
Towards Adaptive Caching for Parallel and Discrete Event
Simulation

Abhishek Chugh and Maria Hybinette

Computer Science Department
The University of Georgia

415 Boyd Graduate Studies Research Center
Athens, GA 30602-7404, U.S.A.

maria@cs.uga.edu

Abstract

We investigate factors that impact the effectiveness of
caching to speed up discrete event simulation. Walsh and
Sirer have shown that a variant of function caching (staged
simulation) can improve the performance of simulation in
a networking application (Walsh and Sirer 2003). Con-
sider, however, that the effectiveness of a caching scheme
depends significantly on cache size, the cost of consulting
the cache, the cache hit rate, and the cost of completing the
computation in the case of a cache miss. We hypothesize
that adaptive techniques can be used to optimize caching
parameters (e.g. cache size), and demonstrate an adaptive
scheme that decides whether to utilize caching at an LP de-
pending on observed cache performance and event process-
ing times. This paper focuses on a quantitative evaluation
of these relationships using our own caching implementa-
tion with the P-Hold synthetic workload application (Fu-
jimoto 1990) running on the GTW simulation kernel (Das
et al. 1994). Experiments show that as the cache size is in-
creased, performance improves to a point, then degrades,
and also that the adaptive technique can substantially im-
prove speedup.

1 Introduction

Redundant computations are a significant source of ineffi-
ciency in discrete event simulations. Redundant computa-
tions have several causes. In a typical simulation, events are
processed in timestamp order regardless of the fact that sim-
ilar computations might have been performed earlier. Dur-
ing a long simulation it is likely that identical events will
recur, especially in repetitive or recursive applications. Pro-
cessing the same events again during the course of a simula-
tion will lead to a substantial number of redundant compu-
tations. Even when identical events do not recur, it is likely

that the computations that make them up will be redundant.
A number of approaches have been devised to address this
problem.

In earlier work, we proposed simulation cloning as a
means of reducing the number of redundant event compu-
tations in repeated sequential simulations (Hybinette and
Fujimoto 2001). Repeated simulation is a means of eval-
uating the impact of different conditions or policies on the
outcome of a real system (e.g. air traffic control systems).
Cloning, however, does not address the problem of repeated
computations within a single simulation run.

Caching is a mechanism for saving the results of expen-
sive calculations for reuse later. If the cost of checking the
cache is sufficiently low, overhead is negligible, yet the sav-
ings when a cache hit is successful can be great. Walsh has
proposed simulation staging, a form of function caching, as
a way to improve the performance of discrete event simula-
tion in applications with a substantial number of redundant
calculations (Walsh and Sirer 2003). His approach provides
significant speedup (up to 40x in a networking application),
but requires extensive structural revision of code at the user
application level.

In this work we introduce caching middleware that re-
sides between the application and kernel. This approach
enables an application to take advantage of caching with
only minor revision. Furthermore, no change is required
at the kernel level. We use GTW, a distributed discrete
event kernel. Applications are implemented as set of Log-
ical Processes (LPs) that exchange timestamped messages
or events. When an LP processes an event, its state may
change, and it may generate one or more events in response.
Our middleware observes how the state of a Logical Pro-
cess (LP) changes and the events it generates in response to
a message. This information is cached for later reuse.

A separate cache is implemented for each LP. Because
LPs may be distributed on different processors (or ma-

chines), separate caches can provide a significant advantage
with respect to the cost of accessing the cache. It is also
possible that individual caches can be smaller because indi-
vidual LPs will explore only a subset of the possible space
of LP states. There are advantages and limitations to our
approach, which we explore experimentally.

Regardless of how caching is implemented for simula-
tion (e.g. at the LP level, as staged simulation, or as func-
tion caching), there are a number of factors that will affect
its utility. Namely, cache size and hit rate, the cost of check-
ing the cache, and the cost of completing a computation in
the case of a cache miss. We evaluate the impact of these
factors on the performance of our caching mechanism using
the P-Hold application running on GTW (Das et al. 1994).

