
Proceedings of the 1997 Winter Simulation Conference 
ed. S. Andradhttir, K .  J. Healy, D. H. Withers, and B. L. Nelson 

A FRAMEWORK FOR PERFORMANCE ANALYSIS OF 
PARALLEL DISCRETE EVENT SIMULATORS 

Vijay Balakrishnan 
Peter F’rey 

Nael B. Abu-Ghazaleh 
Philip A. Wilsey 

Computer Architecture Design Laboratory 
P.O. Box 210030, Cincinnati, Ohio 45221-0030, USA, .  

ABSTRACT 

A framework for performance analysis of parallel 
discrete event simulators is presented. The center- 
piece of this framework is a platform-independent 
Workload Specification Language (WSL). WSL is a 
language that allows the characterization of simula- 
tion models using a set of fundamental performance- 
critical parameters. WSL also implements a facility 
for representing real models. For each simulator to 
be tested, a WSL translator is used to generate syn- 
thetic platform-specific simulation models that con- 
form to the performance characteristics captured by 
the WSL description. Accordingly, sets of portable 
simulation models that explore the effects of the dif- 
ferent parameters, individually or collectively, on the 
performance can be constructed. The construction 
of the workload simulation models is assisted using 
a Synthetic Workload Generator (SWG). The utility 
of the system is demonstrated with the generation of 
a representative set of experiments. The described 
framework can be used to  create a standard bench- 
mark suite that consists of a mixture of real simu- 
lation models, selected from different application do- 
mains, and synthetic models generated by SWG. 

1 INTRODUCTION 

Performance analysis of parallel discrete event simu- 
lators is a task complicated by the large number of 
interrelated factors affecting performance. (Through- 
out this paper, we use the term performance to mean 
the inverse of execution time.) Accurate and unbiased 
performance analysis is important throughout the de- 
velopment cycle of simulators and models. Tradition- 
ally, Speedup has been*used as a relative @erformance 
indicator. Since speedup is defined with respect to a 
sequential simulator (left to the taste of the tester), it 
is difficult to  get directly comparable speedup figures. 
This is especially true if the models under comparison 

are not identical. Moreover, while speedup is a useful 
measure for coarsely comparing the performance of 
systems, it does not expose sufficient detail about the 
factors leading to this particular speedup figure. 

This paper presentij a framework for perfor- 
mance analysis of parallel discrete-event simula- 
tors. The framework uses a Workload Specifica- 
tion Language (WSL) l,o describe a model in terms 
of its performance-crit ical factors. This platform- 
independent representation can then be translated 
(using a simulator-specific translator) to different 
simulation back-ends. A portable automated WSL 
translator, where only minimal back-end description 
is needed for each simulator, is provided in order to 
simplify the task of building simulator-specific trans- 
lators (Balakrishnan 1!397). Thus, synthetic work- 
loads with tunable performance-related parameters 
are generated, allowing the performance of the sim- 
ulator to  be investigated under controlled workload 
conditions. The analysis can be further aided by us- 
ing a Synthetic Workload Generator (SWG); a pro- 
gram that automatical1.y generates WSL descriptions 
that test the effect of subsets of the model parameters 
on the performance. The portability of the synthetic 
models afforded by the system allows unbiased and 
thorough comparison of simulators. 

The ultimate goal of this project is to  provide a 
standard benchmark suite that studies the perfor- 
mance space of the simulators using realistic models. 
To that end, WSL implements a feature for represent- 
ing real models direct1.y. The mixture of real mod- 
els, representative of different simulation domains, 
serves alongside the synthetic models generated by 
the SWG to provide a starting point towards the stan- 
dard benchmark suite. 

The remainder of this: paper is organized as follows. 
Section 2 describes Parallel Discrete-Event Simula- 
tion (PDES). Section 3 discusses some related bench- 
marking efforts. Section 4 presents the performance 
analysis framework, anld discusses its various compo- 
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nents. Section 5 presents an example of the use of the 
framework by developing a set of experiments for a 
PDES and analyzing the performance. Finally, Sec- 
tion 6 presents some concluding remarks. 

