Computing Global Virtual Time
in Shared-Memory Multiprocessors

Richard M. Fujimoto and Maria Hybinette
Georgia Institute of Technology

Global Virtual Time (GVT) is used in the Time Warp synchronization mechanism to perform
irrevocable operations such as I/O and to reclaim storage. Most existing algorithms for computing
GVT assume a message-passing programming model. Here, GVT computation is examined in
the context of a shared-memory model. We observe that computation of GVT is much simpler in
shared-memory multiprocessors because these machines normally guarantee that no two processors
will observe a set of memory operations as occurring in different orders. Exploiting this fact, we
propose an efficient, asynchronous, shared-memory GVT algorithm and prove its correctness. This
algorithm does not require message acknowledgments, special GVT messages, or FIFO delivery
of messages, and requires only a minimal number of shared variables and data structures. The
algorithm only requires one round of interprocessor communication to compute GVT, in contrast
to many message-based algorithms that require two. An efficient implementation is described that
eliminates the need for a processor to explicitly compute a local minimum for Time Warp systems
using a lowest-timestamp-first scheduling policy in each processor.

In addition, we propose a new mechanism called on-the-fly fossil collection that enables efficient
storage reclamation for simulations containing large numbers, e.g., hundreds of thousand or even
millions of simulator objects. On-the-fly fossil collection can be used in Time Warp systems
executing on either shared-memory or message-based machines. Performance measurements of
the GVT algorithm and the on-the-fly fossil collection mechanism on a Kendall Square Research
KSR-2 machine demonstrate that these techniques enable frequent GVT and fossil collections,
e.g., every millisecond, without incurring a significant performance penalty.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Shared memory; B.6.1 [Logic
Design]|: Design Styles—memory control and access, memory used as logic; C.1.2 [Process Ar-
chitectures]: Multiprocessors (MIMD); D.4.1 [Operating Systems|: Process Management—
concurrency, mutual ezclusion; D.4.4 [Operating Systems|: Communications Management—
Message sending; 1.6.1 [Simulation and Modeling]: Simulation Theory; 1.6.7 [Simulation
and Modeling]: Simulation Support Systems; [.6.8 [Simulation and Modeling]: Types of
Simulation—discrete event, parallel

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Parallel discrete event simulation, asynchronous algorithms,
global virtual time, fossil collection

This work was supported by Innovative Science and Technology contract numbers DASG60-93-C-
0126 and DASG60-95-C-0103 provided by the Ballistic Missile Defense Organization and managed
through the Space and Strategic Defense Command.

Address: College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 . R.M. Fujimoto and M. Hybinette

1. INTRODUCTION

Parallel computation is often suggested as an approach to reduce the execution time
of discrete-event simulation programs. However, concurrent execution of events
containing different timestamps requires a synchronization mechanism to ensure
that the simulator yields the same results as would be obtained if events were
processed in timestamp order. A large body of literature has developed concerning
this problem, e.g., see [Fujimoto 1990a; Nicol and Fujimoto 1994].

Time Warp is a well-known synchronization protocol that detects out-of-order
event executions and recovers using a rollback mechanism [Jefferson 1985]. Re-
searchers have reported success in using Time Warp to speed up simulations of
combat models [Wieland et al. 1989], queuing networks [Fujimoto 1989], and wire-
less communication networks [Carothers et al. 1994], among others.

In Time Warp, a mechanism called fossil collection is used to commit operations
such as I/O that cannot be easily rolled back, and to reclaim memory used to
hold history information that is no longer needed. Fossil collection requires the
computation of a value called global virtual time or GV T that enables one to identify
those computations and history information that are not prone to future rollbacks.

Here, we are concerned with algorithms to efficiently compute GVT and re-
claim storage so that I/O operations and memory reclamation can be performed as
rapidly as possible, while incurring minimal performance degradation to the rest of
the system. This is important in interactive simulations where I/O operations must
be committed as soon as possible, and in large-scale, small-granularity simulations
that require much of the memory available on the multiprocessor. In both cases,
GVT must be computed relatively frequently. By “large-scale, small-granularity”
we mean simulations containing hundreds of thousands or even millions of simulator
objects, but only a few hundreds of machine instructions in each event computa-
tion, e.g., simulations of digital logic circuits, wireless communication networks, or
certain combat models.

Specifically, we are concerned with the implementation of Time Warp on shared-
memory multiprocessors. The growing popularity of multiprocessor workstations
such as the Sun SparcServer and SGI Challenge has heightened interest in this class
of machines for parallel simulation. Other commercial shared-memory machines
include the Kendall Square Research KSR-1 and KSR-2, Sequent Symmetry, and
Convex SPP machines.

The algorithms presented here assume a sequentially consistent memory model
for multiprocessor behavior. Lamport defines sequential consistency as “the re-
sult of any execution [on the multiprocessor] is the same as if the operations of
all processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program”
[Lamport 1979]. For example, if processor 1 issues memory references My, Ma,
Ms;, and M, (in that order), and processor 2 similarly issues references M,, Mp,
M., and My, then My, M,, My, My, M., M3, My, M, is a sequentially consistent
total ordering, but My, M,, My, M3, M., M, My, My is not. A key observation is



Computing Global Virtual Time in Shared-Memory Multiprocessors . 3

that all processors perceive the same total ordering of the memory references. The
algorithms proposed here rely on and exploit this property to yield simpler, more
efficient algorithms than would result from simply implementing a message-based
algorithm. Not all shared memory machines provide sequentially consistent mem-
ory, e.g., see [Gharachorloo et al. 1988]. However, machines using weaker memory
models may emulate sequential consistency by inserting synchronization primitives
at suitable locations in the program.

From an efficiency standpoint, the algorithms described here are most effective on
multiprocessors with coherent caches. This means some mechanism is provided to
ensure that duplicate copies of a single memory location remain consistent. Existing
machines typically use a hardware mechanism that invalidates or updates duplicate
copies when one processor modifies a memory location.

