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ABSTRACT

In standard optimistic parallel event simulation, no restric-
tion exists on the maximum lag in simulation time between
the fastest and slowest logical processes (LPs).  Over-
optimistic applications exhibit  a large lag, which encour-
ages rollback and may degrade performance.  We investi-
gate an approach for controlling over-optimism that classi-
fies LPs as FAST, MEDIUM, or SLOW and migrates
FAST and/or SLOW processes.  FAST LPs are aggregated,
forcing them to compete for CPU cycles.  SLOW LPs are
dispersed, to limit their competition for CPU cycles. The
approach was implemented on distributed Georgia Tech
Time Warp(GTW)(Das et al., 1994) and experiments per-
formed using the synthetic application P-Hold(Fujimoto,
1990).  For over-optimistic test cases, our approach was
found to perform 1.25 to 2.75 times better than the stan-
dard approach in terms of useful work and to exhibit exe-
cution times shorter than or equal to the standard computa-
tion.

1 INTRODUCTION

Parallel simulation based on the optimistic Time Warp
protocol(Jefferson and Sowizral, 1985)  is widely used in
large-scale simulations such as those of air-traffic control
and the World Wide Web. A primary concern of such
simulations is good performance.  However, these simula-
tions are subject to the problem of over-optimism, in which
some logical processes (LPs)  progress far beyond others.
To facilitate discussion of the nature of  inefficiencies that
result from over-optimism, we first present some essential
background on optimistic discrete event simulation using
Time Warp.

A discrete event simulation consists of a collection of
logical processes (LPs), which may execute on different

processors (PEs).  The simulation is driven by the ex-
change of timestamped message by the LPs.  Consistency
in the processing of messages requires that all events be
processed in timestamp order.   Two main synchronization
protocols exist: conservative and optimistic.  The conser-
vative protocol enforces consistency by avoiding the pos-
sibility of ever receiving an event in the past.  In contrast,
the optimistic protocol permits the receipt of an event from
the past but responds by “rolling back” events that were
optimistically processed too early.

 Each LP in an optimistic simulation maintains a cur-
rent logical clock (local virtual time, or LVT); whenever an
LP receives a message with a timestamp earlier than LVT,
it rolls back its execution to the time-stamp before that of
the arrived message. Such an out-of-order message is
called a straggler message. When rollback is necessary an
LP reverts to the appropriate previous state and “un-
schedules” any messages sent prior to the rollback. To
support this, LPs maintain a history of state information
and keep a record (an anti-message) for each message sent.
In the case of rollback, the LP sends anti-messages, which
annihilate the original messages sent. Anti-messages may
cause additional rollbacks, called secondary rollbacks.

The earliest timestamp of any unprocessed or partially
processed message in the system defines Global Virtual
Time (GVT).  A message is guaranteed not to rollback if its
timestamp is earlier than GVT.  Thus, memory for events
with timestamps before GVT, along with their corre-
sponding state and anti-messages, can be reclaimed in a
process known as fossil collection.

Over-optimism results in poor memory utilization be-
cause it creates a wide gap between GVT and the most re-
cent timestamp in the system.  State information, event
histories, and anti-messages must be stored for all  com-
putation with a simulation time later than GVT.  If over-
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optimism is not controlled, the memory requirement may
grow to the point that memory becomes exhausted.

Another inefficiency caused by over-optimistic be-
havior is that rollbacks may be quite long when slower LPs
send a message to faster (over-optimistic) LPs.  Previously
processed events are rolled back and anti-messages are sent
to cancel the events scheduled as a result of the events cur-
rently being rolled back. This nullifies all the useful com-
putation done by both the over-optimistic LPs and the LPs
to which the anti-messages were sent. Further, useful CPU
cycles are wasted by undoing the work already done.

Finally, long and frequent rollbacks result in a large
number of anti-messages being sent.  These anti-messages
utilize bandwidth that could otherwise have been used for
useful communication.  Thus, over-optimistic behavior of
LPs can cause inefficiencies including poor memory utili-
zation, excessive rollbacks and communication over-
heads.

Simulations that are susceptible to over-optimism in-
clude those operating in heterogeneous environments,
those subject to external workloads, or those for which
application-specific characteristics of the simulation
promote over-optimistic behavior.

Networks of workstations (NOWs), an important plat-
form for large scale simulations, are typically heterogene-
ous, with computing and memory resources varying among
machines. Logical processes running on fast processors
may progress faster in simulated time than logical proc-
esses running on slower processors.

A large scale simulation may run on a system that is
shared among many users. Here, logical processes may
compete with other applications for shared resources,
causing some logical processes to run on more heavily
loaded processors, while others run on less loaded proces-
sors.  Logical processes running on heavily loaded proces-
sors make less progress in simulation time compared to
logical processes on less loaded processors.

