently requires a patched kernel.

Chapter 3

Getting Started

This chapter is a primer for starting with SPADES. It discusses the configuration and installation
steps as well as a brief overview of the sample world model and agents provided.

3.1 Configuration and Installation

SPADES uses the GNU autotools.1 Therefore, installation is (maybe) as easy as doing:

./configure
make
make install

This section covers some other features of configuration and installation.

3.1.1 Configuration Parameters

SPADES attempts to auto-detect a number of features. If these fail, you may need to provide
some help toconfigure . You can also adjust what is built and installation directories and
such. This section will cover the SPADES specific options in configure. For a discussion of
the general autotools options, please seehttp://www.gnu.org/software/autoconf/
manual/autoconf-2.57/autoconf.html . Note that all options that begin withenable
also have adisable variant, and thewith options also have awithout variant.

enable-debug (default is off) If this is on, then action logging (see Section 5.1) is enabled (note
that error logging is always enabled). It is recommended that you use this anytime you
are developing a world model. However, once the world model is done, disabling this will
slightly reduce the SPADES code size and increase execution speed.

1http://www.gnu.org/software/autoconf/ , http://www.gnu.org/software/automake/ ,
http://www.gnu.org/software/libtool/

9

http://www.gnu.org/software/autoconf/manual/autoconf-2.57/autoconf.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/autoconf.html
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/

10 CHAPTER 3. GETTING STARTED

enable-sample-code(default is on) If this is on, then the sample world model and agents are built.
This is mostly useful to test the system. Definitely recommended for beginning users, but
this is not necessary for SPADES to work with your own world model and agents.

enable-sample-code-monitor(default is on) Determines whether the monitor for the sample world
model is built. The monitor is written in Java (everything else is C++), so there are some
installations for which this can not be built. Disabling this still allows you to run SPADES
and the sample world model and agents. However, it will be more difficult to see what is
going on in the sample world model.

with-perfctr=DIR The perfctr timer requires the perfctr system which is a patch to the Linux
kernel and a user library to access the information. If the user library is not in your standard
include path, you can use this option to indicate where it is. If the headers for the patched
kernel are in an unusual place, you will need to use theCPPFLAGSvariable to help SPADES
find them.

If this variable is not specified, thenconfigure will try to detect whether perfctr is present
and enable/disable the timer as a result. If you do give this option,configure will exit if
perfctr is not found.

SPADES can still function correctly without the perfctr timer; there are other timers that can
be used (see Section 4.7.1). However, it can affect reproducibility (see Section 4.11).

with-fork-dynlib-loc=PATHTOLIB In order to do the interception of dynamic library calls to
fork and related functions (see Section 4.7.2), SPADES needs to locate the dynamic library
that defines thefork function. It attempts to do this by compiling a small program and
runningldd andnm. If you do not have these programs (or their output is in a format that
configure does not understand), you may have to tell SPADES exactly which dynamic
library definesfork . Note that SPADES assumes thatclone is defined in the same library.

with-jiffies (default is yes) Determines whether to build thejiffies timer. This timer uses the
/proc file system. If for some reason this is not available or SPADES can not use it, you
can disable it (if this happens, please post of bug report/feature request on the SPADES web
site). SPADES can function without this timer, but if you do not build either theperfctr timer
or thejiffies timer, you will not be able to track the actual computation used.

with-java-prefix=PFX This is only relevant if you are building the sample world monitor. Gives
a prefix where Java runtime is installed.

with-javac-flags=FLAGS This is only relevant if you are building the sample world monitor.
Gives additional flags to give to the java compiler.

with-java-flags=FLAGS This is only relevant if you are building the sample world monitor. Gives
additional flags to give to the java virtual machine.

3.2. SAMPLE WORLD MODEL AND AGENTS 11

3.1.2 Files Installed

This section gives an overview of what SPADES installs, but it doesnotgive a complete file listing.
All paths are relative to the prefix given during installation (/usr/local by default).

bin/commserver This is the communication server executable. Since the communication
server is not specialized to a particular simulation, the same executable can be used with
any world model.

bin/show tttimes.pl This perl script processes a recorded agent think time file into a more
human readable format (see Section 4.7.1).

bin/run exp.pl This perl script provides a way to run SPADES many times for testing. It is
perhaps of limited use without modifying the script. No further documentation for this script
is provided in this manual.

include/spades/ All header files which are needed to compile your world model or agents
are installed here.

lib/ The library to which the world model must link and the optional agent library for agent
designers are put here. For information about the agent interface library, see the agent library
manual on the SourceForge site.

lib/spades/ Libraries which are used internally by spades are installed here. You may need
to know this to set the correct value ofagent intercept library, though in general, this should
be done for you.

share/spades/agent.conf A configuration file which gives some reasonable default val-
ues for the parameters controlling how SPADES manages agents. This is useful to be in-
cluded by the communication server and the simulation engine (if it is running an integrated
communication server). You will likely need to copy and tweak for your simulation.

share/spades/commserver.conf A configuration file giving reasonable default values
for the communication server, though you may need to copy and tweak for your simulation.
Note that this file includesagent.conf .

share/spades/agentdb.xsd The XML schema which describes the format for theagent
database.

3.2 Sample World Model and Agents

If this is your first time installing SPADES or if you want to check that everything is working the
way it is supposed to, it is a good idea to try running the sample world model and agents.

12 CHAPTER 3. GETTING STARTED

3.2.1 Description

The sample world model is known as “Ball World.” The simulated world in the sample world
model is a two dimensional rectangle where opposite sides are connected (i.e. “wrap-around”).
Each agent is a “ball” in this world. Each sensation each agent receives contains the positions of all
agents in the simulation, and the only action of each agent is to request a particular velocity vector.
The world model provides the correct accelerations to achieve this velocity. The dynamics and
movement properties are reasonable if not exactly correct for small omni-directional robots moving
on carpet, except that collisions are not modeled. Note that the parameters used approximate those
of the CM Dragons from Carnegie Mellon which competed at RoboCup2001 [Birk et al., 2002].
The world model advances in 1ms increments.

There are two kinds of agents. The “wanderer” moves randomly around the world. The
“chaser” chases one of the wanderers by setting its requested velocity directly towards the current
observed location of that agent. Note that the agents do not try to predict ahead the latency between
the time the sensation was generated at the action will take effect. If you watch the performance of
the agents, you will notice this effect.

The agents can also be told to take differing amounts of computation time.

3.2.2 Running

The sample world model is not installed, so you will need to run it from the compilation directory.
First, change to thesample world model directory. Then, to run the sample world model, do
this:

./ballworld --file ballworld.conf

After printing the copyright notice and other startup information, you should see lines like this:

Engine Status: PAUSED simtime=0 events=0 mean simtime/sec=0

You should not receive any errors or warnings. If you do, you probably need to figure out what
went wrong.

At this point, the world model and simulation engine are waiting for communication servers to
connect. To connect a communication server from the local machine, just do this (all on one line):

commserver --file /usr/local/share/spades/commserver.conf
--agent_db_fn ../sample_agent/agentdb.xml

Note that this requires that you are still in the directory with the sample world model and that the
installation bin directory is in your path.

If you want to connect several computers to the simulation, then you need to do the following.
Let’s say there areN computers that you would like to connect. Run the sample world model like
this:

3.2. SAMPLE WORLD MODEL AND AGENTS 13

./ballworld --file ballworld.conf --num_comm_servers_wanted N

If the machine running the simulation engine is namedHOST, then each communication server
should be started like this (all on one line):

commserver --file /usr/local/share/spades/commserver.conf
--agent_db_fn ../sample_agent/agentdb.xml --engine_host HOST

If you want to run just on one machine, you can run with the integrated communication server
like this:

./ballworld --file ballworld.conf --run_integrated_commserver

In any of these cases, you can connect a monitor to the simulation to watch it run. From the
build directory:

cd sample_world_monitor/monitor
./connect

This will connect a monitor to a sample world model running on the localhost. If you need to con-
nect to a remote machine, look at the way theconnect script works and call java appropriately.

If you have a fast machine, the simulation may be over before you can connect a monitor. If
this happens, try increasingsimulation length or connecting the monitor before the communication
server.

There are a number of parameters that affect the way the sample world model runs. These are
presented in detail in Section 6.1.4.

3.2.3 Log files

By default, SPADES produces a number of log files. These all appear, by default, in theLogfiles
directory in the current working directory.

agent*-stdout.log, agent*-stderr.log The standard out and standard error of the
agents. See Section 4.6.1

agent*-ttimes.log This file is a record of the agent think times. See Section 4.7.1.

actions.log This is the action log of the simulation engine. See Section 5.1.

events text.log This is a human readable list of all the events realized during the simu-
lation. Currently, SPADES can not read this file in, so it is output only. The parameter
use text event log controls whether this file is created andtext event log fn controls the lo-
cation and file name.

14 CHAPTER 3. GETTING STARTED

monitor.log While this file is normally created by SPADES, its format is completely deter-
mined by the world model (see Section 4.8).

For the sample world model, you can graphically examine the contents of thie file with the
sample world model monitor. From the build directory:

cd sample_world_model/monitor
./playlog

This plays the file../Logfiles/monitor.log . If you need to play some other file,
look at theplaylog script and modify appropriately.

Chapter 4

Creating a SPADES Simulation

This chapter provides details on what you must do to create a new simulation using SPADES.
Several features which are not strictly required are discussed later in Chapter 5 and many technical
details are given in Chapter 6, which is more of a reference than this chapter.

Further, there is a sample world model and sample agent distributed with SPADES in the
sample world model and sample agent directories. These should provide valuable ex-
amples from which to build.

4.1 Basic Simulation Process

This section will describe the overall process of simulation both from the perspective of the end
user of the simulation and the perspective of the world model. Further details about most of this
process are contained in the following sections of this chapter.

4.1.1 Running a Simulation

SPADES is designed to run a simulation across multiple machines. One machine will be the center
of coordination and communication and will run the simulation engine and world model as a single
process. The designer of the world model must link to the simulation engine library to produce one
executable. This executable must be started first.

Then, communication servers must be started on every machine which will participate in the
simulation. The communication server is given the host machine on which the simulation engine is
running through theengine host parameter. Note that for a communication server running on the
same machine as the simulation, the integrated communication server can be used (see Section 5.4).

The communication server is responsible for starting up and monitoring agents. Each commu-
nication server must be given anagent database in order to know how to start agent processes.
When the simulation is finished (as controlled by the world model), each communication server
monitors the shutdown of the agents, then exits.

15

16 CHAPTER 4. CREATING A SPADES SIMULATION

4.1.2 World Model’s Perspective

First, a couple concepts must be described. SPADES is a combination of an event based and
continuous simulation. The simulation proceeds by first advancing the world model to the time of
the next event, then realizing an event (i.e. make the effects of the event in the world model).

Time is a discrete dimension for SPADES as represented by theSimTime type. The meaning
of the simulation time step is left up to the world model.

The user of the spades simulation is responsible for creating themain function. Only two
things are required by SPADES from themain function. First, an object of typeWorldModel
must be allocated. This object will be the primary interface between SPADES and the user of
SPADES. Second, the functionSimulationEngineMain must be called. Note that argument
processing should not be done before callingSimulationEngineMain .

Once inSimulationEngineMain , the methodparseParameters of theWorldModel
object is called. Note that this function must return an object of typeEngineParam . The
recommended way to do argument processing is by subclassingEngineParam and calling the
getOptions method.

Once the parameters are parsed, the logging facilities are initialized (see Section 5.1). Note
that this means anything sent to the action logging facilities before this time will not be recorded.
Messages sent to the error log will still appear on standard error, but not in the action log.

The simulation then enters the main simulation loop. The engine can be in various simulation
modes, which are:

SMRunNormal This is the mode in which the simulation spends most of its time. From the
world model’s perspective, the methodsimToTime will be called to advance the time of
the world model to a given time. Then, an event will be realized. The simulation does some
work to accomplish this, but the world model has an opportunity to realize the event through
the realizeEventWorldModel method ofEvent . Note that there is no call to any
WorldModel methods for event realization. It is expected that events which are enqueued
will be subclasses of the standard types given by SPADES.

Note that the events may not be realized in strict time order, though causality is guaranteed
not to be violated. Section 4.2 describes the details.

SMRunLimitedRate This is like the normal run mode, except that the speed of the simulation
is limited. Section 5.6 describes this in detail.

SMPausedInitial There are three paused modes. In all of them, simulation time is not
advanced, nor are any events realized. Messages are received from communication servers
and then thepauseModeCallback method of theWorldModel is called.

If the simulation engine remains in paused mode long enough formax pause mode seconds
to pass, then the simulation is shut down.

This paused mode is the initial mode that the simulation starts in. You should never return to
this mode once the simulation is started.

4.2. EVENTS 17

SMPausedMonitor Like SMPausedInitial except that this code is used when a monitor
requests that the simulation is paused.

SMPausedWorldModel Like SMPausedInitial except that this code is used when the
world model requests that the simulation is paused.

SMShutdown Indicates that the simulation is in the process of shutting down.

Note that the world model can control the change of simulation mode with calls to thechangeSimulationMode
method of theSimEngine class.

4.2 Events

This section further defines events as the basic building blocks for the simulation and then describes
the event classes provided by SPADES upon which a world designer should build.

4.2.1 Definition

Events are one of the primary objects of the simulation. As described in Section 4.1, the simulation
proceeds by advancing the world model to a particular time, then realizing an event (i.e. have an
event take its effect on the world).

SPADES provides a class structure from which you should subclass in order to create events
for your simulation. This section will describe these classes and how their methods will be used by
the simulation.

There is one special subclass of events, namely fixed agent events. Knowledge of fixed agent
events is used to achieve more parallelism among agents. Fixed agent events have the following
properties:

1. They do not depend on the current state of the world.

2. They affect only a single agent, possibly by sending a message to the agent.

3. Sense events and time notify events are both fixed agent events.

4. Fixed agent events are the only events which can cause the agent to start a thinking cycle,
but they do notnecessarilystart a thinking cycle.

With the separation of fixed agent events from other events, the correctness guarantees that
SPADES provides can now be stated:

1. All events which are not fixed agent events are realized in time order.

2. All events which send sensations to the agents are fixed agent events.

3. The set of fixed agent events for a particular agent are realized in time order.

Section 6.8 provides the technical details about the algorithms to achieve this.

18 CHAPTER 4. CREATING A SPADES SIMULATION

4.2.2 Interface Description

Figure 4.1 shows the events provided by SPADES, and their inheritance relationships. All events
created by the user of SPADES should subclass one of these basic event types.

E
vent

A
ctE

vent

C
reateS

enseE
vent

E
ndS

im
ulationE

vent

FixedA
gentE

vent

S
enseE

vent
Tim

eN
otify

M
onitorS

endE
vent

Figure 4.1: Event class hierarchy provided by SPADES. When two classes are connected, the lower
one is a subclass of the upper.

The methods of these events and how those methods are used will now be described. Some
details will be omitted in this discussion, so please see the source code for full information.

Event This is the abstract base type from which all events must inherit.Event maintains the
time of event, some ordering properties, and provides virtual functions for subclasses to
define.

The important methods are:

4.2. EVENTS 19

• The constructor takes two optional arguments, the time of the event and the event order
constant. The time defaults toSIMTIME INVALID , but an event with this time should
never be enqueued in the simulation engine. The order constant is described under the
methodgetOrder .

• getTime returns the time of the event.

• setTime sets the time of this event. Note that changing the time of an event in the
queue of pending events can cause errors, and should never be done.

• getOrder gets the order constant of the event. All events have an ordering constant
to order events with the same time. In general, all events of different types should have
different ordering constants. The fileshared/sharedtypes.hpp defines some
constants for the various types.