In the following, we first review the Time Warp mechanism and define global
virtual time. We discuss essential differences between message-based machines and
shared-memory multiprocessors and, in this context, discuss prior GVT algorithms
based on message-passing models. We then define the message observable class of
systems that delineates the range of Time Warp systems to which the algorithms
presented here apply. We propose a simple GVT algorithm for message observable
Time Warp systems, and prove it is correct. We then present an optimized version
of this algorithm and describe its implementation in an operational Time Warp
system. We describe on-the-fly fossil collection, a mechanism that enables fast
reclamation of memory, especially for large-scale simulation programs, and present
performance measurements of the GVT algorithm and fossil collection mechanisms
in an operational Time Warp system executing on a KSR-2 multiprocessor.

2. TIME WARP AND GLOBAL VIRTUAL TIME

A Time Warp program consists of a collection of logical processes (LPs) that com-
municate by exchanging timestamped events (also called messages). To ensure
correctness, each LP must achieve the same result as if incoming messages were
processed in timestamp order. If an LP receives a “straggler” message with times-
tamp smaller than that of others already processed by the LP, event computations
with timestamp larger than the straggler are rolled back, and reprocessed (after the
straggler) in timestamp order. Each message sent by a rolled back computation is
cancelled by sending an anti-message that “annihilates” the original message. A
received anti-message will also cause a rollback if the cancelled message has already
been processed.

GVT defines a lower bound on the timestamp of any future rollback. Here, we
use the following definition of GVT:

Definition 1. (Global Virtual Time)
GVT(T) is defined as the minimum timestamp of any unprocessed message or
anti-message in the system at real time T'.

It is apparent from this definition that one need only identify all unprocessed mes-
sages in the system at time T to compute GVT(T). Messages that are currently
being processed are regarded as unprocessed, as are messages that have been rolled
back and are waiting to be reprocessed. Jefferson defines GVT(T') as the “mini-
mum of (1) all virtual times in all virtual clocks at time T', and (2) of the virtual



4 . R.M. Fujimoto and M. Hybinette

Processors

GVT =
min(100,200)
GVTController F - V& ¢4 - - - - - - - - - - — —

local min

=100~ —

GVT request

Processor 1 | — —

event message,
timestamp=90,

Processor2 f — — — — —

Real-Time

Fig. 1. The simultaneous reporting problem. An incorrect GVT is computed because different
processors receive the GVT request at different points in time.

send times of all messages that have been sent but have not yet been processed . ..”
[Jefferson 1985]. Definition 1 is equivalent to Jefferson’s definition if one ignores
message sendback (which necessitates using the send timestamp rather than the
receive timestamp) because the virtual clock of an LP is equal to the minimum
timestamp of any unprocessed message in the LP, or positive infinity if there are
none. Here, we will use the receive timestamp of the message for computing GVT.
The algorithms presented here can be easily adapted to use other definitions of
GVT, e.g., see [Jefferson 1990; Lin and Preiss 1991].

3. MESSAGE-PASSING AND SHARED-MEMORY ARCHITECTURES

It is reasonable to ask why GVT computation should be different on a shared-
memory machine compared to a message-based machine, given that one can al-
ways implement shared-memory operations on message-passing computers, and vice
versa. To answer this question, consider the basic problems that must be addressed
by any GVT algorithm. GVT algorithms attempt to capture a consistent snap-
shot of the state of the system [Mattern 1993]. The two problems that make this
non-trivial, particularly in distributed computing environments, are the transient
message problem, and the simultaneous reporting problem [Samadi 1985].

A transient message is a message that has been sent, but not yet received. In
effect, a transient message momentarily “disappears” into the network. Transient
messages are unprocessed messages, so they must be considered by the GVT algo-
rithm. The underlying message passing software may use message acknowledgments
that in principal, could be used to solve this problem. However, such acknowledg-
ments are often implemented in the communication protocol stack, and are not
visible to the Time Warp system.

In a shared-memory machine, however, transient messages can be eliminated
because message passing is normally implemented by the sender writing the message
into a memory buffer that is readable by the receiving processor. Thus, the message
never “disappears.” Later, we characterize this property more precisely when we
define message observable Time Warp systems.

The simultaneous reporting problem occurs because not all processors receive



Computing Global Virtual Time in Shared-Memory Multiprocessors . 5

the message asking them to compute their local minimum (based on their local
snapshot) at the same point in real time. This can result in scenarios such as the
following (see Figure 1):

(1) Processor 1 receives the GVT request and responds with a local minimum of
100.

(2) Processor 2 sends a message with timestamp 90 to processor 1. An acknowl-
edgment may be delivered to processor 2, confirming delivery.

(3) Processor 2 advances to a later virtual time, and then receives the GVT request,
and responds with a local minimum of 200.

The above scenario computes an incorrect GVT value of 100 because the message
with timestamp 90 has not been considered by either processor.

The essence of the simultaneous reporting problem is that the processors do not
all perceive the same global ordering of actions (message sends). In the above ex-
ample, processor 1 believes the timestamp 90 message was created after the GVT
request, and concludes it need not be considered in the GVT computation. Mean-
while, processor 2 observes that the message send occurred before the request, but
concludes the receiver is responsible for including the message in its local minimum
since delivery was confirmed via the acknowledgment message prior to the GVT
request. Thus, neither processor claims responsibility for the message, causing it
to “fall between the cracks.”

This problem has a trivial solution in sequentially consistent shared-memory mul-
tiprocessors. The key observation is sequentially consistent memory guarantees that
no two processors will perceive different global orderings of memory references to a
shared variable. Thus, the problem described above is easily solved by implement-
ing the broadcast GVT request via a memory write to a global, shared variable.
As will be seen later, it is easy to ensure that both processors 1 and 2 observe the
message send as either occurring before, or after, the write to this global variable.
This precludes scenarios such as that described above.

Designers of message-based GVT algorithms have devised a number of clever
solutions to attacking the aforementioned problems. Solutions to the transient
message problem include use of message acknowledgments [Samadi 1985; Bellenot
1990], data structures to reduce the frequency of acknowledgment messages [Lin
and Lazowska 1990], control messages to “flush out” transient messages [Lin 1994],
and counters to detect the existence of relevant transient messages [Tomlinson and
Gang 1993; Mattern 1993].