We also present and evaluate adaptive caching. Observe
that if the cost of checking the cache exceeds the cost of just
doing the computation, caching will degrade performance.
During a warm-up period adaptive caching gathers statistics
on these costs; after the warm-up period the system may
choose to skip caching if it is too expensive. We show that
this approach can provide speedup beyond the performance
of simple caching.

The next section covers related work in this area. Our
caching approach is described in section 3 . The implemen-
tation and the programming interface is described in sec-
tion . Section 5 discusses performance results. Advantages
and limitations are outlined in section 6 and we discuss fu-
ture work in section 7. The paper closes with a conclusion
and discussion.

2 Related Work

Different techniques for reusing computations have been
proposed and implemented earlier. In cloning (Hybinette
and Fujimoto 2001) simulations cloned at decision points
share the same execution path before the decision point
and thus only perform those computations once, after the
decision point simulations can further share computations
as long as the corresponding computations across the dif-
ferent simulations are not yet influenced by the decision
point. Updateable simulation proposed by (Ferenci et al.
2002) updates the results of a prior simulation run, called
the base-line simulation, rather than re-executing a simu-
lation from scratch. A drawback of this latter approach is
that one must manage the entire state-space of the baseline
simulation. Both of these mechanism are appropriate for
multiple similar simulation runs.

Memoization or function caching is a technique where
inputs and the functions corresponding results are cached
for later re-use. This technique has been around for over
40 years (Bellman 1957; Michie 1968). Functional caching
is widely used for incremental computations, dynamic pro-
gramming, and many others. In particular, incremental

computation is a technique that takes advantage of repeated
computations on inputs that differ slightly. It makes use
of previously computed results in computing a new out-
put. Using functional caching to obtain efficient incremen-
tal evaluation is discussed in (Pugh and Teitelbaum 1989).
Deriving incremental programs and caching intermediate
results provides framework for program improvement (Liu
and Teitelbaum 1995).

In discrete event simulation, staged simulation (Walsh
and Sirer 2003) extends function caching to increase the
efficiency of sequential simulations. It splits a large
computation into smaller sub-computations. These sub-
computations are then cached. Using caching at functional
or sub functional level however, makes the approach heav-
ily application dependent as prior knowledge of computa-
tion is required to break it into sub-computations. Another
related approach, lazy re-evaluation a technique to reduce
cost of rollback for optimistic simulation, caches the origi-
nal event in anticipation that it will be re-used after the roll-
back and consequently avoid re-computation (West 1988).

Our approach is applicable both to optimistic and conser-
vative protocols and is an adaptive approach that considers
cache size and hit rate, the cost of checking the cache, and
the cost of completing a computation in the case of a cache
miss, however, it may complement the approaches above
such as staging or cloning. This is different than the studies
reported above.

3 Approach

In order to evaluate the affect of various caching parameters
on performance, we implement our own caching scheme
and evaluate it experimentally. Our technique uses a dis-
tributed cache to store the results of event computations at
each LP, where each LP maintains its own cache indepen-
dently. The cache is indexed by the current state of the
LP and the incoming event. The resultant state and out-
put message are stored as results in the cache. The cache
is implemented as a hash table that uses separate chaining
to resolve collisions, e.g. the table is implemented as an
array of linked lists (See Figure 1). The index or keys of
the hash is computed from the contents of the current state
of the LP and the arrival message. Resultant state and out-
put message(s) are stored as results. The memory required
for nodes of the link lists is allocated from a pre-allocated
memory pool. Once the size of cache on a LP grows be-
yond the maximum allowed size (an adjustable and tunable
parameter), previously cached results are replaced. The cur-
rent cache replacement strategy simply replaces the entries
that were stored the earliest in the cache for that particular
index.

2

Figure 1: Caching Implementation: The cache is implemented as
an array that is indexed as a hash function. The hash table uses
separate chaining to resolve collisions and is implemented as an
array of linked lists.

3.1 Caching Middleware

In our implementation the caching software is middleware
independent of the simulation engine and the application.
The approach can be used with both conservative and op-
timistic simulation engines. No changes to the underlying
kernel are required, but a few calls must be added in the ap-
plication code. However, we emphasize that no significant
structural changes at the application level are necessary.