• getSecondaryOrder This is a pure virtual function. If two events have the same
time, and the same primary ordering constants (seegetOrder), the return fromgetSecondaryOrder
is used to order the events. If the same value is returned here, then SPADES can make
no guarantees about the ordering of these events.

• print This is a pure virtual function. The text printing of events is used in various log-
ging and error reporting facilities. The base class defines the<< operator on ostreams
to call this.

• realizeEvent This is the function which is called to realize the event. While it is a
virtual function, you should not override this method.1 See the methodrealizeEventWorldModel .
Returns whether the event can be deleted or was stored elsewhere.

• realizeEventSimEngine This protected pure virtual function does the work for
this event to be realized by the simulation engine. It is called byrealizeEvent
beforerealizeEventWorldModel is called. You should not override this method
unless you are changing SPADES as opposed to creating a simulation using SPADES.

• realizeEventWorldModel This protected pure virtual function should perform
the work necessary for the world model to realize the event. This is the where all the
work for an event to have its effect on the world model should be done. This function
returns whether anything was done with this event. This return is mainly used for
error checking to make sure that events are not being put in the queue which never do
anything.

ActEvent An event of this type is queued when anact message is received from an agent.
TheparseAct method of theWorldModel object is responsible for creating these events
(see Section 4.3). While this is not an abstract class, you will probably never want to use
ActEvent , but rather subclass is so that you can override therealizeEventWorldModel
method.

1The only reason that the method is virtual is so thatFixedAgentEvent can override it. No other class should do
so.

20 CHAPTER 4. CREATING A SPADES SIMULATION

The only thing thatActEvent adds toEvent is the storing of an agent which is associated
with this event. This value is accessed via thegetAgent andsetAgent methods.

CreateSenseEvent This is an abstract base class useful for creating sensation events (see
Section 4.6 for a description of the basic sense–think–act cycle and the associated events).
While not all sensation events must be created through the realization of aCreateSenseEvent ,
it is strongly recommended that most are. Primarily, this allows the simulation engine to do
additional error checking and eases the creation of sensations for the world model designer.

CreateSenseEvent adds two things to the basicEvent class. The first is storage of
an agent id, accessed via thegetAgent andsetAgent methods. Secondly, the pure vir-
tual functioncreateSense is called byrealizeEventSimEngine . createSense
should return an event of typeSenseEvent which is the created sensation. That sensation
will then be enqueued by the simulation engine.

Note also thatCreateSenseEvent definesgetSecondaryOrder to return the agent
id, and you likely do not need to override this.

EndSimulationEvent The realization of this event will begin the shutdown process of the
simulation. The recommended way to end the simulation is by enqueuing anEndSimulationEvent .

MonitorSendEvent This event is used internally by the simulation engine to create the mon-
itor log file. There is probably no reason for the world model to create events of this type.

FixedAgentEvent Fixed agent events are the primary subtype of events. Section 4.2.1 de-
scribes exactly what fixed agent events mean and how they affect the ordering guarantees
of SPADES. As a world model designer, you should be careful which defining subclasses
of FixedAgentEvent because of their different ordering treatment. There are two sub-
classes ofFixedAgentEvent which SPADES provides.

SenseEvent All sensations to be sent to the agent must arise from an event of this type.
The realization of this event by the simulation engine causes a message to be sent to
the agent.
A SenseEvent contains a value of typeThinkingType specifying the thinking
disposition of this sensation. The possible values are:

TT Invalid This should never be used here, it exists only to indicate an error.
TT Regular A regular sensation with starts a thinking cycle. The timer module

specified in the agent type is used to compute the thinking latency.
TT Untimed This is like TT Regular , except that the timing module output is

ignored and the thinking latency is set to 0. This is known as an untimed sensation.
TT Not This is a non-thinking sensation, also called aninform. An agent can not

reply to a non-thinking sensation with actions, and any computation time used in
processing aninform is added to the next thinking sensation.

4.3. WORLD MODEL 21

The thinking status of aSenseEvent is controlled by thegetThinking andsetThinking
methods.
SenseEvent also adds an additional time value to the event, the send time. Each
sensation has a time at which it was generated and a time at which the agent can begin
thinking about it; this interval is known as the sense latency. The time stored in the
baseEvent class is the arrive time, and thensend time is a protected element of
SenseEvent , accessed with thegetSendTime method.
Lastly, SenseEvent maintains the data to be sent to the agent. This is stored in the
protected memberdata which is of typeDataArray , which is described fully in
Section 4.9. The data to be sent can be arbitrary bytes.

TimeNotifyEvent This event is enqueued by the simulation engine for every time that
the agent has requested a time notify with therequest time notify message.
It is not recommended that the world model enqueue any of these events, as it could
confuse the agents. Use sensations andSenseEvent instead.

4.3 World Model

TheWorldModel class provides the primary interface for the simulation engine to interact with
the user created part of the simulation. One of the primary tasks to be done to create a SPADES
based simulation is to create an appropriate subclass ofWorldModel . This section describes in
detail what the functions should do. All methods here are pure virtual.

Constructor Most of the real initialization should be done in theinitialize method (see
below). Just setting values to essentially NULL is probably appropriate.

Destructor The finalize method will always be called before the destructor. SPADES will in
fact never delete theWorldModel and theSimEngine object will already be deleted by
the time the object is destroyed. Therefore, it is recommended that most cleanup be done in
thefinalize method.

parseParameters This should parse the parameters given in the command line. An object
of typeEngineParam must be returned. It is recommended that you inherit a parameter
structure fromEngineParam and use that to parse the options. Otherwise, you will have
to do your own parsing and set the parameters inEngineParam yourself. See Section 5.2
for a description of how the parameter interface works. Note that this method is calledbefore
initialize .

initialize This is where the initialization should be done. It will be called after theSimEngine
is initialized and the parameters have been parsed withparseParameters . Note that a
pointer to theSimEngine class is passed in and you will probably want to store this value
to call back to the simulation engine.

22 CHAPTER 4. CREATING A SPADES SIMULATION

finalize This method will always be called before the destructor and before theSimEngine
object is destroyed. After this method is called, any reference to theSimEngine object
passed toinitialize method is invalid.

simToTime This function asks the world model to advance the state of the simulation to the
given time. Note that the world model can enqueue simulation events or perform other
callbacks to the simulation engine while advancing the world time. Further, the world model
is not required to advance the time all the way to the time requested. In particular, if events
are inserted into the queue for a time before the requested time, you have to be carefulnot to
advance the time past the earliest inserted event.

getMonitorHeaderInfo This method is called once for every monitor. It should return any
header/setup information that is needed. Section 4.8 describes the monitor setup.

getMonitorInfo This method will be called periodically to get information about the current
state of the world to send to the monitor. Section 4.8 describes the monitor setup.

parseMonitorMessage A monitor can send information in an arbitrary format to be decoded
by the world model. This function is called when such information is received. It is recom-
mended that you create events to actually perform the actions the monitor requests, rather
than making the changes directly. This allows a better log and possibly reproduction of the
simulation. Section 6.6 describes the monitor interface in detail.

getMinActionLatency This method should return theminimum action latency for any action
by any agent. Section 4.10 discusses issues of how this latency affects the parallelism that
is achieved. The return of this function should be a constant that does not change during the
simulation. In future versions, this function may be only called once.

getMinSenseLatency This method should return theminimum sensation latency for any
action by any agent. Section 4.10 discusses issues of how this latency affects the parallelism
that is achieved. The return of this function should be a constant that does not change during
the simulation. In future versions, this function may be only called once.

parseAct This method should parse the data given to it as an action request from the agent and
return an event of typeActEvent . Note that this is aconst method. Parsing of an action
should not affect the world model in any way, or causality could be violated.

pauseModeCallback This method is called periodically while the simulation is in paused
mode. Waiting for communication servers and starting up agents are typically done here.
Also, at some pointchangeSimulationMode should be called to move the simulation
to a run mode.

agentConnect This method is called for every agent once the agent has started up successfully.
See Section 4.5 for a discussion of agent types.

4.4. SIMULATION ENGINE INTERFACE 23

agentDisappear This method is called after each agent exits. An argument which is of type
AgentLostReason gives the reason for the agent leaving the simulation. The valid values
are:

ALR None No reason; this value should never be passed to this method.

ALR ProcessVanished The agent process disappeared without sending an exit com-
mand.

ALR BadFD One of the file descriptors for communication with the agent was bad. This is
usually caused by the agent process exiting.

ALR InitError An error was encountered in initialization, such as being unable to find
or execute the program specified by the agent type.

ALR WorldModel The world model requested that the agent be killed.

ALR CommServerDisconnect The communication server which this agent was on dis-
connected.

ALR AgentRequest The agent sent an exit message.

ALR Internal Some sort of internal error occurrsed inside SPADES. This should not
ever happen. The only current reason (as of 0.91) would be a failure of the timing
mechanim.

ALR ThinkTooLongWallClock If an agent takes more thanmax secs for agent think
seconds (measured by the wall clock time) to send a done thinking message in response
to a sensation, the agent is shut down with this status.

ALR ThinkTooLongSim If an agent takes more thanmax simtime for agent think as
measured by the current process timer (see Section 4.7.1), the agent is shut down with
this status.

notifyCommserverConnect This method is called every time a communication server con-
nects. In most cases, the world model does not need to know how when or how many
communication servers connect, so this method can do nothing. However, there are situa-
tions where you may want to know. For example, you may want to start one agent on each
communication server that connects.

notifyCommserverDisconnect This method is called for each communication server that
disconnects. See the notes fornotifyCommserverConnect .

4.4 Simulation Engine Interface

This section describes the methods of the simulation engine class in which the world model and
associated events will be most interested. The classSimEngine is a bit of a monolithic object, so
this section only describes the methods most relevant to the world model.

24 CHAPTER 4. CREATING A SPADES SIMULATION

getSimulationTime Returns the current simulation time to which the engine has advanced.
Note that this can disagree with the value perceived by the world model if it is in the middle
of advancing the time in asimToTime call.

getNumAgents Returns the number of agents which have been started withstartNewAgent
calls. This is not necessarily equal to the number agents for whichagentConnect has
been called.

getNumCommServers Return the number of communication servers which have been con-
nected.

startNewAgent Starts a new agent of the given type (see Section 4.5 for a discussion of agent
types). Note that you can optionally specify which communication server to start the agent
on. Otherwise, SPADES tries to distribute agents across all communication servers.

areAllAgentsInitialized Returns whether all agents are initialized. When an agent is
initialized, theagentConnect is called, so the world model likely will not need this func-
tion.

killAgent This method will remove the agent from the simulation (notifying the agent first). It
is possible that queued messages and events will still be received, so the world model needs
to be able to ignore these.

sendExtraMonitorInfo This method sends extra data to all monitors. In general, the world
model will not need to call this method, relying on the simulation engine to call thegetMonitorHeaderInfo
andgetMonitorInfo methods ofWorldModel .

enqueueEvent This is one of the primary functions which the world model will use. It adds
an event into the queue of pending events.

inPauseMode Returns whether the simulation is in any paused mode.

inShutdownMode Returns whether the simulation is in a shutdown mode.2

getSimulationMode Gets the current mode of simulation (see Section 4.1.2).

changeSimulationMode Changes the current mode of simulation (see Section 4.1.2).

initiateShutdown This begins the shutdown of the simulation. This is not the recommended
way to initiate a shutdown except in exceptional circumstances. Rather, you should enqueue
an event of typeEndSimulationEvent . This is currently equivalent tochangeSimulationMode
(SM Shutdown)

2Currently, the only shutdown mode is SMShutdown. However, in the future, other shutdown modes may be used
to indicate why the shutdown is occurring.

4.5. AGENT TYPES 25

getWorldModel Returns a pointer to the current world model.

getAgentTypeDB Returns a pointer to the agent database.

getCurrWallClockTime Returns atimeval structure for the current wall clock time (see
‘man gettimeofday ’).

4.5 Agent Types

All agents in the simulation have an associated type. This type easily allows heterogeneous agents
to be mixed in the simulation. Theagent database stores all information about the agent types.
All agent types have an associated name to identify the agent. All names must have no white space
and only include the alphanumeric characters plus- and_.

The details of the file format of the agent database are described in Section 6.2.

4.5.1 External Agents

An external agent is one that is started as a separate process and communicated with via pipes.
For an external agent, the agent database allows one to specify:

• The file descriptors the agent will use for input and output.

• The process timing module to use (see Section 4.7.1).

• The working directory for the agent.

• The executable to use, with arguments.

4.5.2 Integrated Agents

An integrated agent is loaded from a dynamic library and exists in the same process as the com-
munication server. This allows the agent to corrupt the communication server and disallows the
use of the some of the timing mechanisms. However, it has the benefit of being faster than running
an external agent. Also, if running in an integrated communication server, the agent could access
internal data of the world model, alleviating the need to serialize and deserialize the information.

For an integrated agent, the agent database allows one to specify:

• The path to the dynamic library which contains the agent.

• The process timing module to use (see Section 4.7.1).

• Whether the agent must execute under an integrated communication server or not.

• The arguments to give the agent when it starts up.

26 CHAPTER 4. CREATING A SPADES SIMULATION

4.5.3 Placeholder Agents

A placeholder agent is an agent type with only a name. A placeholder agent can not be started
by a communication server. It is useful only to give to the simulation engine so that it knows
a particular agent types exists without having to specify how it would be started up. Note that
the communication server which is responsible for starting the agent will have to have a fuller
description of the type.

4.5.4 Working with the Agent Database

The writer of a world model must access the agent database in order to start up agents. This section
describes how the agent database can be accessed.

First, the agent database is accessible through thegetAgentTypeDB method of theSimEngine .
The method returns a pointer to the agent type database, an object of typeAgentTypeDB .

AgentTypeDB includes the typesAgentTypeIterator andAgentTypeConstIterator
which are the primary ways to access the agent types in the agent database.

The following methods ofAgentTypeDB are useful for working with the agent types. They
are come in two varieties, taking/returning a regular or a constant iterator.

isIteratorValid Returns whether the given iterator is valid (points to a real agent type).

nullIterator Returns the null (i.e. invalid) iterator.

deref Takes an iterator and returns the associated agent type. You should not dereference an
invalid (i.e. null) iterator.

getAgentType Takes the name of an agent type, looks it up in the database, and returns an
iterator to the agent type. Returns an invalid iterator if there is no agent type with that name
in the database.

getBeginIterator Returns an iterator to the first agent type in the database.

TheAgentTypeIterator supports the++ operator to advance to the next type.

4.6 Agent Interface

This section describes in general terms the interface to the agents both from the agent and world
model perspectives. Exact formating and other details are discussed in Section 6.4.

4.6. AGENT INTERFACE 27

4.6.1 External Agent Perspective

An agent process is initiated by the communication server using the information in theagent
database. The pipes for communicating with the communication server are initialized as discussed
in Section 6.4.

The agent will then be given aninitialization data message. If you are using agent migration
(Section 5.3) and this is a migrated agent, this data will include information about the migration.
If you are not using migration or this is the first execution of an agent, this data will be empty and
can be ignored.

The agent should respond with ainitialization done message once all initialization steps are
completed. This allows the agent to do an arbitrary amount of untimed processing at startup.

Once the agent has completed its own initialization, it simply needs to wait for messages to be
received from the communication server. A variety of messages can be received from the commu-
nication server but they can be broken into two classes, those that begin thinking cycles and those
that do not.

Sensations andtime notifies begin a thinking cycle where the agent can respond with actions.
All thinking cycles are finished by adone thinking message to notify the communication server that
the agent has finished.

All the other messages are non-thinking sensations and the agent can not respond with any
actions. Note that any computation time used in processing these messages will be charged to the
next thinking cycle.