The manner in which a particular application is im-
plemented can also influence over-optimistic behavior.
Applications that exhibit self-instantiation and uneven
granularity of load per LP may demonstrate over-
optimistic behavior. Self-instantiation means that an LP
schedules events to itself rather than to a remote LP. De-
gree of self-instantiation refers to the number of messages
an LP sends to itself before sending a remote message.
Applications that consist mainly of LPs with a high degree
of self-instantiation communicate with other LPs infre-
quently. Because of this infrequent communication, when-
ever an LP that is far behind sends a message to an LP that
is far ahead, it causes long rollbacks due to out-of-order
messages. For example, the implementation of a Personal
Communication Systems (PCS), described in (Carothers
and Fujimoto, 1994), that includes LPs having a high de-
gree of self-instantiation, has been shown to exhibit over-
optimistic behavior.

Another characteristic that may cause over-optimistic
behavior is uneven granularity of load per LP in an appli-
cation. This happens when some LPs incorporate more
work and take more time to process their event set than the
other LPs. Again, when the LPs that are far behind in the
simulation communicate with LPs that are far ahead, long
rollbacks and anti-messages result.  Implementations of
Asynchrous Transfer Networks (ATMs) are prone to such
an uneven granularity of load per LP (Hao, et al., 1996).

A goal of our approach is to use the CPU as a flow
control mechanism for over-optimistic execution. We pre-
sent a process migration scheme that controls over-
optimistic processes by isolating their impact on other
processes, while promoting the progress of slower, less
optimistic processes.  We evaluate our approach using a
synthetic benchmark application called P-Hold.

2 BACKGROUND

Prior work addressing the problem of over-optimism falls
into three broad categories: protocols using limited opti-
mism, memory management protocols and adaptive tech-
niques.

2.1 Optimism Limiting Protocols

Blocking is a commonly used technique for reducing
the amount of rollback(Reiher et al., 1989) that limits the
progress of over-optimistic LPs through use of a time win-
dow of size W.  LPs are prevented from progressing be-
yond GVT + W, and are blocked until LPs that are far be-
hind catch up. Window size may be determined statically
dynamically.

The aggressive no-risk protocol(Dickens and Rey-
nolds, 1990) avoids sending a message until it is guaran-
teed that it won’t cause rollbacks.   Messages sent by an LP
are stored in its PE’s buffer and not sent until GVT ad-
vances beyond the send timestamp of the message, assur-
ing that the messages will not be rolled back later.

The look ahead information  approach(Lubachevsky et
al., 1989), also may be used to decide whether it is safe to
process a given message.  A hybrid conservative and opti-
mistic protocol is employed that begins with the conserva-
tive protocol to determine which events are safe to process
and later adds optimistic synchronization features to “un-
safe” events.

Another approach introduces additional rollbacks at
stochastically selected intervals (Madisetti et al., 1983).
These additional rollbacks prevent overly optimistic exe-
cution of LPs that could be rolled back to GVT if a roll-
back decision were determined for that LP. Probability
vectors are used to determine if the LP should be rolled
back.

The breathing time protocol(Steinman, 1983) limits
the number of events a particular LP can process beyond
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GVT and involves determination of the minimum time
stamp among events that will be produced in the future.

2.2 Memory Management Protocols

Two protocols used to limit the memory utilization in
an over-optimistic simulation are artificial rollback (Jeffer-
son, 1990) and cancel back (Lin and Preiss, 1991). These
protocols are used when the system runs out of memory
and fossil collection attempts cannot reclaim the memory
needed for the simulation to progress. These schemes roll
back some of the logical processes and utilize the freed
memory to continue.  Artificial rollback works by identi-
fying the most over-optimistic  LPs (those furthest ahead in
simulation time)  and then rolling them back. Cancel back,
on the other hand, achieves the same effect by sending
back certain messages to the sender LP, rolling back the
sender.

2.3 Adaptive Techniques

S. Das and R. Fujimoto proposed an adaptive tech-
nique combining memory management and limited opti-
mism synchronization protocols(Das and Fujimoto, 1997).
The amount of memory allocated to a Time Warp simula-
tion automatically limits the amount of optimistic execu-
tion, i.e., the degree to which processes may advance ahead
of other processes. This protocol seeks to provide suffi-
cient memory for Time Warp to execute efficiently, but
not so much memory that overly optimistic execution can
occur. The protocol attempts to simultaneously address
rollback thrashing and memory management issues. The
approach is adaptive; it monitors the execution of the Time
Warp program and automatically adjusts the memory pro-
vided to the parallel simulator. An adaptive protocol was
necessary because the the synchronization and memory
management protocol parameters depend on characteristics
of the application such as symmetry and homogeneity
among the simulation processes and memory required to
execute the program using Time Warp.

A load distribution system for background execution
of Time Warp(Carothers and Fujimoto, 2000) is designed
to use free cycles of a collection of heterogeneous ma-
chines to run a Time Warp simulation. The load manage-
ment policy involves both processor allocation and load
balancing. The processor allocation policy dynamically
determines the set of processors to be used for a Time
Warp simulation. LPs are grouped into clusters by the ap-
plication to reduce migration overhead. Clusters, rather
than individual LPs are migrated, with the goal of goal of
equalizing the progress of all the processors, taking into
consideration the external and internal workload, processor
speeds, etc. The metrics for classifying the processors and
individual clusters are PAT (Processor Advance Time) and
CAT (Cluster Allocation Time),  respectively.