Similarly, a variety of methods have been proposed to solve the simultaneous
reporting problem. Barrier synchronizations are one solution, but they require
the parallel simulator to stop processing events while GVT is being computed.
Further, the barrier may be a time consuming operation in large machines. A
better, asynchronous solution is to use two “rounds” of control messages. In each
round each processor must first receive a message, then send one or more messages
in response. For example, in the token passing algorithm described in [Preiss 1989,
the processors are organized as a ring. A “Start-GVT” token is first sent around the
ring. When this message reaches the processor that initiated the token, the token
is passed around the ring a second time, with the token containing the minimum
among the local minima (including transient messages) of all the processors that the



6 . R.M. Fujimoto and M. Hybinette

token has visited thus far in this second round. The token contains the GVT value
at the end of the second trip around the ring. Along the same lines, Bellenot also
uses two rounds of control messages, one to start the GVT computation, and the
second to report local minima and compute the global minimum, but uses a special
message routing graph (essentially, two binary trees with their leaf nodes connected
together) rather than a ring [Bellenot 1990]. Mattern also proposes sending two
broadcasts of control messages to define separate cuts, and “colors” messages to
identify those that cross the second (later) cut and must be included in the GVT
computation [Mattern 1993].

In essence, these algorithms use a first round of messages to initiate the GVT
computation, then a second round to account for messages that were sent while the
first round was in progress, in order to solve the simultaneous reporting problem.
The algorithms proposed here combine these two rounds into a single round of in-
terprocessor communication. Here, each processor simply receives a request for its
local minimum, and then responds with an appropriate value. This is possible be-
cause unlike message-passing machines, sequentially consistent memory provides a
total ordering of memory operations that can be exploited to solve the simultaneous
reporting problem.

The algorithms proposed here do not require message acknowledgments, barrier
synchronizations, or the extra “round’ of control messages discussed above. Mes-
sages need not be delivered in the order that they were sent. The algorithms are
asynchronous in the sense that the GVT computation can be interleaved with other
Time Warp operations (event processing, rollback, etc.), and no blocking is required,
unless a processor runs out of memory before the new GVT value has been com-
puted. Later, we demonstrate that the algorithm can be efficiently implemented in
existing shared-memory machines.

Although we assume throughout that the hardware platform is a shared-memory
multiprocessor, in principal, one could implement the algorithms described here on
message-based machines. Indeed, implementation of shared-memory constructs on
message-based architectures has been an active research area in recent years, e.g.,
see [Li and Hudak 1989]. However, the performance of such an implementation
relative to other approaches designed specifically for message passing architectures
is unclear because of the need to implement sequentially consistent memory (or
at least a total ordering of memory operations) in software. Many distributed
shared-memory systems implement weaker memory consistency models. We will
not address this question here, but leave it as an area for future research.

4. MESSAGE OBSERVABLE SYSTEMS

Before describing the GVT algorithms, we first define the class of systems where
they apply. We assume throughout that “message” refers to an unprocessed message
or anti-message, unless stated otherwise. An unprocessed anti-message is one that
has been sent to a processor, but the processor has not yet annihilated it.

As mentioned earlier, transient messages complicate the GVT computation. Be-
low, we define the message observable class of Time Warp systems where transient
messages are avoided. We assume that each data structure that can hold messages
is “owned” by some processor. The processor that owns a data structure is respon-
sible for the messages that it contains when it computes its local minimum in the



Computing Global Virtual Time in Shared-Memory Multiprocessors . 7

Processor Data Structures

incoming
messages > MsgQ
EvQ
incoming
anti-messages » CanQ

Fig. 2. Queues in GTW System. MsgQ and CanQ hold incoming messages and anti-messages,
respectively, and EvQ holds unprocessed messages.

GVT computation. We say a message is observable by a processor if the message is
stored in a data structure owned by that processor. All of the algorithms presented
here assume the following message observability property.

Definition 2. (Message Observable Time Warp Systems)
A Time Warp system is said to be message observable if at any instant in time,
each unprocessed message in the system can be observed by at least one processor,
and the observability of a message by a processor does not change without some
explicit action by some processor in the system.

Message observability is useful because it eliminates the transient message problem.

A Time Warp system executing on a shared-memory multiprocessor will usually
be message observable because Time Warp operations involve modifying messages
and moving them between data structures. For instance, in the GTW Time Warp
system described in [Das et al. 1994], each processor contains message queues to
hold incoming messages sent from other processors, and a data structure to hold the
unprocessed messages for that processor (see Figure 2). Message passing is imple-
mented by directly enqueuing the message in a message queue owned by the receiver.
Message-based systems using blocking message sends where the sending processor
blocks until the destination has received the message are also message observable.
Message-based Time Warp systems using non-blocking message sends where the
Time Warp executive cannot directly access messages in transit to another proces-
sor are often mot message observable. In principle, message acknowledgments used
to provide reliable delivery could be used to make the system message observable,
however, such acknowledgment messages are often implemented in the underlying
communication protocol stack, and are not visible to the Time Warp program exe-
cuting in the application layer. Thus, systems such as these are beyond the scope of
the algorithms proposed here without additional mechanisms to make the system
message observable (e.g., application level acknowledgments).

We assume the observability of a message can only be changed by the following
observability operations:

Definition 3. (Observability Operations)
Below, i indicates the processor performing the operation, and S; denotes the set
of unprocessed messages that are observable by processor i.

(1) Complete processing message M: S; = S; — M.



8 . R.M. Fujimoto and M. Hybinette

(2) Roll back an event M: S; = S; UM.
(3) Annihilate a message/anti-message pair M+ /M~: S; = (S; — M) — M.

(4) Send a message or anti-message M to processor j: S; = S; UM where j is
the processor receiving the message.
5)

(5) Fossil collect message M: S; = S; — M.

It is noteworthy that a processor can only affect the set of observable messages in
another processor through the send operation.

5. A SIMPLE GVT ALGORITHM

We first describe a very simple GVT algorithm to capture the central ideas used
in the optimized algorithm that is presented later. Because the optimized algo-
rithm yields better performance and affords a simpler implementation, the initial
algorithm described next is only included to facilitate the presentation.