The agent has two primary actions as far as SPADES is concerned. The first is anact message
whose format is completely interpreted by the world model. The second is arequest time notify
which requests that atime notify is sent to the agent at the specified time. At the end of a thinking
cycle, an agent must always send adone thinking message.

Two important parameters must be mentioned about the agent interface. With the tracking of
computation time for the agents, it is possible for an agent to fall behind in the simulation. For
example, the agent may be schedule to receive a sensation at timex, but because of the thinking
done for the last sensation, the agent is already at timex + 1. If an agent is ever ahead of the
arrive time of a sensation by more thanmax agentq trailing time, then the sensation is turned in
an inform, a non-thinking sensation. This is done by changing theThinkingType element to
TT Not . max timenot trailing time performs the same function, but fortime notifies instead of
sensations.

If the parametersend agent think times is on, the agent will receive athink time message re-
porting how much simulation time was used for the last thinking cycle. This is a type ofinform
message in that it does not start a thinking cycle.

Agents will be sent error messages for various out of order and malformatted message errors.
A full list can be found in Section 6.4.1.

Various time limits can be set up to control how long an agent has to think. This can notably
be used to prevent a malfunctioning agent from interfering with the remainder of the simulation as
well as providing detection facilities for this. Section 4.7.3 discusses this process.

28 CHAPTER 4. CREATING A SPADES SIMULATION

SPADES provides logging of the standard out and standard error of every agent, though this
can be turned off with thecreate agent logfiles parameter. The parametersagent stdout log fpat
andagent stderr log fpat control the location and name of these files.

Agents can therefore use standard out for logging or other recording of information. It is always
a good idea to check the standard error of all agents to insure that no errors were encountered in a
simulation.

4.6.2 Integrated Agent Perspective

An integrated agent has much the same kind of interaction with the communication server as an
external agents (as described in Section 4.6.1). The differences are:

• Communication is done with method calls, not via pipes.

• A string can be specified in theagent database to be passed to the integrated agent on
initialization (through theinitialize method). This allows something like the command
line arguments that can be specified for external agents.

• An integrated agent provides an object which is a subclass ofIntegratedAgent . The
methods ofIntegratedAgent are called to send messages to the agents.

• To send messages back to the communication server, the integrated agent calls methods
of the IntegratedAgentActions object provided to theIntegratedAgent object
representing the agent.

• Standard out and standard error of the agent are, naturally, the standard out and standard
error of the communication server. Therefore, the agent should probably open its own files
to log to.

• None of the time limits on thinking mentioned in Section 4.6.1 apply to integrated agents.

A full description of the classes involved is given in Section 6.5.

4.6.3 World Model Perspective

The world model interacts with agent through events and some method calls. Figure 4.2 shows the
sense think act cycle of an agent from the world model’s perspective. The cycle begins with an event
of typeCreateSenseEvent being realized. This enqueues an event of typeSenseEvent . The
time between theCreateSenseEvent andSenseEvent is the sensation latency. Upon real-
ization of theSenseEvent , a message is sent to the agent and a thinking cycle is begun. The
agent responds with some number of actions, and based upon the computation time used, the ac-
tions are assigned a time. The difference between the time of theSenseEvent and the simulation
time assigned to the returnedact messages is the thinking latency. TheparseAct method of the
WorldModel object is called to turn theact message into an event of typeActEvent . The

4.7. AGENT MONITORING 29

ActEvent is then realized to complete the cycle. The time between the time of theact messages
and theActEvent is known as the action latency.

Time Sense ActThink

SenseEvent ActEvent
parseActCreateSenseEvent

Figure 4.2: Time line showing the events and method calls relevant for the sense think act cycle of
the agents

Note that aCreateSenseEvent is not the only way for aSenseEvent to be enqueued.
However, it is recommended that whenever possible you do use it. SPADES does additional error
checking withCreateSenseEvent to avoid causality problems which can be hard to detect
otherwise.

CreateSenseEvent can easily be used to create regularly reoccuring sensations. The real-
ization ofCreateSenseEvent will cause thecreateSense method to be class to generate
theSenseEvent . You can then define therealizeEventWorldModel method to enqueue a
newCreateSenseEvent at the appropriate time in the future.

4.7 Agent Monitoring

This section covers the ways that a SPADES communication server monitors the agents for which
it is responsible.

4.7.1 Agent Timers

SPADES provides a variety of ways in which thinking times of agents can be measured/computed.
Note also that the world model can generate untimed sensations which, while they begin thinking
cycles, always have a thinking latency of 0.

No matter what the method, SPADES can record the thinking latency used for the simulation.
The parameterrecord think times controls whether this is done. The times are stored in a separate
file for each agent, and the parameterthink times file pattern specifies the file name. The details
of the file format (it is binary, not text) can be found in Section 6.7.3.

A perl script namedshow ttimes.pl is provided which can read the binary format and
output it in a more human readable format. It takes the name of a file to read and (optionally) how
many think times to show per line. The values in the file are printed left to right then top to bottom.

Some timers can use be used for integrated agents (agents which are loaded from a dynamic
library) and others can not. This is noted below.

30 CHAPTER 4. CREATING A SPADES SIMULATION

A timer is specified either in the agent type database or the with thedefault process timer
parameter. In both cases, a string is parsed to get the type of timer and its arguments. The valid
values are:

• ‘ fixed time ’

This is thefixed time timer. Every thinking request is given the same timetime . This can
be used for an integrated agent.

• ‘ replay filepattern ’

This is thereplay timer. Thefilepattern argument specifies the files to read. Just as in
thethink times file pattern, the string ‘%N’ is replaced with the agent number. Section 6.7.3
describes the file format, but just to replay the times SPADES previously recorded, it is not
necessary to understand this.

During replay,replay think buffer size values from the file are read at one time. These is
an efficiency enhancment, though changing this parameter will probably have at most minor
effects on performance.

This can be used for an integrated agent.

• ‘ jiffies kinst ’

This is thejiffies timer. A “jiffy” is an amount of time scheduled on the processor as re-
ported by the Linux kernel. The integer parameterkinst translates to the number of kilo-
instructions per simulation step. See Section 6.7.1 for details. This can not be used for an
integrated agent.

• ‘perfctr instr kinst ’

This is theperfctr timer. By using features provided by the perfctr system3, the number of
processor instructions the agent uses are tracked. The integer parameterkinst translates to
the number of kilo-instructions per simulation step. See Section 6.7.2 for details. This can
not be used for an integrated agent.

• ‘default ’

This is thedefault timer. Whatever timer is specified with the parameterdefault process timer
is used. If ‘default ’ is given as the value ofdefault process timer, then ‘fixed 0 ’ is
used. This can be used with an integrated agent if the timer referred to by default is accept-
able for an integrated agent.

3http://sourceforge.net/projects/perfctr/

http://sourceforge.net/projects/perfctr/

4.7. AGENT MONITORING 31

4.7.2 Agent Process Tracking

SPADES also tries to track when external agent processes spawn other processes in order to prop-
erly time the agents as discussed in Section 4.7.1. This section describes how this is done and the
relevant parameters. However, it should be noted that this scheme is neither perfect or foolproof.
It is designed to make an agent designer’s job easier and try to avoid accidental mistakes. It is still
possible for an agent designer to fool the system. Also note that this only applies to external agents,
not integrated ones.

The tracking works by SPADES uses theLD PRELOADmechanism of Linux to load a dynamic
library which intercepts dynamic library calls. All dynamic library calls tofork , vfork , and
clone are caught by the library to notify the commserver. Note that calls topthread create
are implemented usingclone , so it is also tracked. The parameteragent intercept library controls
what library is preloaded. In general, SPADES will set this automatically, so you should not need
to worry it.

Note that this means that any agent which does not use dynamic library calls to spawn new
processes (e.g. an agent executable which is statically linked) willnot have its forking tracked
correctly. Currently, SPADES does nothing to try and verify that agents are dynamically linked,
and it would be difficult to try and verify that allfork calls are done dynamically.

The notifications of forking are done via the SysV IPC Message Queue scheme. One implica-
tion is that only one communication server can be run per machine per user.4 The other is that if a
communication server exits abnormally, the next time you may get an error like this:

The IPC message queue seemed to already exist.

If you use theipc force remove parameter, the message queue will be removed before the commu-
nication server starts.

You can disable the IPC message reception with theenable ipc message reception parameter.

4.7.3 Checking on Agents

At the end of every message processing cycle, the communication server “checks up” on the agents.
This is mainly to catch errors like crashed agents, but also allows some housekeeping to be done.
Note that this only applies to external agents.

The steps are:

• Check that all processes which are part of the agent still exist. If they do not, it is not an error.
The proceses are just removed from the tracked processes list for that agent. However, if all
agents processes are gone, the agent is shutdown with statusALR ProcessVanished .

• The wall clock time that the agent has been thinking is then computed. If it is greater than
max secs for agent think , then the agent is shutdown with statusALR ThinkTooLongWallClock .

4The user ID is part of the message queue identification, so multiple users can run communication servers, but the
same user can run only one.

32 CHAPTER 4. CREATING A SPADES SIMULATION

It is recommended that you set the parametermax secs for agent think quite high relative to
the expected think time for the agent. This check should ideally ony catch agents in infinite
loops or who fail to send adone thinking message. For example, it my current setup with
the sample world model and agents, I expect the agent to think for at most 50ms, but I have
max secs for agent think set to 10s.

• Based on the computed wall clock thinking time, a decision is made whether to do further
checking. Ifagent check use randomness is off, and the wall clock think time is greater than
agent check threshold sec, then further checking is done.

If agent check use randomness is on, then a threshold is computed from a Gumbel distri-
bution with parametersagent check gumbel dist A andagent check gumbel dist B and the
input as the wall clock time. With that probability, further checking is done.

• The process timer (see Section 6.7) is then consulted to compute a time in simulation time
that this agent has been thinking. If this time is greater thanmax simtime for agent think ,
then the agent is shutdown with statusALR ThinkTooLongSim

• If the simulation time the agent has been thinking has increased, atime update message is
sent to the simulation engine. This should be completely transparent to the world model and
agents. Thetime update should have no effect on the results of simulation, but can affect the
ordering of non-causally related events for efficiency.

4.8 Monitor

The monitor interface allows external programs to connect to the simulation and get periodic up-
dates about the state of the simulated world. Monitors can also send information back to the engine
and world model to perform various functions like pausing and unpausing the simulation.

The simulation engine will only accept monitor connections ifaccept monitor connections
is true. The monitor should connect over a TCP socket to the portmonitor port . After each
connection, the engine calls thegetMonitorHeaderInfo method ofWorldModel . This
initialization or header information is sent to the monitor. SPADES does not constrain the format
of the information.

At time 0 and at everymonitor interval simulation steps thereafter, aMonitorSendEvent is
enqueued. The realization of this event causes the methodgetMonitorInfo of WorldModel
to be called and the information returned is sent to all monitors. SPADES does not constrain the
format of the information.

The world model can also send extra information via thesendExtraMonitorInfo method
of SimEngine . This should be used for any asynchronous updates.

SPADES can also create a monitor log file which records all information which would be sent to
a connected monitor during the simulation. Ifuse monitor log, all monitor information (including
the header information) is written tomonitor log fn.

4.9. DATAARRAY 33

A monitor can send commands to pause, run normal, run limited rate (see Section 5.6), discon-
nect from the simulation, shutdown the simulation, and send arbitrary bytes to the world model.
Section 6.6 describes the details of the monitor interface.

4.9 DataArray

DataArray is a utility class which maintains a reference counted array of bytes, and stores the
number of bytes. This means that a single copy of an array of bytes is maintained with arbitrar-
ily many references encapsulated in aDataArray object. When the last of these references is
deleted, the array of data is deleted automatically. In cases where the identical messages are sent to
many agents, this should provide significant savings. This section will highlight and explain some
of the important methods, but please see the source code for the exact details.

• DataArray(const char* buffer, unsigned length)

This constructor copies the data in the buffer given. If you wantDataArray to take over
the memory, seetakeData .

• DataArray(std::stringstream& str) , DataArray(std::streambuf& strbuf) ,
DataArray(std::string str)

All of these constructors copy the data in the object given to them.

• DataArray(std::ostrstream& ostr)

This constructor takes over the memory contained in theostrstream . You shouldnotcall
freeze(0) on theostrstream after this call, or manipulate theostrstream in any
way.

• void copyData(const char* data, unsigned length)

This method replaces any data currently stored with a copy of the data given.

• void takeData(char* data, unsigned length)

This method does not copy the data, but takes over responsibility for the memory passed in.
You should not manipulate the data indata after this call.

• const char* getData() const

Used to access the actual array of bytes, but you should not store this value. If you need to
keep a reference, simply use the copy constructor ofDataArray ..

• unsigned getSize() const

This returns the number of bytes in the array of data controlled by this object.

34 CHAPTER 4. CREATING A SPADES SIMULATION

4.10 Achieving Parallelism

Achieving good speedups when running a simulation on multiple machines is a tricky problem. The
technical details of the algorithms used by SPADES are described in Section 6.8, but this section
will describe some of the issues and gives advice to world model designers on how to achieve good
parallel speedups.

A thorough experimental analysis of the effects of the various settings described here has not
been done, so the advice here is based upon knowledge of the algorithms and experience in running
SPADES based simulations.

SPADES achieves parallelism through two mechanisms. The first is identifying the times at
which each agent can next enqueue an action. This allows SPADES to realize events with out hav-
ing to wait for a reply from an agent. This revolves around the use of the theminimum action latency
to determine theminimum agent time. Theminimum agent time is the earliest time for which an
agent can enqueue a new action. The methodgetMinActionLatency of WorldModel gives
theminimum action latency.

In general of course, the longer the minimum action latency, the more parallelism can be
achieved since more events can be realized at one time. This means that very short action la-
tencies for any sort of special action should be avoided, since the minimum action latency is the
minimum over all actions in the simulation.

The other mechanism involves identifying non-causally related events so that they can be real-
ized out of order. The events of interest here aresensations andtime notifies. Since the content of
sensation andtime notify messages is fixed, these events can be realized as soon as it is identified
that no other message will be sent to this agent before this event. This decision revolves around
the value of theminimum sensation latency, is the smallest time between when an event is realized
and a new sensation for an agent can be enqueued. Theminimum sensation time is the earliest time
that a new sensation can be generated for any agent. Anysensations or time notifies for an agent
before theminimum sensation time can be realized.

The longer theminimum sensation latency, the more parallelism can be achieved. Therefore,
you should avoid any special case sensations with very short latencies, as theminimum sensa-
tion time as returned by the methodgetMinSenseLatency is the minimum over all types of
sensation generating events.

If agents are aligned such that sensations (i.e. thinking cycles) are generated for the same
simulation time, then it is easy to achieve parallelism. Therefore, in cases where you (as the world
designer) can create situations like this, you should. Note however, that you should not sacrifice
realism, as the ability to generate non-synchronous actions is one of the strengths of SPADES. For
example, for a group of robots on a field, you would not expect synchronous vision updates, and
it is not recommended that you do so. Note that SPADES does a good job our opportunistically
taking advantage of whatever parallelism is available at a given time.

In the experiments conducted with SPADES thus far [Riley, 2003, Riley and Riley, 2003],
the time that sensations were generated had a small random component. This helps insure that
on average, there is parallelism, and bad cases of agent distribution and sensation times will not

4.11. RANDOMNESS AND REPRODUCIBILITY 35

persist.
Another interesting point concerning parallelism is load balancing among machines. In previ-

ous experiments [Riley and Riley, 2003], often no parallel speedups were achieved until the max-
imum number of agents on a machine dropped. For example, with 12 agents, moving from four
machines to five machines sees no additional parallel speedup (since both cases have a machine
with three agents). However, moving from five machines to six machines does see an increase in
parallel speedup since the maximum number of agents per machine drops to two.