2 BACKGROUND - PDES 

In this section, we briefly overview PDES. In a par- 
allel discrete event simulation, the model to be sim- 
ulated is decomposed into physical processes that are 
modeled as simulation objects. Each simulation ob- 
ject is assigned to  a Logical Process (LP); the simula- 
tor is composed of a set of LPs concurrently executing 
their simulation objects. Simulation objects commu- 
nicate by exchanging time-stamped messages through 
the LPs. Thus, each LP, which can be associated with 
multiple simulation objects, receives messages from 
other LPs and forwards them to the destination ob- 
jects. In order to maintain causality, LPs must pro- 
cess messages in strictly non-decreasing time-stamp 
order (Lamport 1978; Jefferson 1985). There are two 
basic synchronization protocols used to ensure that 
this condition is not violated: (i) conservative and 
(ii) optimistic. Conservative protocols (Misra 1986; 
Chandy and Misra 1981) strictly avoid causality er- 
rors, while optimistic ones (Jefferson 1985; Fujimoto 
1990) allow causality errors to  occur, but implement 
a rollback mechanism enabling recovery. 

3 RELATED WORK 

There are several empirical and analytical studies 
(Fujimoto 1987; Fujimoto 90; Barriga, Ronngren, and 
Ayani 1995; Samadi 1985; Kumar 1989) of the per- 
formance of PDES algorithms. Most of these studies 
appear in the context of evaluating the impact a par- 
ticular simulator improvement on the performance. 
The utility of a new simulator protocol/optimization 
cannot assessed accurately using such a narrow com- 
parison. For example, the simulation model used for 
the comparison greatly influences the performance. 
Furthermore, the implementation used for operations 
such as memory allocation, event-list management, 
GVT calculation and deadlock detection affect the 
performance. The number of factors influencing per- 
formance is large and, therefore, a set of benchmarks 
from the PDES application domain (Fujimoto 1993) 
is needed to  sufficiently characterize the performance 
of a simulator under different working conditions. 
Moreover, this benchmark suite must be indepen- 
dent of the simulator to  allow unbiased comparison 
of simulators. Only a small number of the models 
described by Fujimoto (Fujimoto 1993) are available 

freely. Moreover, some models that are available have 
several different implementations. 

Several efforts have attempted to  build useful per- 
formance analysis frameworks for PDES simulators. 
The suggested frameworks allow the user to  select a 
simulation configuration from a set of basic blocks 
supported in the framework. (In the context of per- 
formance analysis frameworks, user primarily refers 
to a simulator developer.) The user builds an appli- 
cation and executes it under the different simulator 
configurations to analyze the effect of the parameters. 
For example, Reynold’s (Reynolds 1989; Reynolds 
Jr  1989; Reynolds and Dickens 1989) SPECTRUM 
testbed allows a user to implement a simulator config- 
uration (protocol) , supply an application, and specify 
some of the key parameters. The performance param- 
eters incorporated in the framework include deter- 
minism, queuing, processing delays, causality, state 
change characteristics, balance, activity, and connec- 
tivity. Thus, the effect of these parameters on per- 
formance can be studied. The major drawback of 
this framework is the need to re-develop the simula- 
tion kernel using the testbed for each configuration. 
Furthermore, the application cannot be tested on any 
other simulator. Gilmer (Gilmer Jr  1988) also defines 
some parameters and uses them to build simulation 
models. 

Ferscha (Ferscha and Johnson 1996) develops a tool 
for performance prediction of Time Warp (Jefferson 
1985) protocols and related optimizations. A Time 
Warp model is built incrementally and decisions re- 
garding different optimizations are made early in the 
development stage. Other, similar, testbeds that are 
currently in use include Yaddes (Preiss 1989) and 
Maise (Bagrodia, Chandy, and Toh 1991). These ap- 
proaches do not allow a model to  be evaluated on dif- 
ferent implementations of a simulation protocol. The 
framework described in this paper provides a mecha- 
nism for generating a large number of synthetic appli- 
cations to test a simulation implementation. More- 
over, the representation method can be easily trans- 
lated to other simulators. 

4 THE FRAMEWORK 

This section discusses the different components of the 
performance analysis framework suggested in this pa- 
per. An overview of the framework is shown in Fig- 
ure 1. Central to the framework is the Workload 
Specification language (WSL), a language for cap- 
turing the performance-critical attributes of applica- 
tions. Since the performance-critical attributes are 
explicitly visible, WSL can be used to  generate syn- 



A hamework for Performance Analysis o f  Parallel Discrete Event Simulators 43 1 

Figure 1: The Performance Analysis Framework 

thetic workloads using a Syn the t i c  Workload Genera- 
t o r  (SWG). Synthetic workload generation allows the 
performance space of the simulator to be explored 
methodically. Moreover, real models can be repre- 
sented using WSL. An automatic translator, at the 
back-end of the framework, translates WSL descrip- 
tions to  equivalent synthetic models that conform to 
the performance characteristics specified by the WSL 
description; real models must be ported manually. 