Let TS(M) denote the timestamp of message M, and MinTS(S) denote the
minimum timestamp of any message in the set S. The following algorithm computes
GVT(Tgyr) by taking an approximate snapshot of the system at time Tgyr:

ALGORITHM 1. (GVT Algorithm)

(1) When a processor wishes to compute GVT, it sets a global flag variable called
GVTFlag. Let Tgyr be the instant in real time that GVTFlag is set.

(2) Prior to performing any observability operation, the processor first checks
GVTFlag. If GVTFlag is set, the processor reports the minimum timestamp of
its observable messages (i.e., processor i reports MinT S(S;)) to a central con-
troller before performing the observability operation. We require that checking
GVTFlag and performing the observability operation are done as one, atomic
action, and that GVTFlag may not be set during any such atomic operation.
Any number of processors may concurrently perform observability operations,
but none may be performing an observability operation while GVTFlag is being
set. We call this requirement the mutual exclusion assumption.

(8) When the central controller has received all of the local minima, it computes
the global minimum G, and reports this value to the other processors as the new

GVT.

The mutual exclusion assumption forces each GVTFlag check / observability opera-
tion to occur in its entirety either before or after GVTFlag is set. This is necessary
to avoid a race condition, as will be discussed later. Later, we also discuss how the
algorithm can be optimized to eliminate this assumption.

The intuition behind this algorithm is as follows. Sequential consistency and the
mutual exclusion assumption force each observability operation to occur either be-
fore, or after GVTFlag is set. The algorithm simply captures a snapshot of the set
of observable messages in the system when GVTFlag is set, and GVT is computed
based on this snapshot. Actually, this snapshot may include some messages gener-
ated after GVTFlag is set, but as discussed in the proof that follows, such messages
do not affect the GVT value that is computed. The following theorem shows that
Algorithm 1 correctly computes GVT.



Computing Global Virtual Time in Shared-Memory Multiprocessors . 9

THEOREM 1. Algorithm 1 computes G = GVT(Tgyr) in a message observable
Time Warp system.

PROOF. Sequential consistency and the mutual exclusion assumption ensure that
every observability operation occurs in its entirety either before or after GVTFlag is
set. Let T; (T; > Tgyr) denote the (real) time that processor ¢ computes its local
minimum. Because processor ¢ computes its local minimum prior to making any
changes to S;, the only operations occurring between Ty and T; that can affect
S; are message sends by other processors that add new messages to S;. Therefore,
Si(Tavr) C Si(T;) for all i, or

U Si(Tavr) C U Si(T).

However, the Time Warp mechanism guarantees the timestamp of any message sent
after Ty must have a timestamp larger than GVT (Tavr), so
= MinTS

GVT(TGVT) = MinTS = (@.

USi(Tavr)

U Si(T;)

O
6. A FASTER ALGORITHM

Algorithm 1 suffers from several drawbacks. The most obvious is the performance
penalty associated with guaranteeing the mutual exclusion assumption. A second
problem is GVTFlag must be checked relatively often. This may incur a signifi-
cant overhead for small-granularity simulations. Third, as will be seen later, it is
advantageous to allow each processor to compute its local minimum just prior to
processing an event, rather than prior to any observability operation. Algorithm 1
does not allow this.
The following observations offer remedies to the second and third problems.

—If a processor performs any observability operation except message sends, the
processor may perform that operation without checking GVTFlag or reporting
its local minimum. This is because all observability operations other than sends
only affect the local state of the processor, so no other processor can determine
if that observability operation had been performed prior to or after GVTFlag was
set. The processor can, in effect, “trick” the other processors by pretending the
operation occurred before GVTFlag was set without compromising the correctness
of the GVT value that is computed.

—If a processor performs a message send after GVTFlag has been set, the processor
need not immediately report its local minimum if it later includes the timestamp
of the message it just sent in its own local minimum calculation.

The first observation enables one to eliminate GVTFlag checks prior to all observ-
ability operations except message sends. Both observations together enable modi-
fication of the GVT algorithm so that a processor can report its local minimum at
any time that is convenient to it, i.e., not just prior to some observability operation.

Now consider the mutual exclusion assumption that prevents a processor from
setting GVTFlag while another processor reads the flag and performs an observabil-
ity operation, specifically, a message send. As depicted by the scenario in Figure 3,



10 . R.M. Fujimoto and M. Hybinette

2.set GVTFlag
I/
1

1l.read GVTFlag=0 5.read GVTFlag=1
report local minimum=200
P2 send message, timestamp 50

4.enqueue message
at receiver

3.read GVTFlag=1l

report local minimum=100

Fig. 3. Scenario where violating the mutual exclusion assumption results in an incorrect GVT.
Just after processor P> sees GVTFlag is not set, processor P; sets the flag. Ps, the receiver of P»’s
message sees GVTFlag is set, and reports its local minimum without considering the new, incoming
message. Processor P> completes the send and then reports its local minimum, not considering
the message it just sent, resulting in an incorrect GVT. Scenarios such as this are avoided if (1)
reading GVTFlag and sending the message are an atomic action, and (2) this atomic action were
not allowed to occur concurrently with another processor setting GVTFlag.

without this assumption, some processor P; may set GVTFlag just after processor
P, checks the flag, but before P enqueues a new message at the receiving processor.
In this case, the message being sent may not be accounted for by either the sending
or receiving processor, causing the message to “fall between the cracks,” possibly
leading to an erroneous GVT value.

The mutual exclusion assumption can be eliminated if GVTFlag is checked after
each send operation. To see this, consider a message send by processor P occur-
ring simultaneously with some other processor P; setting GVTFlag (see Figure 4).
Assuming sequentially consistent memory, there are two possible situations:

(1) P, sets GVTFlag before P, reads GVTFlag (case 1 in Figure 4), or
(2) P, sets GVTFlag after P, reads GVTFlag (case 2 in Figure 4).

In the first situation, P, will observe that GVTFlag is set, and can therefore include
the timestamp of the message it just sent in its local minimum computation. In the
second situation, it must be the case that the message was enqueued at the receiver
prior to GVTFlag being set, since the GVTFlag check occurs after the message send.
Therefore, the receiver will account for the message. In either case, the message is
accounted for.