Agent migration could also be used to help perform load balancing. However, the current al-
gorithm for making migration decisions is not very sophisticated. This will hopefully be improved
in the future.

4.11 Randomness and Reproducibility

Another key feature desired in many simulations is reproducibility. Here, “reproducibility” will
mean that the same simulation state can be achieved by rerunning the simulation in the same start-
ing configuration.

First, the exact ordering guarantees provided by SPADES are discussed in Section 4.2.1. Since
the realization of a fixed agent events should not affect the world state in any way, the primary
guarantee is that all non-fixed agent events will be realized in time order.

For true reproducibility, you may want a stronger guarantee than just time order as there may
be many events at the same time. In particular, you may want to guarantee a particular order
of event realization. To do this, you should ensure that you define the ordering constants and
getSecondaryOrder method of theEvent class and its subclasses appropriately. That is, you
should ensure that no two non-identical events have the some ordering constant and same value for
getSecondaryOrder .

Further, theparseAct method of theWorldModel class should not affect the state of the
WorldModel in any way.parseAct calls come in at uncontrolled times, so no state change should
be allowed.

If you use pseudo-randomness in your simulation, things are slightly more complicated. There
are some natural reasons to use randomness in the parsing of actions (to pick an action latency for
example). However, to maintain reproducibility, you can not use pseudo-randomness in either the
parseAct method or the realization of any fixed agent event. If you do want to have random act
latencies, one possibility is for parseAct to put a place holder event for the current time plus the
minimum action latency. The realization of that event can case the real action event to be queued
at a random time forward.

Additionally, theagentConnect method can not use psuedo-randomness since the order of
connection can not be controlled.

SPADES provides some functionality to help deal with pseudo-randomness. SPADES han-
dles the seeding of the random number generator so that the world model does not need to do
it. The parameterrandom seed allows you to specify what random seed to use. Further, if the

36 CHAPTER 4. CREATING A SPADES SIMULATION

parameterprint random seed to stdout is true, then the random seed being used (either specified
by random seed or read from/dev/urandom) is printed to standard out. This allows you to
recreate simulations if need be. Lastly, if you are using agent migration, you may need to use the
use randomness parameter to control whether the migration choice is random.

The most difficult part in providing completely reproducible results is in tracking of the agent
thinking time. In thejiffies timer, the CPU time reported by the kernel varies somewhat based on
other system activity in unpredictable ways. To alleviate these problems somewhat, you can use the
fixed time timer (see Section 4.7.1) to turn off the tracking and always return a fixed value for the
think latency. Alternatively, you can use theperfctr timer to get accurate instruction level accurate
timings. Note, however, that this currently requires a patched kernel. Also, think times can be
recorded and played back with thereplay timer (see Section 4.7.1).

There is one other important note in achieving perfect reproducibility. It is natural to write the
simToTime method to look something like this:

for (SimTime t = time_curr;
t < time_desired;
t++)

{
per step code

}
finish stepping code

That is, thesimToTime method may be able to amortize some of the cost of stepping forward by
having code in thefinish stepping code section. Especially when using floating point cal-
culations, this will cause perfect reproducibility to be lost. The simToTime method isnot guarun-
teed to be called in exactly the same way each run. Rounding at the lower order of the floating
point numbers can eventually creep in to affect the overall results. Therefore, if you want perfect
reproducibility, thefinish stepping code should not contain anything which affects the
state of the world model.

The technical paper Riley and Riley [2003] discusses these issues of reproducibility further and
provides some experimental evidence of the reproducibility of SPADES.

Chapter 5

Miscellaneous Features

This chapter covers other features of SPADES that are not discussed in Chapter 4. This features are
not essential for either creating a SPADES simulation or for understanding the basic functioning of
the system. However, if you intend to use SPADES much, these features may be of interest to you.

5.1 Action and Error Logging

SPADES provides facilities for error, warning, and action logging. Errors are generally internal
errors that should never occur. However, not all errors represent bugs in SPADES. Warnings are
exceptional conditions that do not represent errors in system design, but may mean that this sim-
ulation is not running properly. Action logging is based upon the layered disclosure idea [Riley
et al., 2001], and is used to track system actions for debugging.

You are encouraged to use these facilities for your own logging purposes.

5.1.1 Basic Usage

The classes are defined in the fileLogger.hpp . The primary class is namedLogger and follows
the Singleton design pattern. This means that there should only be a single instance of theLogger
and it is accessible through the static member functioninstance .

Several#define statements are used to provide easy access to theLogger facilities, and
writing to the logs is done with standard C++ streams. The following#define ’d statements
convert into a expression which takes the<< operator to send information to the logger. In order to
end a logging expression, you use theende operator. Note however, that these are not in fact true
stream types, so you can not do more complicated I/O on them (such as the STL uses).

• errorlog Use for critical errors and conditions that should never occur. All messages are
printed to standard error and to the action log file at level 0 (if it is being used).

37

38 CHAPTER 5. MISCELLANEOUS FEATURES

• warninglog(x) Use for exceptional conditions that do not indicate unrecoverable errors
or bugs in the system. The variablex represents a logging level; I currently use 10 for all
warnings, but feel free to assign your own meanings. All messages are printed to standard
error and to the action log file at level 0 (if it is being used).

• actionlog(x) Use to log information about the execution of the program. Don’t worry
about how efficient it is to write data here because a compile flag can be used to remove
all actionlog code. The variablex represents the logging level. The weakness of the
layered disclosure idea is how to define the right logging level. In general, higher numbers
mean more detailed information, and the logger provides a way to print only those action log
messages below a certain level. All messages are printed to the action log file. By default,
the logger prints the simulation time and a number of dashes equal to the level divided by
10. SPADES uses the following conventions:

– Lower log levels are less detailed information.

– Use levels in multiples of 10, in case you need to fill in levels in between.

– All log levels above 200 may come up in inner loops and generate a great deal of output
very quickly. This should only be used for targeted debugging.

– The log levels below 100 give enough information for an understanding of the general
control flow of a simulation run.

– All levels are non-negative.

Here are a few examples of valid messages and how they will be printed in SPADES:

errorlog << "This is an error condition" << ende;
warninglog(10) << "I’m feeling a little sick today" << ende;
actionlog(150) << "I started running at time: " << time << ende;
actionlog(50) << "I just realized an event for you" << ende;

Note the use ofende manipulator to finish the logging expression. You can use newlines in your
logging, but SPADES does not in any of its own logging.

These examples would write this to standard error:

EngineError(1234): This is an error condition
EngineWarning[10](1234): I’m feeling a little sick today.

Note that the warning message gives the warning level (10). The number is parentheses is the
simulation time at the point of the error.

The example above will write this to the action log file:

1234 EngineError(1234): This is an error condition
1234 EngineWarning[10](1234): I’m feeling a little sick today.
1234 ---------------I started running at time 12/5/2002 12:12p
1234 -----I just realized an event for you

Note the use of the ‘- ’ character to indicate action log level.

5.2. PARAMETER READING 39

5.1.2 Parameters

If the variableNOACTION LOGis defined (e.g. by a-DNO ACTION LOGflag to the compiler), all
actionlog statements are put inside ofif(0) conditions, and will be removed by a reasonable
compiler.

There are several parameters that affect how the logger works.

• action log fn This is the file name of the action log file.

• action log level Which action log commands to write to the file. All log messages at levels
equal to or below this value will be written to the log file. All those levels above this value
will be ignored. At a level of 0, only errors will be written to the file.

5.1.3 Advanced Usage

The sections above do not really give the whole story. TheLogger is actually a little bit more
general purpose than specified above. This section will not give a complete description, but give
you some highlights of how this works. You should look at the code for details.

The logger uses aTagFunction which specifies the leader for every logging statement,
including the error, warning, and action logs. The leader includes (in the above examples) all
simulation times, ‘- ’ leaders for actions, and the “EngineError” and “EngineWarning” tags.

The error log and warning log use the same facilities; errors are simply warnings at level 0.
If you want to change where the logging output goes, you can use thesetLoggingStreams

method to set the output of the logger to C++ streams.
You have to be somewhat careful during the shutdown process.Logger::removeInstance

is called to remove the singleton instance. Also, files are not opened until an explicit call, so action
logs too early in the initialization process will go to standard out instead of to the action log file.

5.2 Parameter Reading

This section describes the parameter reading interface as seen by the code which makes up the
processes. Section 6.1 describes how the parameters should be formatted in configuration files and
on the command line.

All parameter classes are subclasses ofParamReader , which provides the basic processing
functionality. The important methods are ParamReader are:

ParamReader The constructor takes a maximum version value. All configuration files are re-
quired to have a version line indicating the version of the file. If the version of a file being
read is greater than the max version given here, then an error is given.

getOptions This is the function which actually does the argument and file parsing.

40 CHAPTER 5. MISCELLANEOUS FEATURES

addAll2Maps This pure virtual method is called to add all parameters to the string to data type
maps. For every subclass, you will need to define your own version ofaddAll2Maps to call
add2Maps for all the parameters in your parameter class. It is important that every child pa-
rameter class calls its parentsaddAll2Maps in this function, likeParentParam::addAll2Maps() .

setDefaultValues This pure virtual method is called to set all parameters to default values.
This is used for initialization and in case a given parameter is never set. It is important that
every child parameter class calls its parentssetDefaultValues in this function, like
ParentParam::setDefaultValues() .

postReadProcessing This method will be called after the values have been read, though it
may be called several times. It is important that every child parameter class calls its parents
postReadProcessing in this function, likeParentParam::postReadProcessing() .

add2Maps This overloaded method is used to add parameters of all types into the map of param-
eter names to value. It should probably only be called from insideaddAll2Maps .

addParamStorer Rather than using the map based mechanism, you can define your own
ParamStorer . Please see the code for details, but basically, your class will be notified
every time a parameter is read and it is not found in the maps.

In order to create your own parameter class, you will need to subclassParamReader or one
of it’s descendants and redefine the virtual functions listed above. If you subclass anything except
ParamReader , make sure you follow the instructions above for calling the parent methods in
addAll2Maps , setDefaultValues , andpostReadProcessing .

You may also want your parameter class to follow the Singleton design pattern, where only one
object of this type can exist. SeeEngineParam for an example.

In order to add a parameter to a parameter class, you have to do four or five things:

1. Add a member to your parameter class to store the value. The convention used thus far in
SPADES is that members are all lowercase with words separated by underscores.

2. Add an access method for the member. The convention is to preface the member name with
get , capitalize (at least) the first letter of each word, and remove the underscores.

3. Add the appropriate call toadd2Maps in the methodaddAll2Maps . The convention is
that the external name of the parameter is the same as the member name.

4. Add a line with a default value tosetDefaultValues .

5. Optionally, you may need to add code topostReadProcessing in order to deal with or
further process the parameter value given.

5.3. AGENT MIGRATION 41

5.3 Agent Migration

Agent migration refers to moving agents between communication servers in order to try and load
balance better and thereby improve the overall efficiency of the simulation. Often the speed of the
simulation is held back by the speed of the slowest agent, so load balancing has the potential to
make an important difference in the efficiency of the simulation.

Agent migration is supported by SPADES, but the sophistication of the mechanism is not very
high. Supporting migration puts a significant burden on the agents themselves, so in many cases it
may not be worth supporting this feature.

Migration is turned on by theuse migration parameter. If migration is turned on, the simulation
engine tracks the amount of wall clock time it takes an agent to respond to a sensation. Once at
leastmin responses before migration responses have been received from the agent, the agent is a
candidate for migration. The agent will be migrated if its response time is greater than twice the
mean response time over all agents.

When an agent is migrated, first amigration request message is sent to the agent. The agent
should respond with amigration data message which includes the all the data representing the
current state of the agent. That agent process is shut down and a new agent process is started on
another machine. Theinitialization data that the agent is given is the migration data from the agent
process that was shut down. The simulation then continues as normal.

5.4 Integrated Communication Server

The simulation engine provides a facility to run an “integrated communication server.” This simply
means that communication server runs in the same process as the simulation engine and world
model. Therefore, messages do not have to be serialized and sent to a socket.

The provides a small reduction in communication costs for a communication server running on
the same machine as the simulation engine. In a small set of possibly non-representative experi-
ments, this speedup is about 5%.

The use of the integrated communication server is controlled by the parameterrun integrated commserver.
All agents and the world model should find it indistinguishable whether an integrated or regular
communication server is being used.

5.5 Agent Shutdown Management

When a communication server wants an agent process to exit, it goes through this process:

1. If the exit is initiated by the communication server, and not by agent request or some sort of
failure on the agent’s part, an exit message is sent.

2. SIGTERMis sent to the agent processes.

42 CHAPTER 5. MISCELLANEOUS FEATURES

3. Periodically, the agent processes are checked to see if they still exist.

4. If an agent process does exit, the child process should be reaped immediately, so no zombie
processes should exist for an appreciable amount of time.

5. If the agent process does not exit insecs for agent shutdown seconds, then aSIGKILL is
sent to forcibly kill the process. If this must be done, a warning is will be written to the
warning log (see Section 5.1).

Note that if your agents write data or perform other time intensive tasks at the end of the
simulation time, you may exceed the default time of 2.0 seconds forsecs for agent shutdown.

5.6 Limited Rate Run Mode

SPADES supports a run mode where the speed of the simulation is limited. This is useful, for
example, in order to maintain a “real-time” performance for human interaction or monitoring.
Note that SPADES does not guarantee that this rate will be maintained, it only guarantees that the
simulation rate will notexceedthe given value.

The simulation is put into the limited rate run mode by changing the simulation mode to
SMRunLimitedRate . This can be done by the world model or by a command from the monitor
(see Section 6.6).

In limited rate mode, the parameterlimited rate default st per sec controls the speed of the
simulation.1 SPADES aims to havelimited rate default st per sec simulation steps advanced with
all events realized every second. Note that the simulation engine prints out the average amount of
simulation time advanced per second, so you can track if the desired performance is being achieved.

The algorithm for doing this is straightforward. Call the desired number of simulation time
steps per secondsR. A base wall clock (Bw) and simulation (Bs) is taken. Before realizing an
event, the desired wall clock time for that eventt to occur is calculated by:

t−Bs

R
+ Bw (5.1)

If that time has not yet arrived, the simulation engine sleeps (with theselect system call) until
the desired time for the event.

There are several points to note about this algorithm. First, only the wall clock time of event
realization is controlled. The simulation time as advanced by the world model is not checked
explicitly. Secondly, if the process of event realization is computationally intensive, it is possible
that SPADES will fall behind, even when there is enough processing power available. Lastly,
fixed agent events are not controlled in the same way; the same lookahead algorithm (described in
Section 6.8) is applied even if the wall clock time for the next regular event to be realized has not
yet arrived.

1Currently, the rate is fixed by this parameter. In the future, the world model and the monitor interface will allow this
rate to be adjusted.

5.6. LIMITED RATE RUN MODE 43

Every time the simulation mode changes to the limited rate run mode, “rebasing” is done for
the base simulation and wall clock times. Additionally, everylimited rate rebase interval seconds,
rebasing is done. Notably, if there is a machine or network slowdown, the simulation will not
indefinitely try to to catch up.

44 CHAPTER 5. MISCELLANEOUS FEATURES

Chapter 6

Technical Details

This chapter provides a myriad of technical details about various aspects of SPADES. The one
thing that holds everything in this chapter together is that there were too many details to go over
in other sections of the manual. If you just want to get a general understanding of how SPADES
works, you can probably skip this chapter until you need it.