4.1 Workload Specification Language 

This section describes the Workload Specification 
Language (WSL). WSL is not a modeling language; 
rather, it is a language for representing the work- 
loads in a format that facilitates performance anal- 
ysis of parallel discrete-event simulators. WSL sup- 
ports synthetic as well as real workloads. Synthetic 
workload descriptions are based on a characteriza- 
tion of a PDES workloads in terms of some funda- 
mental parameters. Specification of a real workload 
is implemented by inserting simulator specific code 
in the WSL object definition. The representation of 
real models exposes the structure of the models to 
the user and allows systematic conversion to other 
simulation languages. While this approach does not 
reduce the task of the initial modeling of a system, 
it facilitates translation of models among simulation 
languages with high accuracy, allowing an impartial 
comparison to be carried out. In addition, synthetic 
workload descriptions, written using WSL, can be di- 
rectly applied to the different simulators (using the 
automatic translators). 

A workload specification in WSL consists of a list of 
simulation object definitions (SimObject) followed 
by a list of instantiations of these objects. Every sim- 
ulation object may have an unlimited number of defi- 
nitions. These definitions correspond to the different 
simulation kernels or to a synthetic (Synthetic) rep- 
resentation. The translator generates translated code 
depending on the target simulation platform. In the 

remainder of this section, we overview the represen- 
tation and translation facets of WSL. 

4.1.1 Synthetic Representation 

A simulation object can be represented as a synthetic 
object; a representation that does not perform any 
useful function but produces resource demands that 
are similar to a real simulation object. The syn- 
thetic object is used to build a synthetic workload. 
Ideally, the characteristic of the synthetic workloads 
should match that of a real workload. For this reason, 
a workload characterization of several PDES models 
was carried out and parameters that affect the perfor- 
mance were isolated. Several of the parameters have 
been identified previously by F'ujimoto (F'ujimoto go), 
and Reynolds (Reynoldr; 1989). Some of the impor- 
tant parameters support,ed by WSL are: 

1. Computation Granularity 
2. Memory Requirement 
3. Topology 
4. Input and Output I3ehavior 
5 .  Event Population 
6 .  Event Probability 
7. Event Delay 
8. Number of Processors 
9. Number of Physical. Processes 

10. Ease of Verification 
11. Initial configuration 

The last two parameters do not relate to  performance, 
but have been included to provide information that 
can be used to verify the correctness of the simula- 
tion. A complete breakdown of the parameters is not 
provided here for brevity (Balakrishnan 1997). The 
synthetic description given in figure 2 demonstrates 
how the parameters are specified. A complete model 
consists of a set of such objects with an associated 
connectivity pattern (topology). 

4.1.2 Real-Model R.epresentation 

WSL also supports real model descriptions, inserted 
as simulation-specific code. Each simulation environ- 
ment is assigned a unique tag which is used to mark 
model descriptions suitatble for it (using the keyword 
SimModel). When generating simulation models for a 
given simulation environment, the translator searches 
for the tag corresponding to it. The structure of a real 
object description is shown in figure 3. Every section 
is optional; the structure serves as a guideline. The 
design was found to be well suited for writing the 
description in C++. However, it should also be use- 
ful for other languages because of the organization of 
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SimObject nameOfObject { 
SimModel Synthetic { 
Input boolean ; 
Output number ; 
Distribution {distribution 1 
Delay {distribution ,{...}} 

{separation interval list}; 

// One Distribution is needed 
for each output channel 

Init boolean ; 
IOFunction { dis tribut i on } 

{separation interval list}; 
Granularity floating point number ; 
EventSize number ; 
StateSize number ; 
FileInput number ; 
Fileoutput number ; 
Iterationcount number ; 

1 
1 
where 

distribution := {UNIFORM I POISSON I 
NORMAL I EXPONENTIAL I 
BINOMIAL I CONSTANT} 

{ seed, seed } 
separation interval list := {x,y} 

Figure 2: Structure of a Synthetic Object 

the design. More precisely, the organization provides 
a clear methodology for re-writing an object descrip- 
tion in another language, by making the primary con- 
stituents individually-available in self-contained de- 
scription clauses. 

Once the simulation objects have been defined, a 
net-list representing a set of objects and their connec- 
tivity is instantiated. The net-list definition enables 
optional statically-defined simulation object to LP as- 
signment. Each object definition may be instantiated 
multiple times, and connected to other objects using 
the net-list. Every simulation object (SimObj ect)  can 
have only one synthetic description but multiple real 
descriptions. The translator can be directed to choose 
either synthetic or simulator-specific descriptions. 