The above observations suggest the following, optimized version of the original
GVT algorithm.

ALGORITHM 2. (Optimized GVT Algorithm)

(1) A processor wishing to compute GVT sets GVTFlag.

(2) Each processor maintains a local variable called SendMin that holds the min-
imum timestamp of any message or anti-message sent after GVTFlag was set.
This variable is updated if GVTFlag is found to be set after each message or
anti-message send.



Computing Global Virtual Time in Shared-Memory Multiprocessors . 11

l.set GVTFlag 2.set GVTFlag
i ;
1 1

2.read GVTFlag=1 l.read GVTFlag=0

\ 4
v

time time

case 1 case 2

Fig. 4. No messages are missed if the mutual exclusion assumption is relaxed, provided GVTFlag
is checked after each message send.

(8) Each processor periodically checks GVTFlag. If processor i observes that
GVTFlag is set, the processor reports min(SendMin, MinT S(S;)) to a central
controller.

(4) The controller computes the global minimum and reports this value to each
processor as the new GVT, and resets GUTFlag.

The following theorem shows that algorithm 2 computes a correct GVT value.

THEOREM 2. Algorithm 2 computes a value G such that GVT (Tavr) < G <
GVT(Trast) for any message observable Time Warp system where Tgyr is the
instant in real time that the GVT computation is initiated, i.e., GVTFlag is set,
and Trqst is the real time that the last processor to compute its local minimum
returns this value to the central controller.

The proof of this theorem is based largely on the following lemma:

LEMMA 1. Let G be the value computed by algorithm 2, and T; be the real time
that processor i computes its local minimum. Then any message or anti-message
sent by processor i after T; must have a timestamp greater than or equal to G.

The proof of this lemma and the preceding theorem are straightforward, but
somewhat tedious, so they are described as an appendix.

7. IMPLEMENTATION

It is instructive to examine an implementation of the proposed GVT algorithm.
The optimized algorithm was implemented in version 2.0 of the Georgia Tech Time
Warp (GTW) executive [Das et al. 1994]. As shown in Figure 2, there are three
central data structures associated with each processor: the MsgQ queue to hold
incoming positive messages, the CanQ to hold incoming anti-messages, and the EvQ
containing the unprocessed events for LPs mapped to this processor. The central
event processing loop repeatedly:

(1) removes received messages from MsgQ and files them into the data structure
associated with each LP (this may cause rollbacks, and generation of anti-
messages),



12 . R.M. Fujimoto and M. Hybinette

Global Variables:

int GVTFlag;

int PEMin[NPE]; /* local minimum of each processors */
int GVT; /* computed GVT */

Local Variables:
int SendMin;
int LocalGVTFlag; /* local copy of GVTFlag */

Procedure to initiate a GVT computation (critical section):
/* prevent multiple PEs from setting flag */
if (GVTFlag = 0) then GVTFlag := NPE;

Procedure to Send a Message or Anti-message M:

Enqueue message M in MsgQ or CanQ of receiver

if (GVTFlag > 0) and (haven’t already computed local min) then
SendMin := min (SendMin, TS(M));

end-if

Main Event Processing Loop:
while (EvQ is not empty) do
LocalGVTFlag := GVIFlag;
move messages from MsgQ to EvQ and process any rollbacks
remove anti-messages from CanQ, process annihilations and rollbacks
remove smallest timestamped message M from EvQ
if ((LocalGVTFlag > 0) and (haven’t already computed local min)) then
/* the following is a critical section */
PEMin[PE] := min (SendMin, TS(M));
GVTFlag := GVIFlag - 1;
if (GVTFlag = 0) GVT = min (PEMin[1] ... PEMin[NPE])
end-if
process message M
end-while

Fig. 5. Implementation of GVT algorithm in GTW. PE indicates the processor executing the
GVT code and NPE is the number of processors in the system. Code to read the final GVT value,
and other code to prevent successive GVT computations from interfering with each other are not
shown to simplify the presentation.

(2) removes received anti-messages from CanQ and performs annihilations (which
may also cause rollbacks)

(3) removes the smallest timestamped unprocessed event from the EvQ and pro-
cesses it.

The order of the first two steps could be reversed without affecting the correctness
of the implementation of the GVT algorithm.

All interprocessor communications for the GVT algorithm is realized through
the GVTFlag variable, an array (PEMin) to hold the local minima computed by
the individual processors, and a variable (GVT) to hold the new GVT value. The
implementation is shown in Figure 5. GVTFlag is set by writing the number of



Computing Global Virtual Time in Shared-Memory Multiprocessors . 13

processors participating in the computation into this variable, and is decremented
by each processor after it has written its local minimum into the global array. A non-
zero value of GVTFlag indicates that the flag is set. The last processor to compute
its local minimum (the processor that decrements GVTFlag to zero) computes the
global minimum, and writes it into the global GVT variable. Decrementing GVTFlag
to zero has the effect of resetting the flag. As required by Algorithm 2, GVTFlag
is checked after each message or anti-message send to a different processor (this
check is not required for local messages that remain within the same processor)
and SendMin is updated if it is set (greater than zero). Each processor reports its
local minimum exactly once per GVT computation, i.e., once the processor has
reported its local minimum, it ignores the fact that GVTFlag is set until it receives
the final GVT value.

In this implementation, no explicit computation is required to determine the
smallest timestamp of any unprocessed message or anti-message in the processor,
i.e., MinTS(S;). This is because the processor first checks GVTFlag at the be-
ginning of the event processing loop, and then empties the MsgQ and CanQ data
structures as part of the “normal” event processing procedure. Any anti-messages
that were in CanQ when GVTFlag was checked have now been processed, so they
can be ignored. Any messages that were in MsgQ when the flag was checked are
now stored in EvQ, so at this point, the processor need only locate the smallest
timestamped message stored in EvQ to determine MinTS(S;). However, if the
scheduling policy is to process the smallest timestamped event next (this is com-
mon in Time Warp systems), then the normal event processing procedure will now
remove the smallest timestamped event from EvQ so that it can process this event
next. Thus, MinT S(S;) can be obtained by simply reading the timestamp of the
next event that is selected for processing, and report the smaller of this timestamp
and SendMin as its local minimum.