6.1 Parameters

This section describes all the parameters that SPADES understands. In general, only brief de-
scriptions of the parameters are given. All parameters that need further explanation are explained
elsewhere in the manual. See the index under the parameter name to find where the information is.

All parameters can be given in one of two ways (whereparam is the name of a parameter and
value is the value):

• On the command line as ‘-- param value ’

• In a configuration file, with a line of ‘param : value ’

Configuration files to read can be specified on the command line as ‘--file filename ’ or
configuration files can be nested by putting ‘file: filename ’ in a configuration file. There
is a maximum nesting of configuration files of 16.1 A relative path from afile command inside
of a configuration file is resolved relative to the location of the configuration file (not the current
working directory).

Further, every configuration file must specify a version number. The version is used during
parameter reading to insure that the version of the software reading the configuration file is at least
as new as the configuration file (see Section 5.2 for details on the programmer’s interface). The
version line must be the first non-comment and non-whitespace line in the configuration file, and
looks like this: ‘version: num’ wherenum is the version of the file.

1You can change this in the fileshared/FileReader.hpp if need be

45

46 CHAPTER 6. TECHNICAL DETAILS

As far as order of parameter processing, all configuration files specified by--file on the
command line are read before the rest of the command line is processed. For nested configuration
files, the entire sub-file is processed at the point of thefile command, then the rest of the original
file is processed.

There are eight types of parameters:

String Arbitrary length character string. If a value is not specified, the empty string is set for the
parameter values.

File Path This is also a character string, but unlike ‘String’ the value is resolved to an absolute
path name. On the command line, this is done relative to the current working directory.
In configuration files, this is done relative to the location of the conf file. There are two
exceptions to this resolution: If the value begins with a ‘%’, the value is left untouched (this
is done because many parameters use a ‘%X’ format to expand values). The other is if the
value begins with ‘&’, the ‘&’ is removed and the rest of the value remains untouched. This
could allow, for example, for a file path to be specified in a conf file that is relative to the
current working directory.

Integer An integer value. This always requires a value. In general this can be positive or negative,
but for some parameters, only certain values make sense, as noted in the tables below.

Real A real value, stored as a double precision floating point number. This always requires a value.

Boolean An on/off value. This doesnot require a value. Without a value, the parameter is turned
on. The only valid values are “on” and “off”.

Vector(Integer) A vector of integers. A minimum and (optionally) maximum number of entries
can be set. A warning will be printed if these constraints are not honored. For this manual,
the bounds will be enclosed in[] . The values are white space separated in conf files, e.g. ’2
12 47 ’.

Vector(Real) A vector of real values, with the same properties as Vector(Integer).

Vector(String) A vector of string values. The entries are in the conf file. On the command line, an
entry for a vector of strings can not begin with-- (because they looks like the next parameter
is starting).

Note that Vector(Integer), Vector(Real), and Vector(String) are not used for any of the param-
eters provided by SPADES (though the sample world model uses some of them), but are provided
for the convenience of world model designers.

6.1.1 Shared Parameters

These are parameters which both the communication server and simulation engine understand.

6.1. PARAMETERS 47

Name Type Default
Description

version Boolean off
If this is specified, the version is printed and the communi-
cation server/simulation engine will exit.

logfile dir File Path Logfiles
This directory is used in many other parameters as a re-
placement for ’%D’. This shoudl allow easy redirection of
all logfiles to a given directory.

create logfile dir Boolean on
If logfile dir does not exist and this parameter is specified,
then the logfile directory is created. Only one level of di-
rectory will be created (likemkdir , notmkdir -p).

action log fn File Path %D/actions.log
The name of the action log file. The string ‘%D’ is replaced
by thelogfile dir.

action log level Integer(≥ 0) 0
Which actions to log; all levels less than or equal to this
value are written to the logfile.

engine port Integer 12000
The port on which the simulation engine listens for com-
munication server connections.

use randomness Boolean on
Whether to use any randomness to break ties. The only
place this is currently used is in migration decisions for
agents.

random seed Integer -1
Any negative value means to read a new random seed. Any
positive value specifies the random seed to use.

print random seed to stdout Integer off
Whether to print the random seed used to standard output.
This is useful for reproducing a simulation.

internal tcp packet size Integer 1024
SPADES manually gathers data to avoid doing many small
writes to a socket. This parameter specifies how many
bytes should be collected before sending. Any non-positive
value turns off this collection.

Continued on next page

48 CHAPTER 6. TECHNICAL DETAILS

Name Type Default
Description

agent db fn File Path agentdb.list
The filename for the agent database.

status update interval Integer 5
How often (in seconds) to print simulation status updates
to standard out. Any non-positive value turns off status
updates.

trace on error Boolean on
On various errors like timeouts and unexpected failures,
some useful logging information is printed. It is strongly
recommended that you leave this on, as this information is
extremely useful to track down bugs.

create agent logfiles Boolean on
Whether to create logfiles for the standard error and stan-
dard output of the agents.

secs for agent shutdown Real(≥ 0) 2.0
How many seconds to give the agent processes to exit from
the time the termination signal is sent. If the agent pro-
cesses do not exit in this time, they are killed forcibly.

agent packet size Integer 1024
SPADES manually gathers data to avoid doing many small
writes to the agent input. This parameter specifies how
much data should be collected before sending. Any non-
positive value turns off this collection.

default agent input fd Integer(≥ 3) 3
This is the default file descriptor for the pipe from which
the agent will accept input (the agent type can override
this). The value must be greater than or equal to 3 since
file descriptors 0,1,and 2 are standard in, standard out, and
standard error respectively.

default agent output fd Integer(≥ 3) 4
This is the default file descriptor for the pipe to which the
agent will write its actions (the agent type can override
this). The value must be greater than or equal to 3 since
file descriptors 0,1,and 2 are standard in, standard out, and
standard error respectively.

Continued on next page

6.1. PARAMETERS 49

Name Type Default
Description

load send interval Real(≥ 0) 2.0
How often (in seconds) to send the load values of the ma-
chine to the simulation engine. This is in the shared param-
eters because of the possible use of an integrated commu-
nication server.

max unnatural lost agents Integer 10
If this many agents exit unnaturally (that is, without being
given an explicit exit or explicitly requesting an exit), the
communication server exits. Any negative value disables
this. This is in the shared parameters for the integrated
communication server.

send agent think times Boolean on
Whether to sendthink time messages to the agents.

send agent send time Boolean on
Whether to send the send time for a sensation or inform
message. The send time is the time at which the sensation
was generated.

send agent arrive time Boolean on
Whether to send the arrive time for a sensation or inform
message. The arrive time is the time at which the sensation
is received by the agent.

default process timer String fixed 0
Specifies the timer to use when thedefault timer is specified
for an agent. If this value is thedefault timer, then “fixed
0” is used.

record think times Boolean off
Whether to record the think latencies of the agents to the
files given bythink times file pattern.

think times file pattern File Path %D/agent%A-ttimes.log
Specifies the files to which to record the agents’ thinking
latencies. The string ‘%A’ is replaced by the agent number
and ‘%D’ by the logfile dir to get the file name for an agent.

replay think buffer size Integer 64
Gives the number of values to read at once when using the
replay timer. There is currently no reason to change this
parameter.

Continued on next page

50 CHAPTER 6. TECHNICAL DETAILS

Name Type Default
Description

agent intercept library File Path %ID/libspadesint.so
Specifies the library to be preloaded into the agents
(see Section 4.7.2). The string ‘%ID’ is replaced
with the package library dir specified at configure time
(/usr/local/lib/spades by default).

enable ipc message reception Boolean on
Whether to listen for SysV IPC messages, which are used
to notify the communication server of process forking.

ipc force remove Boolean off
If this is specified, the IPC message queue is removed be-
fore the communication server is started. This should only
be needed if the communication server crashes or exits ab-
normally.

max secs for agent think Real 10
Gives the maximum time (as measured by the wall clock)
between the time an agent is sent a message and it responds
with a done thinking message. If this is less than 0, the wall
clock time is not checked.

max simtime for agent think Integer 1000
Gives the maximum time (as measured by the current agent
timer) between the time an agent is sent a message and it
responds with a done thinking message. If this is less than
0, there is no maximum.

agent check use randomness Boolean on
Specifies whether to use randomness to decide whether to
check up on an agent (see theagent check gumbel dist A
andagent check gumbel dist B parameters) or not (see the
agent check threshold sec parameter).

agent check threshold sec Integer(≥ 0) 1
If agent check use randomness is off, once the agent has
been thinking this long (measured by the wall clock), a
deep checkup has been done.

agent check gumbel dist A Real 1.5
If agent check use randomness is on, then a deep
checkup is done randomly. This parameter and
agent check gumbel dist B are parameters to a gumbel
distribution which gives the probability of a deep checkup
as a function of the wall clock time the agent has been
thinking.

Continued on next page

6.1. PARAMETERS 51

Name Type Default
Description

agent check gumbel dist B Real(> 0) 1
See the parameteragent check gumbel dist A .

agent stdout log fpat File Path %D/agent%A-stdout.log
This parameter describes what file to direct agent standard
out to. The string ‘%A’ is replaced by the agent number and
‘%D’ by the logfile dir.

agent stderr log fpat File Path %D/agent%A-stderr.log
This parameter describes what file to direct agent standard
out to. The string ‘%A’ is replaced by the agent number and
‘%D’ by the logfile dir.

6.1.2 Communication Server

These are the parameters which the communication server understands (in addition to the shared
parameters of Section 6.1.1).
Name Type Default

Description
engine host String localhost

The name of the machine which is running the simulation
engine.

max connect reply wait Integer(≥ 0) 5
How long (in seconds) to wait for a correct reply from the
simulation engine in making the connection.

wait sec Integer(≥ 0) 5
The time in seconds to pass into theselect system call
(combined withwait usec).

wait usec Integer(≥ 0) 0
The time in microseconds to pass into theselect system
call (combined withwait sec).

no message timeout Integer(≥ 0) 20
If the communication server does not receive a message
from the simulation engine in this number of seconds, the
communication server exits.

6.1.3 Simulation Engine

52 CHAPTER 6. TECHNICAL DETAILS

Name Type Default
Description

port bind retries Integer(≥ 0) 3
The number of times to retry binding the port to listen for
communication server connections. This is especially use-
ful if you are running multiple simulations in a row, as the
TCP socket is not always immediately completely closed
at the system level.

port bind sleep sec Integer(≥ 0) 2
The time (in seconds) to sleep between tries to bind the port
to listen for communication server connections.

monitor port Integer(≥ 0) 12001
This is the port to which monitors can connect to the server.

accept monitor connections Boolean on
Whether to listen on themonitor port for monitor connec-
tions.

monitor interval Integer (≥ 0) 33
The is the interval for when information is sent to the mon-
itors.

use monitor log Boolean on
Controls whethermonitor log fn is created with a log of
all data that would be sent to a monitor.

monitor log fn File Path %D/monitor.log
The file to write out the data that would be sent to a moni-
tor. The string ‘%D’ is replaced by thelogfile dir.

text event log fn File Path %D/eventtext.log
The file to which to write a text (i.e. human readable) ver-
sion of every event processed. The string ‘%D’ is replaced
by thelogfile dir. Seeuse text event log.

use text event log Boolean off
Whether to write a text (i.e. human readable) log file of the
events processed. This is not recommended for general use
as the file can get quite large quickly, but this is useful for
debugging. See alsotext event log fn.

wait sec Integer(≥ 0) 3
The time in seconds to pass into theselect system call
(combined withwait usec).

Continued on next page

6.1. PARAMETERS 53

Name Type Default
Description

wait usec Integer(≥ 0) 0
The time in microseconds to pass into theselect system
call (combined withwait sec).

pause mode wait sec Integer(≥ 0) 1
Like wait sec, but used when the simulation is paused.

pause mode wait usec Integer(≥ 0) 0
Like wait usec, but used when the simulation is paused.

max pause mode seconds Real 90
The maximum number of seconds in pause mode before the
simulation engine exits. Any non-positive value disables
this, though it is not recommended that you disable this as
the simulation engine process could then wait indefinitely.

timeout for event Integer 60
The maximum amount of time (in seconds) to wait for an
event to be processed. That is, if not event is processed in
this amount of time (in non-pause mode), the simulation
engine exits. Any non-positive value disables this, though
it is not recommended that you disable this as the simula-
tion engine process could then wait indefinitely.

use migration Boolean off
Whether to use migration of agents during this simulation.

min responses before migration Integer(> 0) 10
Minimum number of responses from an agent on an ma-
chine before it is considered for migration.

max agentq trailing time Integer 50
Because of an agent’s thinking time, it can be late in re-
ceiving a sensation. For example, if a sensation is to be
delivered timex and the agent is already at timex + 10,
it is 10 simulation time units behind. If an agent is more
than this parameter value simulation time units behind, the
sensation is converted into aninform (a non-thinking sen-
sation). A negative value disables this feature.

Continued on next page

54 CHAPTER 6. TECHNICAL DETAILS

Name Type Default
Description

max timenot trailing time Integer 50
Like max agentq trailing time, but for time notifies.

run integrated commserver Boolean off
Whether to run a communication server which is integrated
in the same process as the simulation engine. This im-
proves efficiency slightly for a communication server on
the same machine.

secs for socket shutdown Integer(≥ 0) 5
When the simulation engine is shutting down, up to this
amount of time is waited for all the write buffers of the
sockets to be flushed.

limited rate default st per sec Real(≥ 0) 1000.0
In the limited rate run mode, the simulation engine tries to
maintain a correspondence between wall clock time and
simulation time advancement. The target is to run this
many simulation steps every second.

limited rate rebase interval Real 2.0
When running in limited rate mode, the engine periodically
resets the correspondence point between wall clock time
and simulation time. This parameter determined how often
(in seconds) this is done. A value less than or equal to 0
turns this feature off.

6.1.4 Sample World Model

These are the parameters which the sample world model understands (in addition to the shared and
engine parameters of Sections 6.1.1 and 6.1.3).
Name Type Default

Description
size Vector(Real)[2](> 0) 200 200

Specifies the X and Y size of the world (inm).
min sense latency Integer(≥ 0) 10

Seemax sense latency.
max sense latency Integer(≥ 0) 20

Along with min sense latency, provides a range for the
sensation latency for each sensation.

min sense interval Integer(≥ 0) 50
Seemax sense interval .

Continued on next page

6.1. PARAMETERS 55

Name Type Default
Description

max sense interval Integer(≥ 0) 70
Along with min sense interval , provides a range for the
simulation time between sensations.

min action latency Integer(≥ 0) 90
Seemax action latency.

max action latency Integer(≥ 0) 100
Along with min action latency, provides a range for the
action latency a each action. See alsorandom act latency.

num agents Integer(≥ 1) 1
The number of agents to start.

sim time per second Real(> 0) 100
How many simulation time steps translate to one second.
This is used to interpret other parameters.

stiction Real(> 0) 3
This paramater affects the physics of the balls. It provides
a maximum on the acceleration (simulating the maximum
friction the wheels can have on the ground). Units arem2

s .
speed max Real(> 0) 3

Gives the maximum speed of the balls (inm
s).

accel rest Real(> 0) 5
Gives the maximum acceleration of the balls when at rest
(in m2

2). The acceleration decreases as speed increases.
simulation length Integer 10000

The number of simulation time steps to run the simulation.
num comm servers wanted Integer 1

The number of communication servers to wait for before
unpausing the simulation.

agent speed String fast
This is passed on to the agents to specify how much of
a busy wait delay they should have. The valid values are
’fast’, ’medium’, ’slow’, and ’soccer.’ The last speed has
to do with experiments comparing SPADES to the Soc-
cerServer (http://sserver.sf.net). It is in be-
tween medium and slow.