4.2 Synthetic Workload Generator (SWG) 

The Synthetic Workload Generator (SWG) is a pro- 
gram that automatically generates workloads with 
emphasis on different performance-related properties. 
Thus, a suite of models where one or more parame- 
ters are varied while the others are held at fixed values 
can be generated. This enables methodical analysis 
of the behavior of the simulator with respect to the 
parameter being varied, such that the regions of good 

SimObject nameOfObject { 
SimModel Warped { 

Input boolean ; 
Output number ; 
Event 

[[ // declare the variables in the 

[[ // initialize the Event variables 
// event here 11 

// declared 11 ; 
State 

[[ // declare variables needed in the 

[[ // initialize State the variables 
// state here 11 

// declared here 11; 
Object {baseUbjectEJame} { 

Variables 
[[ // declare any special 

// variables here 11 ; 
Constructor 

[[ // constructor (C++ terminology) for 
/ /  the object 11; 

Initialize 

Execute 
[C // put the initialization code here I ] ;  

[[ // code for processing the received 
/ /  event goes here I ] ;  

Finalize 
[[ // code to be executed at the end of 

[[ // additional functions can be 
/ /  simulation 1 1 ;  

// written here 11; 
}>I 

Figure 3: Structure of a Real Object 

and bad performance are identified. 
SWG operates in two phases: (i) the graph gen- 

eration phase, and (ii) the model generation phase. 
The graph generation phase builds a directed graph 
according to the specified parameters. The control- 
lable graph parameters are the number of nodes and 
graph topology (e.g., GRID ,TREE, COMPLETE , 
RANDOM). The graph generation phase was built 
using the Library of Efficient Data-types and Algo- 
rithms (LEDA) (Mehlhorn, Naher, and Uhrig 1996). 
The generated graph is checked for compliance to ad- 
ditional properties such as number of sources, num- 
ber of sinks, and the existence of cycles. The second 
phase starts with the graph representation and con- 
verts every node to  a synthetic simulation object by 
filling in the values for the parameters shown in Fig- 
ure 2. Once the second phase terminates, the simula- 
tion object description and the net-list for the WSL 
description of the workload are ready. 

Figure 4 shows the structure of the SWG. The pa- 
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O h j d  
Ohjcst Generator 

Figure 4: Structure of the SWG 

rameter values are generated using statistical distri- 
butions that are bound at the time of generation. It is 
possible to  override the statistical distribution speci- 
fication of the parameters, by supplying constant val- 
ues instead. The language can be extended to model 
additional distributions. 

4.3 WSL Translator 

WSLParser 

builds symbol table and netlist and 

calls pre-defined funtions in 

1 
Publishclass 

that has two sets of functions for 
translatine 

Synthetic Descriptions Actual Description 

\./ 
that can be written seperately for 
multiple sim,ulation environments 

such as 

Warped any others 

The translator is the crit#ical component of this per- 
formance analysis framework. It is designed using 
PCCTS (Parr 1995), a compiler construction toolkit. 
The translator consists of a parser that calls prede- 
fined functions in the Publ ishclass;  there is one 
Publ ishclass  for each simulation environment sup- 
ported by the translator. Figure 5 shows the orga- 
nization of the translator. Building a translator for 
a new simulation environment involves filling in the 
pre-defined methods for its Publishclass; only the 
back-end to  the generator need be modified. 

Accurate translation of the synthetic objects is cru- 
cial to the success of the synthetic models in exer- 
cising the system according to the parameter values 
specified in the WSL description. Each parameter in 
the synthetic description is well defined, and mod- 
els that correctly exhibit the required behavior can 
be built. The translator supports partitioning the 
network and assigning simulation object to  different 
processors as required by the WSL specification. 

We have constructed a translator for WARPED, 
a Time-Warp synchronized simulation kernel (Mar- 
tin, McBrayer, and Wilsey 1995). the complete sys- 
tem has been used for performance evaluation of the 
WARPED kernel. The framework was written in 
C++ and the translator implemented using PCCTS 
(Parr 1995), a freely available compiler construction 
toolkit. The system was tested using the GNU g++ 
compiler. 

5 

Figure 5: Structure of the WSL Translator 

EXPERIMENTS; 

In this section, the framework is used to  analyze the 
performance of the WARPED (Martin, McBrayer, 
and Wilsey 1995) simu1,ation kernel. The models used 
to perform the experiments were generated using the 
SWG. They were then translated to WARPED code 
by a translator written for WARPED. The exper- 
iments were conducted on a SUN SPARCCENTER 
1000 with 4 processors. The GNU g++ compiler with 
the optimizations (-02) was used to compile the mod- 
els. The WARPED kernel was used with the aggres- 
sive cancelation (Rajain and Wilsey 1995) strategy, 
Least Time Stamp First (LTSF) scheduling policy, 
and using the MPI coinmunication implementation. 
The synthetic model used consisted of 100 simulation 
objects that were randomly partitioned among two 
LPs. The topology used was a GRID. 