Distribution of the new GVT value is not shown in Figure 5. Each processor
recognizes the new GVT value by noticing that this value has changed. Some
additional code is also required to ensure that successive GVT computations do
not interfere with each other. Specifically, the updates of the SendMin variable
should be disabled after the processor has reported its local minimum, and enabled
again once a new GVT computation is initiated.

One drawback of the GVT algorithm that is proposed here is each processor
must respond with its local minimum before the GVT is computed. This is also
true of most other existing GVT algorithms that have been proposed. If event
computations are long, this may delay the GVT computation, and may postpone
commitment of I/O operations longer than is desirable. This problem can be solved
by using an interrupt mechanism to compute the local minimum in each proces-
sor. Independently, Xiao et al. report a shared-memory algorithm for computing
GVT where a processor interrogates shared variables maintained by each proces-
sor, enabling any processor to compute GVT without waiting for another processor
to respond. This entails somewhat higher overheads than the algorithm described
here, however [Xiao et al. 1995].



14 . R.M. Fujimoto and M. Hybinette

8. ON-THE-FLY FOSSIL COLLECTION

We now turn our attention from the computation of GVT to a related question,
the fossil collection procedure for reclaiming memory. Most existing Time Warp
systems perform fossil collection in a distributed fashion by having each processor
scan through the list of LPs mapped to that processor, and then fossil collecting
memory (e.g., message buffers) with timestamp less than GVT. This approach to
fossil collection is problematic for large-scale simulations containing hundreds of
thousands or millions of simulator objects because an excessive amount of time
is required to examine all of the objects (LPs) mapped to the processor. This
is particularly wasteful if most objects do not have any state that can be fossil
collected. For such large-scale simulations, the time to perform fossil collection
could easily dominate the time required to compute GVT.

To address this problem, we propose a technique called on-the-fly fossil collec-
tion that eliminates the need to scan through the list of objects mapped to the
processor. Rather than fossil collecting all of the memory on each processor after
each GVT computation, fossil collection is performed incrementally, throughout
the simulation, on an “as needed” basis. Specifically:

(1) When a process completes processing an event, the buffer for that event (as
well as the associated state vector and anti-messages) are immediately placed
into the free memory pool. The event is also threaded into a processed event
list for the LP to enable rollback.

(2) When memory is allocated from the free list, the timestamp of the memory to
be allocated is checked to ensure that it is less than GVT. The memory is not
allocated if its timestamp is larger than GVT.

A simple approach to implementing this scheme is to implement the free list
in each processor as a linear list. Processed events are added to the end of the
free list, and allocations are performed by removing elements from the front of the
list. If events are, for the most part, processed in timestamp order, this approach
will tend to cause events in the free list to be sorted by timestamp. Memory that
is guaranteed to be available for other use (e.g., storage reclaimed after message
cancelation) should be assigned very small timestamps, and added to the front of
the free list.

If the memory allocated from the free list cannot be used because it has a times-
tamp larger than GVT, the processor may either abort the memory request (and
retry the request later, e.g., after GVT has advanced), or it may search through
the free list to locate another buffer with a sufficiently small timestamp. A data
structure to facilitate this search is depicted in Figure 6. As shown in this figure,
the sequence of timestamps for successive events in the free list form a saw-toothed
curve. The event at each valley of this curve contains a pointer to the next valley
event. The search procedure need only examine the valley events because events
between successive valleys will contain timestamps larger than that of either the
preceding or following valley event. If no valley event contains a sufficiently small
timestamp, then no storage is available. A similar data structure was proposed by
Lin for the purposes of computing GVT [Lin and Lazowska 1990].



Computing Global Virtual Time in Shared-Memory Multiprocessors . 15

timestamp
A

——— next free event

= = = next valley event

Fig. 6. Data structure to locate free events. The “next free event” pointers link together events
in the free list. The “next valley event” pointers are used to speed up the search for events with
timestamp less than GVT.

9. PERFORMANCE

Performance of the GVT computation can be characterized by two metrics: (1)
the GVT latency, i.e., the amount of time that elapses from the initial GVT re-
quest until the GVT is computed, and (2) the amount of computation (overhead)
required to compute GVT. The worst case GVT latency for the implementation
of the algorithm described in Figure 5 is obtained by observing that the latency is
maximized if the GVTFlag is set just after some processor checks the flag. In this
case, the latency will the sum of (1) the time to process one event, (2) two iterations
through the scheduling loop (to process incoming messages, select the next event
to be processed, etc.), and (3) the time to compute a global minimum. The second
component of this overhead could be reduced further by more frequent checks of the
GVTFlag. The remainder of this section addresses the second question, the amount
of overhead consumed by the GVT algorithm.

As can be seen from Figure 5, the overhead for computing GVT is small. When
GVT is not being computed, GVTFlag must be checked once at the beginning of
the event processing loop, and after each message or anti-message is sent. On
shared-memory multiprocessors containing caches and hardware cache coherence
(e.g., by invalidating copies in other caches when one processor modifies data stored
in the cache), this overhead is negligible because the flag is not being modified,
and will normally reside in each processor’s local cache, assuming the cache is
sufficiently large. When compared to the amount of time required to perform the
other operations in the event processing loop, the time for checking GVTFlag is
negligible.