Continued on next page

http://sserver.sf.net

56 CHAPTER 6. TECHNICAL DETAILS

Name Type Default
Description

agent types Vector(String)[1–∞] type0 type1
These strings give the names of the agent types to start.
They are used in order, repeating as necessary to get to
num agents.

random act latency Boolean true
Whether or not to use randomness is the action latency. See
Section 4.11 for important information about using ran-
domness.

random agent placement Boolean true
Whether or not to use randomness in the initial location
of the agents. See Section 4.11 for important information
about using randomness.

use random untimed sensations Boolean false
If this is on, some sensations are marked as untimed sensa-
tions. This is to simply to allow for testing of the untimed
sensation mechanism.

6.2 Agent Database

The agent database describes the agent types (as discussed in Section 4.5).
The database is read in from an XML formatted file (theagent db fn parameter specifies the

location of this file). A schemaagentdb.xsd is provided in the SPADES distribution and instal-
lation. This section descibes the format in detail.

All elements should be in the namespacehttp://spades-sim.sourceforge.net/
agentdbxml.html . In the agent database file provided insample agent , this is given the
local nameadb .

The top level element should beagentdb . It must have the attributeversion . The contents
of this attribute should be a decimal number giving the version of SPADES for which this file was
written. This will hopefully allow some backward compatibility.

All name attributes must include only alphanumeric characters and- and_ with no white
space.

The following child elements can occur any number of times and in any order:

include No attributes, no child elements, text content. Gives a (possibly relative) path to a fully
formed agent database file. That file is read in before the rest of this file is processed.

agent type external Describes an agent that is to be started as an external process. The
element has one required attributename which gives the name to the type.

The child elements are:

http://spades-sim.sourceforge.net/agentdbxml.html
http://spades-sim.sourceforge.net/agentdbxml.html

6.2. AGENT DATABASE 57

inputfd (Optional) Gives the file descriptor which the agent will use to read informa-
tion from the communication server. If this is omitted or a -1 is given, the value of
default agent input fd is used.

outputfd (Optional) Gives the file descriptor which the agent will use to send infor-
mation to the communication server. If this is omitted or a -1 is given, the value of
default agent output fd is used.

timer (Optional) Gives is a timer type description string as discussed in Section 4.7.1. If
ommitted,default is used.

workingdir (Optional) Gives the working directory for the agent. Before the executable
is run, the current directory is changed to this. All relative directories are resolved from
the location of the agent database file which is being processed.

commandline (Required) Gives the full command line for the agent. Note that the the
format and parsing rules for this element are likely to change in future releases. The
following parsing rules are used:

• The value must be brace (‘{}’) balanced.
• Whitespace separates arguments in the command line.
• If you need whitespace in an argument, use double-quotes around the argument.

The double quote character will be removed.
• If you need a double quote character in your argument, put two double quotes next

to each other. They will be reduced to a single double quote character.
• No other characters are special. Note in particular that this means that backslash

(‘\’) has no special meaning and shell redirection cannot be done (with the ‘>’
and ‘<’ characters).

Here are some examples of how command lines are parsed. First, the command line
is given, then the arguments are given as they will be given to the agent, separated by
commas and enclosed by single quotes.

Given command line Parsed and separated arguments
foo -a b --code \\ ’foo’, ’-a’, ’b’, ’--code’, ’\\’
bar -a "Some Name" ’bar’, ’-a’, ’Some Name’
baz -a "Some""Name" ’bar’, ’-a’, ’Some"Name’
bif -a """SomeName""" ’bif’, ’-a’, ’"Some Name"’

agent type integrated Describes an agent that is to be loaded from a dynamic library
and exist in the same process as the communication server. The element has one required
attributename which gives the name to the type.

The child elements are:

lib path (Required) Gives the (possibly relative) path to the dynamic library that defines
the agent.

58 CHAPTER 6. TECHNICAL DETAILS

init arg (Optional) If specified, gives a string to be passed to theinitialize method
of theIntegratedAgent class for the agent.

timer (Optional) Gives is a timer type description string as discussed in Section 4.7.1.
If ommitted, default is used. Note that some timer types are not acceptable for
integrated agents (see Section 4.7.1).

require integrated commserver (Optional) A boolean which indicates whether
the agent is required to run only in an integrated commserver, not an external comm-
server. The default is false.

agent type placeholder The element has one required attributename which gives the
name to the type. There are no child elements and no text. An agent of this type can not
actually be started. It can be useful to give to the simulation engine (which does not actually
start agents), and give a full type description to the communication server.

6.3 Length Prefixed I/O Format

In order to avoid any arbitrary restrictions of message length and format, SPADES uses a length
prefixed input/output format for various messages. The length of the message is sent first, then
the data. Note that SPADES may be sending data incrementally, so the entire message may not
be available at once. Therefore, the reader must do some read buffering. The classReadBuffFD
provides this functionality, and, for the agents, it it further incorporated into the agent library which
is provided as part of SPADES.

For every message, four bytes are sent (in network byte order) for the length of the message
(which does not include the four bytes for the length). Then the data itself is sent.

6.4 External Agent Input/Output

This section gives the details of the agent input and output to and from and external agent. Here
input refers to input that the agent receives from the communication server and output refers to
information that the agents sends to the communication server.

First, all communication is done via pipes. When the agent starts up, the file descriptors given
by the agent type (or the defaultsdefault agent input fd anddefault agent output fd) should be
used for reading/sending data from/to the communication server.

The length prefixed I/O format (see Section 6.3) is used for all communication to and from the
agent.

6.4.1 Agent Input Format

This section describes the format of messages sent to the agent from the communication server.
The first byte gives the type of message, and the remaining bytes are arguments and data for the

6.4. EXTERNAL AGENT INPUT/OUTPUT 59

message. There is no space immediately after the first byte.
Throughout this section, the following variables are used:

• time means the simulation time (an integer). This is always followed by a single space.

• data means an arbitrary data string. Note that because of the use of the length prefixed
format (Section 6.3), there arenorestrictions on the format or length of the data. In particular,
arbitrary binary data can be sent.

• token is a text string with no spaces.

The messages sent to the agent are:

• ‘Stime time data ’

This is a sensation to be given to the agent. It begins a thinking cycle.

The first time is the simulation time the sensation was generated (also known as the send
time) and the second is the time that the sensation is delivered to the agent (also known as
the arrive time). If the parametersend agent send time is off, -1 is always sent as the send
time, and if the parametersend agent arrive time is off, -1 is always sent as the arrive time.
The data is an arbitrary data string generated by the world model. The agent can reply with
act messages, and must finish with adone thinking message.

• ‘ I time time data ’

This is aninform message. The meaning this is the same as thesense above, except that it
does not start a thinking cycle. The agent should not reply to this message.

Note thatinforms can be explicitly generated by the world model, or “old” senses can be
converted to informs. See Section 4.6 for details.

• ‘Ttime ’

This is a time notify, an empty sensation. It does start a thinking cycle. The time is the
time for which the time notify was requested, regardless of when the time notify is actually
delivered. The agent can reply withact messages, and must finish with adone thinking
message.

• ‘Otime ’

This is atime notify that does not start a thinking cycle. The agent should not reply to this
message.

• ‘X’

This is an exit message that tells the agent to shutdown. No more messages will be sent to
the agent and no reply should be sent. Note the shutdown process discussed in Section 5.5.

60 CHAPTER 6. TECHNICAL DETAILS

• ‘Ddata ’

After startup, this initialization data message is sent to the agent. On a normal startup,data
will be empty. On an agent migration (see Section 5.3), the data returned by the old agent
processes will be given to the new agent. Aninitialization done message should be sent once
the initialization data has been processed and all other startup is complete.

• ‘M’

This migration request message is used to tell the agent that it will be migrated. The agent
must reply with a migration data message. See Section 5.3 for information about agent
migration.

• ‘Ktime ’

This is a think time message that notifies the agent how much thinking time was used for the
last thinking cycle. These are only sent ifsend agent think times is on.

• ‘Etoken ’

This is an error message to the agent. The value oftoken gives the type of error.

no token on line The agent sent an empty message to the communication server.

act when not thinking The agent sent in act message while not in a thinking cycle.

rtn when not thinking The agent sent arequest time notify while not in a thinking
cycle.

bad time in rtn The time for arequest time notify was not a properly formatted num-
ber.

done thinking when not thinking The agent sent adone thinking message while
not in a thinking cycle.

mig data when not mig The agent sent a migration data message, but the communi-
cation server had not sent a migration request message.

bad token The first character identifying the message was not a valid message indicator.

init done when not init The agent sent aninitialization done message when it was
not in initialization mode.

6.4.2 Agent Output Format

This section describes the format of messages sent to the communication server from the agent.
Throughout this section, the following variables are used:

• time means the simulation time (an integer). This should be followed by a single space.

6.5. INTEGRATED AGENT INPUT/OUTPUT 61

• data means an arbitrary data string. Note that because of the use of the length prefixed
format (Section 6.3), there arenorestrictions on the format or length of the data. In particular,
arbitrary binary data can be sent.

The format is primarily text based. The first byte gives the type of message, and the remaining
bytes are arguments and data for the message. There should be no space added immediately after
the first byte.

• ‘Adata ’

This is an action to be taken by the agent. Thedata is in arbitrary format, determined by
the world model. Note that because of the length prefixed I/O (Section 6.3), their are no
restrictions on the format or length of the data.

• ‘Rtime ’

This is arequest time notify. The time is the time for which the notification is requested.
See Section 4.6 for details.

• ‘D’

This is thedone thinking message which is used to conclude every thinking cycle. All actions
andrequest time notifies need to be sent before this message.

• ‘Mdata ’

This gives migration data for the agent.data is data to be passed to the agent on startup
with an initialization data message. See Section 5.3 for information on agent migration.

• ‘X’

This is the exit message. The agent is notifying the communication server that it is exiting.
This message can be sent while the agent is thinking or not. If the agent is in a thinking
cycle, the exit message also functions as adone thinking message. No more information
will be sent to or read from this agent.

• ‘ I ’

This is theinitialization done message which the agent must send after starting up.

6.5 Integrated Agent Input/Output

This section describes the process of creating an integrated agent.
An integrated agent is a dynamic library that is loaded by SPADES. You create the library just

as you would create any other dynamic library, so please see your system documentation for that

62 CHAPTER 6. TECHNICAL DETAILS

process. Note that SPADES usinglibltdl 2, and usinglibtool should integrate well with
SPADES.

Your library must provide two things. First, a subclass ofIntegratedAgent (whose inter-
face will be described below) and a known entry point for creating an agent.

IntegratedAgent is a virtual base class. The methods generally correspond to messages
that can be received by an external agent, so please see Section 6.4.1 for details on what the mes-
sages mean.

The methods are:

initialize This method will be called when the agent is started up. It takes a string which is
the value of the initialization parameter specified by the agent type in theagent database.

receiveTimeNotify This method is called for the agent to receive atime notify message. The
ThinkingType parameter specified whether this is a thinking or a non-thinking sensations
(i.e. whether actions can be sent in response).

receiveSense This method is called for the agent to receive a sensation. TheThinkingType
parameter determines whether this is asense of inform message.

receiveMigrationRequest This method is called to request that the agent begin the mi-
gration process.

receiveExit This method is called to send the agent an exit message. The communication
server will delete this memory after this message.

receiveInitData This is called on startup. If this is a migration, then this will be non-empty.

receiveError This is called to notify the agent of an error.

receiveThinkTime This is called for the agent to receive athink time message.

getActions This method give you an object of typeIntegrateAgentActions which you
can use to communicate with the communication server.

setActionCallbacks You should never need to call this method. It is used by SPADES to
set theIntegratedAgentActions callback object (see below).

The classIntegratedAgentActions is what the agent uses to communicate with the
communication server. ThegetActions method ofIntegratedAgent give the agent an
IntegratedAgentActions object on which to call methods. These calls parallel the mes-
sages that an external agent can send, so see Section 6.4.2 for more detail on the meanings of the
messages.

The methods ofIntegratedAgentActions are:
2http://www.gnu.org/software/libtool/libtool.html

http://www.gnu.org/software/libtool/libtool.html

6.6. MONITOR INTERFACE 63

act This is an act message with associated data.

requestTimeNotify This is arequest time notify message. The parameter is the time for
which the notification is requested.

doneThinking This is thedone thinking message which ends every thinking cycle.

exit This method should be called when the agent requests an exit.

initDone This is the initialization done message which should be called in response to the
initialization data message to the agent.

migrationData This is the migration data message. This method should be called in response
to the migration request message.

The entry point for creating an agent should be a function with one of these names and signa-
tures:

spades::IntegratedAgent* createAgent(void);
spades::IntegratedAgent* libname _LTX_createAgent(void);

wherelibname is the name of your library without the extension. For example, if you create a
library calledmyagent.so , then libname should bemyagent . In either case, this function
should return a new dynamically allocated object which is a subtype ofIntegratedAgent .
Note that if you compile with a C++ compilier, you should but this function declaration inside of
an

extern "C"
{

your declaration here
}

to avoid name mangling on the function name.

6.6 Monitor Interface

Section 4.8 provides a general discussion of how monitors function. This section provides details
of the interface.

The format of input received by the monitors is completely determined by the world model;
SPADES adds nothing to this.

For receiving data from the monitors, SPADES uses the length prefixed data format (Sec-
tion 6.3). The first character determines the type of message.

P The simulation is paused (i.e. the mode is changed toSMPausedMonitor).

64 CHAPTER 6. TECHNICAL DETAILS

R The simulation is put into normal run mode ((i.e. the mode is changed toSMRunNormal).

L The simulation is put into limited rate run mode ((i.e. the mode is changed toSMRunLimitedRate).
See Section 5.6 for details.

D This notifies the engine that this monitor is disconnecting. No further information will be sent
to this monitor.

X This initiates a shutdown of the simulation.

W The indicates that this data should be passed onto the world model for processing. The initial
‘W’ is removed, and the remainder of the data is sent to theparseMonitorMessage
method ofWorldModel .

If an invalid character is sent, an error is printed, but it is otherwise ignored.

6.7 Agent Thinking Time

In order to determine the amount of computation used by an agent process, SPADES relies upon
facilities provided by the Linux kernel. Overall, there is a two step process.

1. Askt the kernel how much computation was used.

2. Convert that computation time into simulation time and apply the actions.

6.7.1 Tracking for Jiffies Timer

The jiffies timer uses the facilities provided by the standard Linux kernel.
In the file ‘/proc/ pid /stat ’, the Linux kernel provides a count of the number of “jiffies”

which the process has used on the CPU. A jiffy is a fairly coarse measure of time, usually 10ms.
The kernel actually reports four different jiffy counts:

utime The number of jiffies spent in user mode.

stime The number of jiffies spent in system mode.

cutime The number of jiffies spent in user mode by the process and its children.

cstime The number of jiffies spent in system mode by the process and its children.

The differences inutime and stime are added together to get a total jiffy count for the
thinking by the agent. I have not been able to determine the circumstances under whichcutime
andcstime get updated, so SPADES does not currently use them.

Once this number of jiffies has been determined, it must be converted to simulation time. The
following calculation is performed

6.7. AGENT THINKING TIME 65

• Let J be the number of jiffies.

• Let B be the bogoMIPS of the machine, as read from‘/proc/cpuinfo’

• Let K be the value of the parameter supplied to the jiffies timer (see Section 4.7.1), which
represents the number of kilo-instructions which translates to 1 simulation step.

The number of simulation steps is then (rounded to the nearest integer).

10JB

K
(6.1)

As you can see, the parameter of this linear transformation is a user controllable parameter.
However, if different types of machines are to be used in the same simulation, some benchmarking
would need to be done to determine what an equitable setting of these CPU time to simulation time
parameters would be.