Check cache
state/message

Simulation Kernel

Simulation Application

Cache Middleware

Cache Miss
Check cache
state/message

Simulation Kernel

Simulation Application

Cache Middleware

Cache Hit

2 3

1 4
1

Miss or

2

Cache lookup
Expensive

Miss: Cache
new state &
message

Figure 2: Caching Middleware: Our caching scheme is imple-
mented as middleware between the simulation application and the
simulation kernel. The left diagram illustrates the sequence of
events in the case of a cache miss. The diagram on the right shows
a cache hit.

We provide an API for the user application to the mid-
dleware. Figure 2 shows how communication takes place
between application and the kernel through the middleware.
When the kernel attempts to deliver an event to the applica-
tion code, the caching software intercepts it.

The cache of the LP for which the message is intended is
consulted. In case of a hit, the retrieved resultant state and
message is passed back to the kernel (without the need to
consult the application code). The LP’s state is updated and
the resultant event is scheduled by the kernel. In case of a
miss the message is passed on to the application and event

computation is performed. The resultant message and state
information is captured by the middleware, where an entry
is made into the cache for future reference. The message
is then sent to the required LP through the kernel. If the
cost of consulting the cache is small we can save significant
computation in the case of a cache hit. In case of a miss
the normal procedure of computation is performed and the
results are cached. (Performance is evaluated in a later sec-
tion). If the size of cache grows beyond the maximum al-
located size per LP, results are overwritten on the previous
cached entry. The cache overwrites the least recently used
entries first. The middleware is not part of the kernel, so
rollbacks do not have to be addressed at that level. Thus the
approach can work with conservative and optimistic simu-
lation engines.

3.2 Adaptive Caching

An advantage of a middleware implementation is that the
middleware can evaluate the time required for an LP to per-
form an event computation. The middleware can also eval-
uate the overhead of caching, and make a determination as
to whether it is better to just allow the LP to perform the
computation or to use caching. The caching middleware
does not reference the cache for very small event computa-
tions, but as the granularity of a computation becomes large
the cache is referenced to improve performance, note how-
ever that maintaining the cache is more expensive in the
beginning of the simulation since the cache is not warm. In
our current implementation we switch to to caching when
processing time become more than some multiple of the
caching overhead time. This is a tunable parameter, and
may be set as a factor of the size of the event computation
and size of the state. We cover details of the implementation
next.

4 Cache Implementation

4.1 Middleware

The caching middleware is independent of the simulation
engine, and therefore does not require any changes to the
underlying kernel. A few calls must be added at the appli-
cation level, however. The user application and simulation
kernel interact through function calls that are implemented
in the middleware. The middleware thus intercepts calls
between the two levels. A separate cache is maintained for
each LP. In distributed or parallel simulations, the cache is
correspondingly distributed or parallel.

As previously mentioned, the cache is implemented us-
ing a hash table. A hash index is computed using the con-
tents of the present state of the LP and the current mes-
sage to process. In the case of collisions (two different

3

state/message pairs map to the same index), records are ap-
pended to a linked list at the corresponding index location.
When items are added to the cache, additional memory is
allocated as needed. Then the size of the cache reaches a
predetermined limit, a earliest-stored-first policy is used to
free memory for reuse.

Unless noted otherwise, in the experiments described be-
low the size of the hash table is set to 600 and the allocated
memory will accommodate 1

4 all possible state/event pairs.
Memory operations such as allocate() and free()

are expensive, especially if they are implemented as sys-
tem calls. For efficiency we would like to avoid these calls
if possible during simulation run. Accordingly, a custom
memory management system is implemented whereby all
memory allocation for caching is completed at the start of a
run. A memory pool is created at initialization. The cache
for each LP is also initialized at this time, but no memory is
allocated to it.

4.2 Time-Sensitive Adaptive Caching

The overhead associated with caching includes hashing, re-
trieving results and adding new event computation results.
Our system tracks the time spent on caching and the time
spent on actual computation. If caching becomes more
expensive than the actual computation we stop using the
cache. In this case the simulation application runs as if there
is no caching middleware involved.