The effect of increasing event granularity is inves- 
tigated first. The results are shown in the Figure 
6. Higher granularity does not affect efficiency (ra- 
tio of committed everits to the total number pro- 
cessed events). Event granularity is independent of 
the scheduling time of teach event. For very low gran- 
ularities (.001 to 1 microsecond) the drop in event 
rates is more gradual than the rate shown in Figure 
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Figure 6: The Effects of Event Granularity 

6 .  
Since WSL provides support for partitioning, the 

same model was studied using two and four LPs; the 
1 LP case serves as the base case. The granularity 
value used for this study is 0.1 microsecond. The 
results are shown in Figure 7. 

For the next experiment, WSL was used to repre- 
sent the ping-pong models presented by Barriga (Bar- 
riga, Ronngren, and Ayani 1995). The results of scal- 
ing these benchmarks is shown in Figure 8 and Figure 
9. SWG was used to produce scaled versions of these 
models from the synthetic equivalent description of 
the real model. Figure 8 shows the effect of increas- 
ing messages sizes on the event processing rates. The 
Ping model (Figure 9) is used to  assess the effect of 
the buffer sizes in the message passing layer. After 
the buffer becomes full, the event processing rates 
stabilize. This occurs after a momentary decrease in 
event processing rate (caused by the full buffers). 

The experiments discussed in this section are in- 
tended as a sample of the capabilities of the frame- 
work; they are not sufficient for a full characterization 
of WARPED. Using SWG, workloads for testing any 
of the performance parameters can be generated eas- 
ily. Thus, similar experiments can be carried out to 
study the effects of other parameters on the perfor- 
mance. 

Finally, it is important to verify that synthetic rep- 
resentations of real models reflect the behavior of the 
original models. In order to  verify this correspon- 
dence, we evaluated the behavior of synthetic mod- 
els for some circuits of the ISCAS’85 (CAD Bench- 

,.... 
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Figure 7: The Effect of Parallel Execution 

marking Lab, NCSU 1989) benchmark suite relative 
to the behavior of the real models. The results are 
encouraging; however, more extensive evaluations are 
necessary to strengthen this conclusion (Balakrishnan 
1997). 

6 CONCLUSIONS 

The framework presented in this paper introduces a 
common and uniform methodology for performance 
analysis and benchmarking of simulation environ- 
ments. The framework, which is based on a Work- 
load Specification Language (WSL), provides a sim- 
ple platform for capturing workload characteristics 
and translating the workload description into syn- 
thetic models with equivalent performance character- 
istics. The performance analysis framework has many 
important applications throughout the development 
cycle of simulators and models. Because PDES is 
used to simulate increasingly complex applications, 
it is important to be able to  evaluate the feasibility 
of an implementation before embarking on a complex 
modeling effort. For example, since the framework 
supports a mixture of real and synthetic objects it 
can be used to build a prototype of the simulation 
model before the actual one is built. Moreover, the 
WSL representation of real models exposes their im- 
plementation details. This facilitates straightforward 
and accurate translation of a model to other systems 
such that unbiased performance comparisons are pos- 
sible. 

With the help of a Synthetic Workload Generator 
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Figure 8: The Effects of Event Size 

(SWG), the framework can be used to characterize 
newly built simulation kernels, or the effect of new 
optimizations on existing kernels. For each simula- 
tor, a small amount of effort is required to write the 
back-end for the WSL translator. The synthetic rep- 
resentation permits the analysis and characterization 
of the performance trends of a simulator using the 
SWG. Moreover, SWG can be used to perform ca- 
pacitance testing on the simulator. The real models 
can be used, alongside the synthetic models gener- 
ated by SWG, to provide a comprehensive, realistic, 
and portable benchmark suite. 

The benchmark suite is especially useful if it is 
continuously augmented with models from emerging 
application domains - continuing to reflect realistic 
workloads. We have started assembling a benchmark 
suite of real models that will be complemented by 
SWG produced workloads. The suite currently in- 
cludes an implementation of gate-level digital logic 
simulator, a sharks world model (Conklin, Cleary, 
and Unger 1990), and the set of ping models proposed 
by Barriga (Barriga, Ronngren, and Ayani 1995). 
The circuits used for the digital-logic simulation are 
from the ISCAS’89 (CAD Benchmarking Lab, NCSU 
1989) benchmark suite. Additional models are being 
added to the benchmark suite. 
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