6.7.2 Tracking for Perfctr Timer

The Linux Performance Counters Driver3 allow SPADES to track the number of instructions used
by agent processes. This allows for much more accurate thinking time tracking and reproducible
results.

However, currently, this requires the use of a patched kernel. SPADES currently works with
version 2.5.1. The 2.6 series has changes at the user level, and SPADES will not currently work
with any of these.

Also, the ptrace mechanism is used for SPADES to track the process correctly. Using
ptrace can have subtle effects on the performance of the agent (see theptrace documenta-
tion for details).

This timer takes a parameter giving the number of kilo-instructions which correspond to one
simulation step.

6.7.3 Recorded File Format

As described in Section 4.7.1, SPADES provides the ability to record the thinking time used by in
agent. This section describes the file format for that recording.

The file is in a binary format to save space and parsing time. All numbers are stored in network
byte order.

The first 4 bytes of the file say how many bytes are used for each thinking time recording.
Currently, SPADES only supports 2 bytes for each thinking time, so this is mainly for upward
compatibility. After that, every 2 bytes represent a thinking latency for the agent.

Note that a perl script namedshow ttimes.pl is installed by SPADES to show the contents
of a thinking time file in a more human readable format. See Section 4.7.1 for details.

3http://sourceforge.net/projects/perfctr/

http://sourceforge.net/projects/perfctr/

66 CHAPTER 6. TECHNICAL DETAILS

6.8 Algorithms

The event ordering and realization algorithms are also described in technical papers [Riley, 2003,
Riley and Riley, 2003]. The text here is largely copied from those papers.

This section describes the simulation algorithm used by SPADES. This algorithm is a modifi-
cation of a basic discrete event simulator.

repeat forever
receive messages
next event = pending event queue .head
while (no event will be received for time less thannext event .time)

advanceWorldTime (next event .time)
pending event queue .remove(next event)
realize (next event)
next event = pending event queue .head

Table 6.1: Inner loop for basic serial discrete event simulator

The inner loop of a basic serial discrete event simulator is shown in Table 6.1. The one primary
difference is theadvanceWorldTimecall. This supports the one continuous aspect of the simulation,
the world model. This function advances the simulated world to the time of the discrete event. The
realization of the event causes changes in the world, and notably can cause other events to be
enqueued into thepending events queue .

In order to insure that all events will be executed in causal order, the simulation environment
must determine whether or not it is possible to receive a future event with a timestamp less than
the next pending event. This so–calledtime–managementfunction of parallel simulators is well
studied, and there are a number of approaches that can be used [Chandy and Misra, 1981, Bryant,
1977, Mattern, 1993, Chandy and Misra, 1979, Chandy and Sherman, 1989, Lubachevsky, 1989,
Steinmann, 1991, Nicol, 1993, Riley et al., 2000]. Much of the complexity of these approaches
is due to the fact that typically a distributed simulation will manage private event lists for each
process in the distributed environment. In other words, each process manages its own event list, and
schedules events to and from this list independently from other processes (within the constraints
imposed by the time management algorithms). For ease of implementation, we chose another well–
known approach known as acentralized event list. In this approach, a single composite event list is
managed by amasterprocess, which is responsible for scheduling events and managing the event
list for all other processors. Any process that needs to schedule a future event must notify the
master process (the manager of the central event list) to get the event scheduled. This method is
quite simplistic and easy to implement. This master process has complete knowledge at all times

6.8. ALGORITHMS 67

of pending events, and can independently determine which pending events can be safely processed.
A drawback of the central event list approach is that each process must notify the central scheduler
that it has finished processing a prior event and is ready to process more events. The design of
the agents using the sense–think–act paradigm mitigates this drawback, since all agents produce an
action in response to sensed events, which serves as notification to the scheduler that the processing
has completed. An obvious major drawback of this approach is efficiency and scalability, since a
single process coordinates activities for all agents. This single coordination point could become a
bottleneck and slow down the entire simulation. For our purposes, the total number of agents is
reasonably small, and we haven’t observed the centralized event list to be the primary performance
bottleneck.

It is well understood that any conservative parallel discrete event simulator requires a non–zero
lookaheadproperty in order to achieve good parallel performance [Ferscha and Tripathi, 1996].
Simply stated, thelookaheadvalue is a lower bound on the simulation time difference between the
generation of an event on any processorA and the realization of that event on some other processor
B. Larger lookahead values are known to give rise to better parallel performance. We now discuss
the the lookahead algorithm of SPADES. We will first cover a simple version which covers some
of the fundamental ideas and then describe the SPADES algorithm in full.

An explanation of the events that occur in the normal think-sense-act cycle of the agents must
first be given. The nature of this cycle illustrated in Figure 6.2. First, an event is put into the
queue to create a sensation. Typically, the realization of this event reads the state of the world
and converts this to some set of information to be sent to the agent. This set is encapsulated in a
sense event and put into the event queue. SPADES requires that the time between the create sense
event and the sense event is at least some minimum sense latency, which is specified by the world
model. When the sense event is realized, this set of information will be sent to the agent to begin
the thinking process. Notice that the realization of a sense event does not require the reading of
any of the current world state since the set of information is fixed at the time of the realization of
the create sense event. Upon the receipt of the sensation, the communication server begins timing
the agent’s computation. When all of the agent’s actions have been received by the communication
server, the computation time taken by the agent to produce those actions is converted to simulation
time. All the actions and the think latency are sent to the simulation engine (shown as “Act Sent” in
Figure 6.2). Upon receipt, the simulation engine adds the action latency (determined by querying
the world model) and puts an act event in the pending events queue. Similar to the minimum sense
latency, there is a minimum action latency which SPADES requires between the sending time of an
action and the act event time. The realization of that act event is what actually causes that agent’s
actions to affect the world.

Note that a single agent can be have multiple sense–think–act cycles in progress at once, as
illustrated in Figure 6.1. For example, once an agent has sent its actions (the “Act Sent” point in
Figure 6.2), it can receive its next sensation even though the time which the actions actually affect
the world (the “Act Event” point in Figure 6.2) has not yet occurred. The only overlap SPADES
forbids is the overlapping of two think phases.

Note also that all actions have an effect at a discrete time. Therefore there is no explicit support

68 CHAPTER 6. TECHNICAL DETAILS

Time ThinkSense Act
ThinkSense Act

Sense Think

Figure 6.1: Example timeline for the sense-think-act loop of an agent to illustrate overlapping
cycles

(calculated by
comm. server)(> min_sense_latency) (> min_action_latency)

think latency act latencysense latency

Create Sense Event Act EventSense Event Act Sent

Figure 6.2: The events in the sense-think-act cycle of an agent. The “Act Sent” time is circled
because unlike the other marks that represent events in the queue, “Act Sent” is just a message
from the communication server to the engine and not an event in the event queue.

by SPADES for supporting the modeling of the interaction of parallel actions. For example, the
actions of two simulated robots may be to start driving forward. It is the world model’s job to
recognize when these actions interact (such as in a collision) and respond appropriately. Similarly,
communication among agents is handled as any other action. The world model is responsible for
providing whatever restrictions on communication desired.

The sensation and action latencies provide a lookahead value for that agents and allows the
agents to think in parallel. When a sense event is realized for agent 1, it cannot cause any event
to be enqueued before the current time plus the minimum action latency. Therefore it is safe (at
least when only considering agent 1) to realize all events up till that time without violating event
ordering.

The quantity we call the “minimum agent time” determines the maximum safe time over all
agents. The minimum agent time is the earliest time which an agent can cause an event which
affects other agents or the world to be put into the queue. This is similar to the Lower Bound
on Timestamp (LBTS) concept used in the simulation literature. The calculation of the minimum
agent time is shown in Table 6.2. The agent status is either “thinking,” which means that a sensation
has been sent to the agent and a reply has not yet been received, or “waiting,” which means that
the agent is waiting to hear from the simulation engine. Besides initialization, the agent status will
always be thinking or waiting. The current time of an agent is the time of the last communication
with the agent (sensation sent or action received). The receipt of a message from a communication

6.8. ALGORITHMS 69

calculateMinAgentTime()
∀i ∈ set of all agents

if (agent i.status = Waiting)agent time i = ∞
elseagent time i = agent i.currenttime +min action latency

returnmini agent time i

Table 6.2: Code to determine the minimum time that an agent can affect the simulation.

repeat forever
receive messages
next event = pending event queue .head
min agent time = calculateMinAgentTime()
while (next event.time < min agent time)

advanceWorldTime (next event.time)
pending event queue .remove(next event)
realizeEvent (next event)
next event = pending event queue .head
min agent time = calculateMinAgentTime()

Table 6.3: Code for parallel agent discrete event simulator for strict timestamp order.

server cannot cause the minimum agent time to decrease. However, the realization of an event can
cause an increase or a decrease. Therefore, the minimum agent time must be recalculated after
each event realization. However, this algorithm could be modified to be incremental so that the
entire agent set does not have to be scanned each time.

Based on the calculation of the minimum agent time, we can now describe a simple version of
parallel agent discrete event simulator, which is shown in Table 6.3. The valuemin agent time
is used to determine whether any further events can appear before the time of the next event in the
queue.

While this algorithm produces correct results (all events are realized in time stamp order) and
achieves some parallelism, it does not achieve the maximum amount of possible parallelism. Fig-
ure 6.3 illustrates an example with two agents. When the sense event for agent 1 is realized, the
minimum agent time becomes A. This allows the create sense event for agent 2 to be realized and
the sense event for agent 2 to be enqueued. However, the sense event for agent 2 will not be re-
alized until the response from agent 1 is received. However, as discussed above, the effect of the

70 CHAPTER 6. TECHNICAL DETAILS

Create Sense Event
for Agent 1

Sense Event
for Agent 1

Create Sense Event
for Agent 2

Sense Event
for Agent 2

A

min_action_latency

Figure 6.3: An example illustrating possible parallelism that the simple parallel agent algorithm
fails to exploit.

realization of a sense event does not depend on the current state of the world. If agent 2 is cur-
rently waiting, there is no reason not to realize the sense event and allow both agents to be thinking
simultaneously.

However, this allows the realization of events out of order; agent 1 can send an event which
has a time less the time of the sense event for agent 2. Certain kinds of out of order realizations are
acceptable (as the example illustrates). In particular, we need to verify that out of order events are
not causally related. The key insight is that sensations received by agents are casually independent
of sensations received by other agents. In order to state our correctness guarantees, we will define
a new sub-class of events “fixed agent events” which have the following properties:

1. They do not depend on the current state of the world.

2. They affect only a single agent, possibly by sending a message to the agent.

3. Sense events and time notify events are both fixed agent events.

4. Fixed agent events are the only events which can cause the agent to start a thinking cycle,
but they donot necessarily start a thinking cycle.

The correctness guarantees that SPADES provides are:

1. All events which are not fixed agent events are realized in time order.

2. All events which send sensations to the agents are fixed agent events.

3. The set of fixed agent events for a particular agent are realized in time order.

In order to achieve this, several new concepts are introduced. The first is the notion of the
“minimum sensation time.” This is the earliest time that anewsensation (i.e. fixed agent event)
other than a time notifycan be generated and enqueued. The current implementation of SPADES
requires that the world model provide a minimum time between the create sense event and the sense
event (see Figure 6.2), so the minimum sensation time is the current simulation time plus that time.

The time notifies are privileged events. They are handled specially because they affect no
agent other than the one requesting the time notification. SPADES also allows time notifies to be

6.8. ALGORITHMS 71

checkForReadyEvents(a: Agent)
while (true)

if (agenta.status = thinking)
return

if (agenta.pendingagentevents.empty())
return

next event = agenta.pendingagentevents.pop()
realizeEvent(next event)

enqueueAgentEvent(e:Event)
a =e.agent
agenta.pendingagentevents.insert(e)
checkForReadyEvents(a)

doneThinking(a: Agent,t:time)
agenta.currenttime = t
checkForReadyEvents(a)

Table 6.4: Code for maintaining the per agent fixed agent event queues

requested an arbitrarily small time in the future, before even the minimum sensation time. This
means that while an agent is thinking, the simulation engine cannot send any more fixed agent
events to that agent without possibly causing a violation of correctness condition 3. However, if an
agent is waiting (i.e. not thinking), then the first fixed agent event in the pending event queue can
be sent as long as its time is before the minimum sensation time.

To insure proper event ordering, one queue of fixed agent events per agent is maintained. All
fixed agent events enter this queue before being sent to the agent, and an event is put into the agent’s
queue only when the event’s time is less than the minimum sensation time.

There are two primary functions dealing with the agent queue. First, enqueueAgentEvent puts
a fixed agent event into the queue. The doneThinking function is called when an agent finishes
its think cycle. Both functions call a third function checkForReadyEvents. Psuedo-code for these
functions is shown in Table 6.4. Note that in checkForReadyEvents, the realization of an event can
cause the agent status to change from waiting to thinking.

Using these functions, we describe in Table 6.5 the main loop that SPADES uses. This is a
modification of the algorithm given in Table 6.3. The two key changes are that in the first while
loop, fixed agent events are not realized, but are put in the agent queue instead. The second loop
(the “foreach” loop) scans ahead in the event queue and moves all fixed agent events less that the
minimum sensation time into the agent queues. Note that in both cases, moving events to the agent
queue can cause the events to be realized (see Table 6.4).