Our adaptive caching mechanism is implemented, by
monitoring the cache overhead and the time to execute the
event. Currently we store as execution time the last time the
event was processed, and the overhead of the last time we
accessed the cache (without processing the event). Before
accessing the cache we compare the difference between the
computation time and cache overhead. If it take longer to
process the event than to reference the cache (times some
multiple) we reference the cache.

4.3 Application Programmer’s Interface

Three functions are available to the simulation application.
We list the functions’ names below and describe them in
detail later. The API functions are:

int cacheInitialize(int argc, char ** argv)

cacheStruct* cacheCheckStart()

cacheStruct* cacheCheckEnd()

void cacheCleanup()

These API functions are used during different phases of
simulation run. We view state of the simulation as moving
through three phases: initialization, execution, and wrap-
up. These phases are described in more detail below.

4.4 Initialization Phase

To initialize caching, void cacheInitialize()() is
called during the the initialization phase of the simulation.
The function has two arguments: argc and argv that spec-
ify command line parameters for caching. This sets up data
structures that provide a memory pool for hashing states
and inputs and initializes the caching hash tables. The com-
mand line arguments set limits on memory to be allocated
and the initial size of the cache. No system memory alloca-
tion is performed after initialization phase; our middleware
administers its own memory pool. An example initializa-
tion is shown below:

void InitilizationPhase(int argc, char ** argv)
{

/* other application initilization code
* is defined here */

cacheInitialize(argc, argv);
}

4.5 Execution Phase

During the execution phase, cacheCheckStart() and
cacheCheckEnd() are used to “wrap” the code used by
the LP to respond to an event. These calls enable the
middleware to measure the time required to execute the
computation, or to return a cached result if appropriate.
cacheCheckStart() returns NULL if the LP should execute
its own computation, otherwise it returns new state infor-
mation and the LP can skip its computation. In the adaptive
approach, the middleware may return NULL even if the re-
sult is available in the cache, because it may have concluded
that the computation is so inexpensive that it is cheaper than
consulting the cache.

In case of a miss the event computation is performed.
cacheCheckEnd() passes the new state, and any messages
that were sent to the middleware to be saved in the cache.
An example use of these calls is below:

void Event_Handler(event) /* LP event processing */
{
retval = cacheCheckStart(currentstate, event);

/* cache miss, or caching expensive */
if(retval == NULL)

{

/* original LP code */

/* compute new state and events to be scheduled */

/* allow cache to save results */
cacheCheckEnd(newstate, newevents);
}

else
{
newstate = retval.state;

4

newevents = retval.events;
}

schedule(newevents);
}

These calls enable the cache middleware to monitor time
spent on actual event computation and caching overhead.
The monitoring is transparent to the user application. The
timer starts at the entry of cacheCheckStart() and ends
with the call to cacheCheckEnd()

4.6 Wrapup Phase

When the simulation is complete cacheCleanup() is
called to free the data structures and memory pool. It is
called after simulation code is completed and before termi-
nating the program. It returns 1 on success and 0 otherwise.
It does not take any input argument.

5 Performance

Caching efficiency depends on at least three features of the
application being simulated: cost of event computations,
running time of the simulation, and size of the state. Other
factors include parameters of the caching scheme, which, in
turn, affect how quickly the cache can be consulted. In gen-
eral we expect better performance from caching as the cost
of event computation increases, and worse performance as
caching becomes more expensive.

There are a few other issues to consider as well. At ini-
tialization time, the cache is empty – and therefore not at all
effective. However, as the cache “warms” up performance
improves. Accordingly, longer simulations are more likely
to benefit from caching. The size of the state is also im-
portant because for a given cache size, the number of event
result computations stored is inversely proportional to the
size of the state.