Once GVTFlag has been set, each processor must update GVTFlag (which requires
a lock) and update SendMin after each message/anti-message send, compute the
local minimum (minimum of SendMin and the timestamp of the next event to
be processed), write the local minimum into the global array, and read the new
GVT value. One processor must also perform the global minimum computation,



16 . R.M. Fujimoto and M. Hybinette

60 T T T
Synchronous GVT Computations <—
Asynchronous GVT Computations —+-
Asynchronous GVT Computations and on the fly Fossil Collection -&--
50 ,
40 | E
o
Q
<2
Q
£
= L ,
- 30
o
5
(53
o
x
w -
20 - R
B S - S P B
10 | R
0 L L L L L L L L
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Fossil Collect Period (sec)
60 T T T T T
Synchronous GVT Computations ~<—
Asynchronous GVT Computations —+-
Asynchronous GVT Computations and on the fly Fossil Collection -&--
50
40
o
Q
<2
[}
£
= 30 F
<
o h
5
153
Q
x
w
20 B
10 E
Il Il Il Il Il Il Il Il

0
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Fossil Collect Period (sec)

Fig. 7. The upper graph shows execution time of Phold using 4 processors, a message population
of 256 and 64 logical processes. The lower graph shows execution time using 16 processors, message
population of 1024, and 256 logical processes.

although this could be parallelized. Again, these overheads are very small relative
to the other operations performed in the event processing cycle.

Measurements of the GTW kernel were performed to quantitatively assess the
overhead for computing GVT in an operational system. The benchmark program
used for this study is the PHOLD synthetic workload model described in [Fuji-
moto 1990b]. Upon processing a message, the LP generates a new message with
timestamp increment selected from an exponential distribution. The message’s
destination is selected from a uniform distribution.



Computing Global Virtual Time in Shared-Memory Multiprocessors . 17

Program execution time as the time between successive invocations of the GVT
computation is varied is depicted in Figure 7 for 4 and 16 processors. In each case,
the execution time using synchronous GVT computations (i.e., barriers), the opti-
mized asynchronous algorithm using a conventional fossil collection procedure, and
the optimized asynchronous algorithm using on-the-fly fossil collection are reported.
It can be seen that the asynchronous algorithm yields much better performance
when the frequency of GVT computation becomes high, but performance begins to
decline when GVT is computed very often. This degradation is due to fossil collec-
tion. We observe that the asynchronous algorithm with on-the-fly fossil collection
yields negligible performance degradation even if GVT is computed as frequently
as every millisecond. These results are conservative in that large scale simulations
containing many more LPs would yield larger performance improvements for sim-
ulators using on-the-fly fossil collection. This data suggests that the overhead of
performing GVT computation and fossil collection is negligible for this implemen-
tation executing on the KSR machine. Although quantitative results will vary from
one machine to another, we believe these results are representative of commercial
multiprocessor machines because of the simple nature of the algorithms that are
proposed.

10. CONCLUSIONS

The central conclusion of this work is that GVT computation is much more straight-
forward on shared-memory multiprocessors than message based machines. A key
observation is that shared-memory machines typically provide sequentially consis-
tent memory that guarantees different processors will not observe different orderings
of memory references. This property can be exploited to yield very simple solutions
to the “simultaneous reporting problem” that require one round of interprocessor
communication, in contrast to many existing message-based algorithms that require
two. These observations suggest that a simpler, more efficient GVT computation
can be realized by exploiting properties of the shared memory machine rather than
simply implementing algorithms designed for message passing architectures.

Exploiting sequentially consistent shared memory, a very efficient GVT algo-
rithm is proposed. The algorithm entails little computational overhead. It is asyn-
chronous, with execution interleaved with other Time Warp activities, and does not
require message acknowledgments or special GVT messages. The applications that
would benefit most from this algorithm are small granularity interactive simulations
where GVT must be performed relatively frequently in order to rapidly commit I/O
operations, and simulations that must reclaim memory often to limit overall con-
sumption. We believe the optimized GVT algorithm presented here helps to satisfy
the needs of these applications when shared-memory multiprocessors are used.

On-the-fly fossil collection provides a means to efficiently reclaim memory in Time
Warp systems for both shared-memory and message-based platforms. The central
advantage of this mechanism is that it avoids excessive overheads that arise in con-
ventional fossil collection methods for large-scale simulations containing hundreds
of thousands (or more) of simulator objects.



18 . R.M. Fujimoto and M. Hybinette

ACKNOWLEDGMENTS

This work was supported by Innovative Science and Technology contract num-
bers DASG60-93-C-0126 and DASG60-95-C-0103 provided by the Ballistic Missile
Defense Organization and managed through the Space and Strategic Defense Com-
mand. Technical comments by John Cleary, Fabian Gomes, Larry Mellon, Brian
Unger, Darrin West, Zhonge Xiao, and the anonymous referees concerning the GVT
algorithm and presentation of this work are gratefully acknowledged.



Computing Global Virtual Time in Shared-Memory Multiprocessors . 19

APPENDIX
This appendix presents a proof that algorithm 2 correctly computes the GVT.

LEMMA 1. Let G be the value computed by algorithm 2, and T; be the real time
that processor i computes its local minimum. Then any message or anti-message
sent by processor i after T; must have a timestamp greater than or equal to G.

PRrROOF. Proof by contradiction. Assume there is one or more messages or anti-
messages with timestamp less than G that were sent by some processor after it
computed its local minimum. Among all such messages, let M be the one containing
the smallest timestamp. There are two cases to consider: M could be a positive
message, or it could be an anti-message.

If M is a positive message, then it must have been sent while processing an-
other (unprocessed) message M', with T'S(M') < TS(M) < G. There are three
possibilities:

(1) M'" may have been an unprocessed message in processor i at T;. If this
were the case, M’ would have been included in 7’s local minimum computation,
implying TS(M') > G, a direct contradiction of our earlier statement that
TS(M') <TS(M) < G.

(2) M' may have been sent from processor j to i after T;. If processor j sent M’
before T then the timestamp of M’ would have been included in the compu-
tation of G via j’s SendMin variable, but we know this is not the case because
TS(M') < G. Therefore, processor j must have sent M’ after T;. This implies
that j sent a message (M') after computing its local minimum with timestamp
less than T'S(M). But this contradicts our assumption that M is the smallest
timestamped message sent after a processor computed its local minimum.

(3) M' may have become an unprocessed message via a rollback in processor
1. Because rollbacks only occur when a message is received in an LP’s past,
some message or anti-message M' must have previously been received with
TS(M") <TS(M'"). M" must have either resided in processor i (as an unpro-
cessed message) at time T3, or it must have been sent to ¢ after T;. The first
is not possible because M" would have been included in the global minimum
computation, but we know T'S(M") < TS(M') < TS(M) < G. The second is
not possible because it would contradict our assumption that M is the smallest
timestamped message or anti-message sent after a processor computed its local
minimum.