72 CHAPTER 6. TECHNICAL DETAILS

repeat forever
receive messages
next event = pending event queue .head
min agent time = calculateMinAgentTime()
while (next event.time < min agent time)

advanceWorldTime (next event.time)
pending event queue .remove(next event)
if (next event is a fixed agent event)

enqueueAgentEvent(next event)
else

realizeEvent (next event)
next event = pending event queue .head
min agent time = calculateMinAgentTime()

min sense time = current time + min sense latency
foreache (pending event queue) /* in time order */

if (e.time> min sense time)
break

if (e is a fixed agent event)
pending event queue .remove(e)
enqueueAgentEvent(e)

Table 6.5: Code for efficient parallel agent discrete event simulator as used by SPADES

Appendix A

GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers

73

74 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or a portion

of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that

deals exclusively with the relationship of the publishers or authors of the Document to the Doc-
ument’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (For example, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation

A.3. COPYING IN QUANTITY 75

in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

76 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page.
If there is no section entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

A.5. COMBINING DOCUMENTS 77

• Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option des-
ignate some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties – for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

A.5 Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

78 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

A.6 Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a sin-
gle copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the compi-
lation. Such a compilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their being thus compiled,
if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a transla-
tion of this License provided that you also include the original English version of this License. In
case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

A.10. FUTURE REVISIONS OF THIS LICENSE 79

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the In-
variant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

80 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

Bibliography

Scott D. Anderson. A simulation substrate for real-time planning. Technical Report 95-80, Uni-
versity of Massachusetts at Amherst Computer Science Department, 1995. (Ph.D. thesis). 2.3

Scott D. Anderson. Simulation of multiple time-pressured agents. In S. Andradóttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, editors,Proceedings of the 1997 Winter Simulation Conference,
pages 397–404, 1997. 2.3

A. Birk, S. Coradeschi, and S. Tadokoro, editors.RoboCup-2001: The Fifth RoboCup Competitions
and Conferences. Springer Verlag, Berlin, 2002. (to appear). 3.2.1

R. E. Bryant. Simulation of packet communications architecture computer systems. InMIT-LCS-
TR-188, 1977. 6.8

K. Chandy and J. Misra. Distributed simulation: A case study in design and verification of dis-
tributed programs. InIEEE Transactions on Software Engineering, September 1979. 6.8

K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of parallel computa-
tions. InCommunications of the ACM, volume 24, November 1981. 6.8

K. M. Chandy and R. Sherman. The conditional event approach to distributed simulation. In
Proceedings of the SCS Multiconference on Distributed Simulation, March 1989. 6.8

Alois Ferscha and Satish Tripathi. Parallel and distributed simulation of discrete event systems.
In A. Y. Zomaya, editor,Parallel and Distributed Computing Handbook, pages 1003 – 1041.
McGraw-Hill, 1996. 6.8

Boris D Lubachevsky. Efficient distributed event-driven simulations of multiple-loop networks.
Communications of the Association for Computing Machinery, 32(1):111–123, 1989. 6.8

F. Mattern. Efficient algorithms for distributed snapshots and global virtual time approximation. In
Journal of Parallel and Distributed Computing, 1993. 6.8

David M Nicol. The cost of conservative synchronization in parallel discrete event simulations.
Journal of the Association for Computing Machinery, 40(2):304–333, 1993. 6.8

81

82 BIBLIOGRAPHY

George F. Riley, Richard M. Fujimoto, and Mostafa H. Ammar. Network aware time manage-
ment and event distribution. InProceedings of the 14th Workshop on Parallel and Distributed
Simulation, May 2000. 6.8

Patrick Riley. MPADES: Middleware for parallel agent discrete event simulation. In Gal A.
Kaminka, Pedro U. Lima, and Raul Rojas, editors,RoboCup-2002: The Fifth RoboCup Compe-
titions and Conferences. Springer Verlag, Berlin, 2003. (to appear). 1.3, 4.10, 6.8

Patrick Riley and George Riley. SPADES — a distributed agent simulation environment with
software-in-the-loop execution. In S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors,
Winter Simulation Conference Proceedings, 2003. (to appear). 1.3, 2.3, 4.10, 4.11, 6.8

Patrick Riley, Peter Stone, and Manuela Veloso. Layered disclosure: Revealing agents’ inter-
nals. In C. Castelfranchi and Y. Lespérance, editors,Intelligent Agents VII. Agent Theories,
Architectures, and Languages — 7th. International Workshop, ATAL-2000, Boston, MA, USA,
July 7–9, 2000, Proceedings, Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin,
Berlin, 2001. 5.1

Jeff Steinmann. Speedes: Synchronous parallel enviornment for emulation and discrete event
simulation. Advances in Parallel and Distributed Simulation, SCS Simulation Series, 23:95–
103, 1991. 6.8

Index

perfctr instr , seethink—timers—perfctr

accel rest , 55
accept monitor connections, 32, 52
act messages, 19, 27, 28, 59–61, 63
ActEvent , 19, 22, 28

getAgent , 19
setAgent , 19

action latency, 7–8, 68
action logging,seelogging
action log fn, 39, 47
action log level, 39, 47
actionlog , seelogging
actions.log , 13
agent database, 11, 15, 24–27, 48, 56–58, 62
agent check gumbel dist A, 31, 50, 51
agent check gumbel dist B, 31, 50, 51
agent check threshold sec, 31, 50
agent check use randomness, 31, 50
agent db fn, 48, 56
agent intercept library, 11, 30, 50
agent packet size, 6, 48
agent speed, 55
agent stderr log fpat, 27, 51
agent stdout log fpat, 27, 51
agent type external , 56
agent type integrated , 57
agent type placeholder , 58
agent types, 56
agentdb.xsd , 11, 56
AgentLostReason , 22–23
agents, 6

checking up on, 31

definition of, 1
discrete event simulation and, 6
events created for, 28
external, 25–27, 31, 56–61
integrated, 25, 27–30, 57–58, 61–63
interface to, 26–28
logging, 27
migration, 41
placeholder, 25, 58
process tracking, 30–31
shutdown process, 41–42
thinking time, 64–65
timers,seethink—timers
types, 24–26, 56–58

AgentTypeConstIterator , 26
AgentTypeDB , 25, 26

deref , 26
getAgentType , 26
getBeginIterator , 26
isIteratorValid , 26
nullIterator , 26

AgentTypeIterator , 26
algorithms, 66–71
ALR AgentRequest , 23
ALR BadFD, 22
ALR CommServerDisconnect , 22
ALR InitError , 22
ALR Internal , 23
ALR None, 22
ALR ProcessVanished , 22, 31
ALR ThinkTooLongSim , 23, 31
ALR ThinkTooLongWallClock , 23, 31
ALR WorldModel , 22

83

84 INDEX

arrive time, 27, 59

commandline , 57
communication servers, 5

integrated, 25, 41
parameters of, 46–51

configuration, 9–10
connect , 13
continuous simulation, 6
correctness guarantees, 17, 70
create agent logfiles, 27, 48
create logfile dir, 47
CreateSenseEvent , 19, 28

createSense , 19, 28
getAgent , 19
setAgent , 19

DataArray , 20, 32, 33
copyData , 33
getData , 33
getSize , 33
takeData , 32, 33

default agent input fd, 48, 57, 58
default agent output fd, 48, 57, 58
default process timer, 29, 30, 49
discrete event simulation, 2, 6
done thinking messages, 7, 8, 26, 27, 31, 59–

61, 63

enable ipc message reception, 31, 50
ende , 37, 38
EndSimulationEvent , 20, 24
engine,seesimulation engine
engine host, 15, 51
engine port, 47
EngineParam , 16, 21, 40

getOptions , 16
error logging,seelogging
error messages, 62

act when not thinking , 60
bad time in rtn , 60
bad token , 60

done thinking when not thinking ,
60

init done when not init , 60
mig data when not mig , 60
no token on line , 60
rtn when not thinking , 60

errorlog , seelogging
Event , 16, 18–20, 35

getOrder , 18
getSecondaryOrder , 18, 19, 35
getTime , 18
print , 19
realizeEvent , 19
realizeEventSimEngine , 19
realizeEventWorldModel , 16, 19,

28
setTime , 18

events, 2,
see alsospecific event class names

definition of, 17
fixed agent, 17, 20, 70–71
interface to, 18–20

events text.log , 13
exit messages, 59, 61–63

fixed agent events,seeevents—fixed agent
FixedAgentEvent , 19, 20

include , 56
informs, 20, 27, 53, 59, 62
init arg , 58
initialization data, 26, 41, 60, 62
initialization done messages, 26, 60, 61, 63
inputfd , 57
installation, 9, 11
IntegrateAgentActions , 62
IntegratedAgent , 27, 28, 58, 62, 63

getActions , 62
initialize , 27, 58, 62
receiveError , 62
receiveExit , 62

INDEX 85

receiveInitData , 62
receiveMigrationRequest , 62
receiveSense , 62
receiveThinkTime , 62
receiveTimeNotify , 62
setActionCallbacks , 62

IntegratedAgentActions , 28, 62
act , 63
doneThinking , 63
exit , 63
initDone , 63
migrationData , 63
requestTimeNotify , 63

internal tcp packet size, 6, 47
ipc force remove, 31, 50

LD PRELOAD, 30
length-prefixed I/O, 58
lib path , 57
limited rate run mode, 16, 42–43
limited rate default st per sec, 42, 54
limited rate rebase interval, 43, 54
load send interval, 49
log files, 13–14
logfile dir, 47, 49, 51, 52
Logger , 37, 39

instance , 37
setLoggingStreams , 39

logging, 37–39

max action latency, 55
max agentq trailing time, 27, 53, 54
max connect reply wait, 51
max pause mode seconds, 16, 53
max secs for agent think, 23, 31, 50
max sense interval, 54, 55
max sense latency, 54
max simtime for agent think, 23, 31, 50
max timenot trailing time, 27, 54
max unnatural lost agents, 49
migration data, 41, 60, 61, 63

migration requests, 41, 60, 62
min action latency, 55
min responses before migration, 41, 53
min sense interval, 54, 55
min sense latency, 54
minimum action latency, 22, 33, 35
minimum agent time, 33, 68–69
minimum sensation latency, 22, 34
minimum sensation time, 34, 70
monitor log file, 32
monitor.log , 14
monitor interval, 32, 52
monitor log fn, 32, 52
monitor port, 32, 52
monitors, 21, 32

interface to, 63–64
send events, 20

MonitorSendEvent , 20, 32

NOACTION LOG, 39
no message timeout, 51
non-thinking sensations, 20, 27, 59, 62
normal run mode, 16
num agents, 55, 56
num comm servers wanted, 55

old time notify, 59, 62
ordering constants, 18, 35
ordering guarantees, 6–7, 17, 70
outputfd , 57

parallelism, 33–34
parameters, 45–56,

see alsospecific parameter names
ParamReader , 39, 40

add2Maps , 40
addAll2Maps , 40
addParamStorer , 40
getOptions , 39
ParamReader , 39
postReadProcessing , 40
setDefaultValues , 40

86 INDEX

ParamStorer , 40
pause mode wait sec, 53
pause mode wait usec, 53
paused mode, 16
playlog , 14
port bind retries, 52
port bind sleep sec, 52
print random seed to stdout, 35, 47
process timers,seethink—timers

random act latency, 55, 56
random agent placement, 56
random seed, 35, 47
ReadBuffFD , 58
record think times, 29, 49
replay think buffer size, 29, 49
reproducibility, 34–36
request time notifies, 6–7, 20, 27, 60, 61, 63
require integrated commserver , 58
run exp.pl , 11
run integrated commserver, 41, 54

sample agents, 11–14
sample world model, 11–14

parameters of, 54–56
secs for agent shutdown, 42, 48
secs for socket shutdown, 54
send time, 59
send agent arrive time, 49, 59
send agent send time, 49, 59
send agent think times, 27, 49, 60
sensations, 20, 26–27, 33, 34, 53, 59, 62

creating, 19–20
latency, 7–8, 20, 28, 68
untimed, 20, 29

sense–think–act cycle, 7–8, 67
SenseEvent , 19, 20, 28

getSendTime , 20
getThinking , 20
setThinking , 20

show ttimes.pl , 29, 65

SIGKILL , 42
SIGTERM, 41
sim time per second, 55
SimEngine , 17, 21, 23, 25, 32

areAllAgentsInitialized , 24
changeSimulationMode , 17, 22, 24
enqueueEvent , 24
getAgentTypeDB , 24, 25
getCurrWallClockTime , 24
getNumAgents , 23
getNumCommServers , 23
getSimulationMode , 24
getSimulationTime , 23
getWorldModel , 24
initiateShutdown , 24
inPauseMode , 24
inShutdownMode , 24
killAgent , 24
sendExtraMonitorInfo , 24, 32
startNewAgent , 23

SimTime , 16
SIMTIME INVALID , 18
simulation engine, 5–6,

see alsoSimEngine
interface to, 23–24
parameters of, 46–54

simulation modes, 16–17,
see alsoSM constants

simulation length, 13, 55
SimulationEngineMain , 16
size, 54
SMPausedInitial , 16, 17
SMPausedMonitor , 17, 63
SMPausedWorldModel , 17
SMRunLimitedRate , 16, 42, 64
SMRunNormal , 16, 64
SMShutdown , 17
speed max, 55
startup process, 16
status update interval, 48
stiction, 55

INDEX 87

SysV IPC Message Queue, 30

TagFunction , 39
TCP NODELAY, 6
text event log fn, 13, 52
think

latency, 7–8
recording times of, 29, 65
timers, 29–30

default, 30, 49
fixed time, 29, 35
jiffies, 8, 10, 29, 35, 64–65
perfctr, 8, 10, 30, 35, 65
replay, 29, 35, 49

think time messages, 27, 49, 60, 62
think times file pattern, 29, 49
thinking cycle, 26, 27, 59, 61
thinking latency, 20, 28
ThinkingType , 20, 27, 62
time notifies, 7, 20, 26, 27, 33, 34, 54, 59, 62,

70–71
time update messages, 31
TimeNotifyEvent , 20
timeout for event, 53
timer , 57, 58
trace on error, 48
TT Invalid , 20
TT Not , 20, 27
TT Regular , 20
TT Untimed , 20

use migration, 41, 53
use monitor log, 32, 52
use random untimed sensations, 56
use randomness, 35, 47
use text event log, 13, 52

version, 47

wait sec, 51–53
wait usec, 51–53
warning logging,seelogging

warninglog , seelogging
workingdir , 57
world model, 6,see alsoWorldModel
WorldModel , 16, 19, 21, 24, 28, 32, 33, 35,

64
agentConnect , 22–24, 35
agentDisappear , 22
finalize , 21
getMinActionLatency , 22, 33
getMinSenseLatency , 22, 34
getMonitorHeaderInfo , 21, 24, 32
getMonitorInfo , 21, 24, 32
initialize , 21
notifyCommserverConnect , 23
notifyCommserverDisconnect , 23
parseAct , 19, 22, 28, 35
parseMonitorMessage , 22, 64
parseParameters , 16, 21
pauseModeCallback , 16, 22
simToTime , 16, 21, 23, 35

	List of Figures
	List of Tables
	Acknowledgments
	Typographical Conventions
	1 Introduction
	1.1 What is SPADES?
	1.2 What SPADES Provides
	1.3 How to Use This Manual

	2 System Structure
	2.1 Component Organization
	2.2 Event-Based Simulation
	2.3 Sense-Think-Act

	3 Getting Started
	3.1 Configuration and Installation
	3.1.1 Configuration Parameters
	3.1.2 Files Installed

	3.2 Sample World Model and Agents
	3.2.1 Description
	3.2.2 Running
	3.2.3 Log files

	4 Creating a SPADES Simulation
	4.1 Basic Simulation Process
	4.1.1 Running a Simulation
	4.1.2 World Model's Perspective

	4.2 Events
	4.2.1 Definition
	4.2.2 Interface Description

	4.3 World Model
	4.4 Simulation Engine Interface
	4.5 Agent Types
	4.5.1 External Agents
	4.5.2 Integrated Agents
	4.5.3 Placeholder Agents
	4.5.4 Working with the Agent Database

	4.6 Agent Interface
	4.6.1 External Agent Perspective
	4.6.2 Integrated Agent Perspective
	4.6.3 World Model Perspective

	4.7 Agent Monitoring
	4.7.1 Agent Timers
	4.7.2 Agent Process Tracking
	4.7.3 Checking on Agents

	4.8 Monitor
	4.9 DataArray
	4.10 Achieving Parallelism
	4.11 Randomness and Reproducibility

	5 Miscellaneous Features
	5.1 Action and Error Logging
	5.1.1 Basic Usage
	5.1.2 Parameters
	5.1.3 Advanced Usage

	5.2 Parameter Reading
	5.3 Agent Migration
	5.4 Integrated Communication Server
	5.5 Agent Shutdown Management
	5.6 Limited Rate Run Mode

	6 Technical Details
	6.1 Parameters
	6.1.1 Shared Parameters
	6.1.2 Communication Server
	6.1.3 Simulation Engine
	6.1.4 Sample World Model

	6.2 Agent Database
	6.3 Length Prefixed I/O Format
	6.4 External Agent Input/Output
	6.4.1 Agent Input Format
	6.4.2 Agent Output Format

	6.5 Integrated Agent Input/Output
	6.6 Monitor Interface
	6.7 Agent Thinking Time
	6.7.1 Tracking for Jiffies Timer
	6.7.2 Tracking for Perfctr Timer
	6.7.3 Recorded File Format

	6.8 Algorithms

	A GNU Free Documentation License
	A.1 Applicability and Definitions
	A.2 Verbatim Copying
	A.3 Copying in Quantity
	A.4 Modifications
	A.5 Combining Documents
	A.6 Collections of Documents
	A.7 Aggregation With Independent Works
	A.8 Translation
	A.9 Termination
	A.10 Future Revisions of This License

	 Bibliography
	 Index