Quantitative results were obtained using the P-Hold ap-
plication on GTW, an optimistic time warp simulation ker-
nel (Fujimoto 1990; Das et al. 1994). P-Hold provides a
synthetic workload using a fixed message population. Each
LP is instantiated by an event. Upon instantiation, the LP
schedules a new event. The destination LP is chosen ran-
domly. Note that while caching the resultant state, we re-
move the time stamp and store rest of the information. Sim-
ilarly while comparing the state information during cache
look up, we do not take timestamp into consideration. Eval-
uation of caching performance was conducted on an SGI
origin 2000 with sixteen 195 MHz MIPS R10,000 proces-
sors. The unified secondary cache is 4 MB. The main mem-
ory size is 4 GB.

Three types of experiments were performed: 1) Exper-
iments as proof of concept of the basic caching technique

(no adaptive caching), 2) Experiments to evaluate the im-
pact of cache size and simulation running time on speedup
for basic caching, and 3) Experiments to study the benefit
of adaptive caching with regard to the cost of event com-
putation. As proof of concept we calculated the increase in
hit percentage versus the size of the cache, and simulation
running time.

5.1 Basic Caching Experiments: Hit Rates

As a proof of concept, we evaluated cache hit ratio versus
the running time of the simulation and cache size. The plots
in Figure 3 show that hit ratio generally increases as we

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

H
it

R
at

e
(P

er
ce

nt
ag

e)

Progress (Simulated Time)

10000 KB
25000 KB
 1000 KB

Figure 3: Performance of P-Hold: The hit ratio increases
increases as the simulation progresses. Larger numbers in-
dicate better performance.

increase the length (number of events) of the simulation.
Three experiments were run, using different cache sizes: a)
cache size same as the size required to store all results, b)
cache size one-fourth the size required to cache all results,
and c) cache size one-tenth of the size required to cache
all results. As one would expect hit ratio also increases as
the cache size increases. Note that for case b) and c), hit
rate performance levels off after 50,000 time units, then be-
gins to improve after about 125,000 time units. We are not
certain why this happens, but we speculate that this is a re-
flection of the “warm up” time for smaller caches.

Note that the hit rate sets an upper bound for speedup
using caching. For instance, a hit rate of 50% would force
us to complete 1

2 of the event calculations, limiting speedup
to no more than 2.0 (assuming that the cost of checking the
cache is negligible in comparison with the cost of complet-
ing the actual event computation). For the P-Hold applica-
tion our hit ratio approaches 70%, thus forcing 30% of the
computations, leading to a speedup limit of about 3.3.

5

5.2 Basic Caching Experiments: Speedup

We evaluated speedup in comparison to traditional simula-
tion (without caching) with respect to: the size of the cache
and the running time of the simulation (proportional to the
number of events processed).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

Sp
ee

du
p

(N
o

C
ac

hi
ng

/C
ac

hi
ng

)

Size of Cache (KB)

Speedup versus Size of Cache

400,000 Simulated Time Units

Figure 4: Performance of P-Hold: Speedup in comparison
to traditional simulation (without caching) with respect to:
the size of the cache and the running time of the simulation.
Larger numbers indicate better performance.

Figure 4 shows speedup versus the size of the cache for
different simulation running times. Speedup improves as
the size of the cache is increased. We see the best speedup
in the case of the longest running time. This is because we
are allowed to run for a longer time after the warm up phase.
However, beyond a certain point as cache size is increased,
speedup declines, then levels off.

We suspect that the drop in speedup corresponds to the
cache size at which the memory requirements for the simu-
lation exceed the physical size of memory alloted to the pro-
cess. At this point, the underlying OS relies on virtual mem-
ory techniques to provide the resources. Performance does
not continue to degrade because the caching software is al-
lowed to maintain a useful working set in RAM. In other
conditions, for instance when physical memory is small in
relation to effective cache size we may see a more aggres-
sive drop in performance as virtual memory is utilized.

5.3 Adaptive Caching Experiments

Observe that the performance of caching depends on many
factors. In fact the impact of these factors on performance
may change dynamically while the simulation runs. We
suspect that adaptive techniques could be used to optimize
caching parameters at run time. As an initial demonstra-
tion of this idea, we implemented a simple adaptive scheme,

time sensitive caching (described above), and evaluated its
performance.