If M is an anti-message, it must have been sent as a result of processing a rollback
caused by another message or anti-message M', with TS(M') < TS(M) < G.
Again, if M’ resided in processor ¢ prior at Tj, it would have been included in
computing G, which we know is not the case because TS(M') < G. If M’ was
received by processor i after Tj, this would contradict our assumption that M
is the smallest timestamped message or anti-message sent by a processor after it
computed its local minimum.

The above arguments show that no such message M exists, proving the lemma. [

The following theorem shows that algorithm 2 computes a correct GVT value.



20 . R.M. Fujimoto and M. Hybinette

THEOREM 2. Algorithm 2 computes a value G such that GVT (Tavr) < G <
GVT (TLast) for any message observable Time Warp system where Tgyy is the
instant in real time that the GVT compulation is initiated, i.e., GVTFlag is set,
and Trqst s the real time that the last processor to compute its local minimum
returns this value the central controller.

PrOOF. We first show that GVT (Tgyr) < G. It must be the case the minimum
timestamp of any message in the system at time Tyt is GVT(Tgyr), and Time
Warp guarantees that no new messages can be generated with timestamp lower
than GVT. Since the entire GVT computation takes place after Ty, it cannot
report a value smaller than GVT (Tgvr).

We prove G < GVT(TLast) by contradiction. Suppose this inequality is not
true. This implies there is at least one unprocessed message or anti-message M
in the system at time Tp,s such that TS(M) < G. According to lemma 1, no
such message or anti-message can be produced by any processor after it reports its
local minimum. If such a message were produced by a processor prior to reporting
its local minimum, the timestamp of the message would have been included in
the processor’s local minimum computation, contradicting the fact that T'S(M) <
G. O

REFERENCES

BELLENOT, S. 1990. Global virtual time algorithms. In Proceedings of the SCS Multiconfer-
ence on Distributed Simulation, Volume 22 (January 1990), pp. 122-127. SCS Simulation
Series.

CAROTHERS, C. D., Fusyimoro, R. M., LIN, Y.-B., AND ENGLAND, P. 1994. Distributed
simulation of large-scale pcs networks. In Proceedings of the 1994 MASCOTS Conference
(January 1994).

Das, S., Fuiimoto, R., PANESAR, K., ALLISON, D., AND HYBINETTE, M. 1994. GTW:
A Time Warp system for shared memory multiprocessors. In 1994 Winter Simulation
Conference Proceedings (December 1994), pp. 1332-1339.

Fuisimoro, R. M. 1989. Time Warp on a shared memory multiprocessor. Transactions of
the Society for Computer Simulation 6, 3 (July), 211-239.

Fusimoro, R. M. 1990a. Parallel discrete event simulation. Communications of the
ACM 33, 10 (October), 30-53.

Fuisimoro, R. M. 1990b. Performance of Time Warp under synthetic workloads. In Pro-
ceedings of the SCS Multiconference on Distributed Simulation, Volume 22 (January 1990),
pp. 23-28. SCS Simulation Series.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., AND HENNESSY, J.
1988. Memory consistency and event ordering in scalable shared-memory multiprocessors.
Proceedings of the 17th Annual Symposium on Computer Architecture, 15—26.

JEFFERSON, D. R. 1985. Virtual time. ACM Transactions on Programming Languages and
Systems 7, 3 (July), 404-425.

JEFFERSON, D. R. 1990. Virtual time II: Storage management in distributed simulation. In
Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing
(Aug. 1990), pp. 75-89.

LaMpoORrT, L. 1979. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers C-28, 9 (Sept.), 690-691.

L1, K. AND HupAK, P. 1989. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems 7, 4 (November), 321-359.

LiN, Y.-B. 1994. Determining the global progress of parallel simulation with fifo communi-
cation property. Information Processing Letters 50, 13-17.



Computing Global Virtual Time in Shared-Memory Multiprocessors . 21

LIN, Y.-B. AND LAzZOWSKA, E. D. 1990. Determining the global virtual time in a distributed
simulation. In Proceedings of the 1990 International Conference on Parallel Processing,
Volume 3 (August 1990), pp. 201-209.

LN, Y.-B. AND PrEIss, B. 1991. Optimal memory management for time warp parallel
simulation. ACM Transactions on Modeling and Computer Simulation 1, 4 (October).
MATTERN, F. 1993. Efficient distributed snapshots and global virtual time algorithms for

non-fifo systems. Journal of Parallel and Distributed Computing 18, 4 (August), 423-434.

NicoL, D. M. aAxD FusiMmoTo, R. M. 1994. Parallel simulation today. Annals of Operations
Research 53, 249-286.

PrEiss, B. R. 1989. The Yaddes distributed discrete event simulation specification language
and execution environments. In Proceedings of the SCS Multiconference on Distributed
Simulation, Volume 21 (March 1989), pp. 139-144. SCS Simulation Series.

SAMADI, B. 1985. Distributed simulation, algorithms and performance analysis. Ph. D. The-
sis, University of California, Los Angeles.

TOMLINSON, A. I. AND GANG, V. K. 1993. An algorithm for minimally latent global virtual
time. In 7t" Workshop on Parallel and Distributed Simulation, Volume 23 (May 1993), pp.
35-42. SCS Simulation Series.

WIELAND, F., HAWLEY, L., FEINBERG, A., DILORENTO, M., BLUME, L., REIHER, P., BECK-
MAN, B., HONTALAS, P., BELLENOT, S., AND JEFFERSON, D. R. 1989. Distributed com-
bat simulation and Time Warp: The model and its performance. In Proceedings of the
SCS Multiconference on Distributed Simulation, Volume 21 (March 1989), pp. 14-20. SCS
Simulation Series.

X1A0, Z., CLEARY, J., GOMES, F., AND UNGER, B. 1995. A fast asynchronous continuous
gvt algorithm for shared memory multiprocessor architectures. In 9t Workshop on Parallel
and Distributed Simulation (June 1995).