The general idea is to track the cost of consulting the
cache (which may change with time) in comparison to the
cost of running the actual computation. If the computation
cost exceeds a user defined multiple of the caching cost, the
system chooses to use caching, otherwise it allows the ap-
plication to compute the events, even if they are redundant.

We evaluated the approach by varying the cost of event
computation from 0 to 3 milliseconds, then measuring per-
formance for: a) a simulation without caching, b) a simu-
lation using simple caching, and c) a simulation using time
sensitive caching. Speedup was computed for simulation b)
and c) in comparison to simulation a).

We conducted an initial experiment using the same ap-
plication and caching parameters as in the experiments
above. In this case we discovered that there was hardly
any benefit to the adaptive technique until event computa-
tion costs were reduced to below 10 microseconds. The
results were noisy and our ability to instrument the experi-
ment over such small time intervals is limited. We suspect
that the cost of caching in these conditions may be artifi-
cially low due to the large hash table and limited size of the
state space.

In order to evaluate adaptive caching more fairly, we ad-
justed one of the parameters of the caching algorithm to
make caching more expensive. In particular, we reduced
the size of the hash table from 600 elements to 10 elements.
This change forces a linear search for matches much more
often. While a hash table of 10 elements may be artifi-
cially small, we believe that this change may more accu-
rately reflect the relationship between caching and compu-
tation costs in other simulation applications.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.5 1 1.5 2 2.5 3

Sp
ee

du
p

(N
o

C
ac

hi
ng

/C
ac

hi
ng

)

Computation Granularity (msec)

Speedup versus Computation Granularity

Time Sensitive
Not Time Sensitive

Figure 5: Performance of P-Hold: Shows speedup results
for simulations using simple caching and adaptive time sen-
sitive caching. Larger numbers indicate better performance.

6

Figure 5 shows speedup results for simulations using
simple caching and adaptive time sensitive caching. The
adaptive algorithm was set to select caching when the cost
of event computations exceeded a factor of four of the
caching cost. Notice that speedup for the adaptive tech-
nique is approximately 1.0 for event granularities of 0 to
2.0 milliseconds. In comparison, simple caching suffers a
speedup ratio of 0.8 for very small event computation costs,
and only improves to 1.0 when event granularity approaches
1.0 milliseconds. This means that the adaptive technique
improves performance over simple caching in this region.

As event granularity increases beyond 1.5 milliseconds,
both simple caching and adaptive caching begin to exceed
speedups of 1.1. In future work we will continue to evaluate
the factors affecting performance in this region.

6 Advantages and Limitations

Our particular caching implementation offers several ad-
vantages, but suffers from some limitations as well. In any
case, the focus of this work is to evaluate the effects of var-
ious caching parameters on simulation performance, and to
look for opportunities to use adaptive techniques. These
results should apply to any caching approach (e.g. middle-
ware, function caching, or staged simulation).

The key advantages to our approach stem from the mid-
dleware implementation. In particular the simulation kernel
requires no change, and the user application code requires
only the addition of simple checkpoints. No major struc-
tural revision of the application code is necessary. From
a user’s point of view, integrating our caching scheme re-
quires very little effort.

Performance results show that in the worst case our
caching technique offers no speedup, but in the best case
(for the P-Hold application) speedup approaches three.
In comparison Walsh has reported speedups exceeding
40x (Walsh and Sirer 2003). Our speedup is limited pri-
marily by the cache hit rate for the P-Hold application.
Speedup, using any algorithm, will be limited to 3.33x
when the hit rate is 70%. 40x speedups imply a hit rate
of nearly 98%. The nature of our caching approach (that
we cache on state/event pairs) will probably limit our hit
rate, and thus speedup, in most applications.

The caching mechanism works effectively only when
there are no side effects. If there is random information,
(such as timestamp information or the result of a random
number generator), in the results to be cached, the caching
technique becomes ineffective. This is because the proba-
bility of reusing the computation becomes negligible.

The caching technique will be more effective for appli-
cations having smaller state size. If the size of the state is
huge it will adversely affect the efficiency. Larger state size
means more space will be occupied for each entry in to the

cache resulting in fewer entries, thus reducing the probabil-
ity of a hit.

Our results are based on experiments with the P-Hold ap-
plication. Techniques involving caching do not inherently
work efficiently with the randomness element involved.
With randomness the number of event computation results
possible will become unmanageable.

7 Future work

The future work involves adding additional adaptability, as
in (Acar et al. 2002) to the caching mechanism i.e. in-
tegrating adaptive computing with coarse level functional
caching. Adaptive functional programming maintains re-
lationship between input and output as input changes. It
keeps track of the input parameters, and therefore instead
of re-evaluating the whole function from scratch, adap-
tive functional programming updates the output by re-
evaluating part of the program effected by changes in the
input. The output is made adaptive to input by recording
dependencies during initialization phase. Adding adaptabil-
ity to the caching will improve efficiency but can make the
technique proposed application dependent. We also like to
fine tune our replacement strategy, and are considering sim-
ilar approaches that are used in for functional caching as
discussed in (Pugh 1988).

8 Conclusion

We have investigated factors that impact the effectiveness
of caching to speedup discrete event simulation. The key
idea is enables an application to take advantage of caching
with only minor revision. The overhead associated with
caching includes hashing, retrieving results and adding new
event computation results. Our system tracks the time spent
on caching and the time spent on actual computation. If
caching becomes more expensive than the actual computa-
tion we stop using the cache. In this case the simulation
application runs as if there is no caching middleware in-
volved.

Performance results show that in the worst case our
caching technique offers no speedup, but in the best case
(for the P-Hold application) speedup approaches three.

References

ACAR, U. A., BLELLOCH, G. E., AND HARPER, R.
2002. Adaptive functional programming. ACM
SIGPLAN Notices 37, 1 (Jan.), 247–259.

BELLMAN, R. E. 1957. Dynamic Programming.
Princeton University Press.

7

DAS, S., FUJIMOTO, R., PANESAR, K., ALLISON,
D., AND HYBINETTE, M. 1994. GTW: A Time
Warp system for shared memory multiprocessors. In
Proceedings of the 1994 Winter Simulation Confer-
ence Proceedings (December 1994), 1332–1339.

FERENCI, S. L., FUJIMOTO, R. M., AMMAR, M. H.,
AND PERUMALLA, K. 2002. Updateable simu-
lation of communication networks. In Proceedings of
the 16th Workshop on Parallel and Distributed Sim-
ulation (PADS-2002) (May 2002), 107–114.

FUJIMOTO, R. M. 1990. Performance of Time
Warp under synthetic workloads. In Proceedings of
the SCS Multiconference on Distributed Simulation,
Volume 22 (January 1990), 23–28. SCS Simulation
Series.

HYBINETTE, M. AND FUJIMOTO, R. M. 2001.
Cloning parallel simulations. ACM Transac-
tions on Modeling and Computer Simulation
(TOMACS) 11, 4, 378–407.

LIU, Y. A. AND TEITELBAUM, T. 1995. Caching
Intermediate Results for Program Improvement. In
ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (La
Jolla, CA, June 1995), 190–201. ACM Press.

MICHIE, D. 1968. “memo” functions and machine
learning. Nature, 19–22.

PUGH, W. 1988. An improved replacement strat-
egy for function caching. In Proceedings of the 1988
ACM Conference on Lisp and Functional Program-
ming (July 1988), 269–276. ACM: ACM.

PUGH, W. AND TEITELBAUM, T. 1989. Incremen-
tal computation via function caching. In Conference
Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages (Austin,
Texas, Jan. 11–13, 1989), 315–328. ACM SIGACT-
SIGPLAN: ACM Press.

WALSH, K. AND SIRER, E. G. 2003. Staged simu-
lation for improving scale and performance of wire-
less network simulations (Dec. 2003).

WEST, D. 1988. Optimizing Time Warp: Lazy roll-
back and lazy re-evaluation. M.S. Thesis, University
of Calgary.

8