A load balancing technique for the Time Warp distrib-
uted system for object-oriented simulation(Burdorf and
Marti, 1993) distributes objects across nodes and provides
optimistic concurrency control. The scheme consists of
static and dynamic load balancing monitors. The static
monitor determines pre-assignment of objects to proces-
sors.  The dynamic load balancing module monitors load
imbalance and initiates migration of objects, using knowl-
edge of simulation time (LVT) to reduce rollback. That is,
it minimized the distance between the simulation time of
the farthest ahead object and the furthest behind object.

Another interesting approach that applies load bal-
ancing and optimism limiting protocol (Jones and Das,
1998) combines the throttling of over-optimistic processes
and scheduling (or load balancing) to control over-
optimistic behavior.  Throttling is implemented by the
moving time window protocol described above.  In the
scheduling component LPs are remapped to processors so
the N slowest LPs in simulation time are mapped to differ-
ent processors, where N is the number of processors on
which the simulation is run.

2.4 Comparison

S. Das’s adaptive memory management technique that
uses memory as a flow control for controlling over-
optimism is similar to our approach, which uses CPU as a
flow control mechanism. Unlike Carothers and Fujimoto’s
approach,  which uses available CPU cycles to load bal-
ance logical processes, we use the CPU itself to control
over-optimism. By aggregating over-optimistic LPs to one
CPU, we force these LPs to compete with each other for
available CPU cycles. This slows down their progress
while isolating their impact on other LPs. In addition, we
spread out the less optimistic LPs, limiting their competi-
ton for CPU cycles.

S. Das and K. Jones approach of using throttling with
scheduling is similar to our approach in terms of making
the less optimistic LPs progress to catch up with LPs that
are ahead in simulated future. But for LPs that are far
ahead in simulation time, Das and Jones use blocking,
which wastes CPU cycles,  unlike our approach which
isolates these LPs on one PE to slow their progress. Too
much throttling is harmful as too few events are admitted
for processing. Another important difference is that their
approach was implemented on a simulated distributed sys-
tem, whereas our implementation is deployed on a real
distributed system on real processors.

3 OUR APPROACH

The idea behind our approach is to aggregate fast LPs onto
one processor so that they must compete for processor cy-
cles, slowing their progress. Slow logical processes are
dispersed to different processors to limit their competition
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for CPU cycles. Migration costs are minimized by reduc-
ing the number of LPs moved.  This is done by selecting a
fast repository (CPU on which the fast LPs will be aggre-
gated) that already has the most fast LPs mapped to it. The
cost of moves are justified in our approach in that we move
only LPs that are either too fast and waste work, or too
slow and likely require more resources.

Our approach to controlling over-optimism involves
the following steps:

(i) Ranking of LPs: LPs are ranked according to how
far ahead in simulation time they are compared to the rest
of the simulation. We use a metric called GVTLag, the dif-
ference between an LP’s current simulation time and  GVT
(GVTLag = LVT- GVT). LPs are ranked according to their
GVTLag value.

(ii) Classification of LPs: LPs are then classified as
one of FAST, MEDIUM and SLOW.  The k * N LPs that
have the highest value of GVTLag are selected to be la-
beled as FAST, where k is a scaling factor and N is the
number of processors on which the GTW kernel is cur-
rently running. The factor k is an experimental parameter
and depends on the migration cost in the system.  A se-
lected number of the slowest LPs are classified as SLOW;
the remaining LPs are classified as MEDIUM.  In our ex-
periments, the number of SLOW LPs is fixed at N-1.

(iii)  Identification of the FAST-REPOSITORY:  The
FAST-REPOSITORY is the CPU on which the over-
optimistic (FAST) LPs will be aggregated.  The CPU con-
taining the greatest number of LPs labeled as FAST is se-
lected as the FAST-REPOSITORY.  This reduces the
number of LPs that will be moved in subsequent steps.

(iv) Isolation of FAST LPs:  All FAST LPs not cur-
rently mapped to the FAST-REPOSITORY are migrated to
it.  This is done to isolate the effects of the over-optimistic
LPs from the rest of the LPs in the simulation and to force
these optimistic LPs to compete for CPU cycles.

(v) Spreading of SLOW LPs: SLOW LPs are redis-
tributed to the processors other than the FAST-
REPOSITORY, one per processor.  The goal of this step is
to limit the contention of the least optimistic LPs for CPU
cycles, in the hopes of allowing them to “catch up” with
the rest of the simulation.

3.1 Implementation

Our load balancing algorithm is implemented on the
distributed Georgia Tech Time Warp system (GTW) (Das
et al., 1994), which is a parallel and distributed discrete
event simulation executive based on  Jefferson’ s Time
Warp (Jefferson, 1985).  GTW runs on both shared mem-
ory machine and distributed memory machines. Details of
GTW can be found in (Fujimoto et al., 1997).

Distributed GTW employs an additional thread on
each machine(Carothers and Fujimoto, 2000) that handles
all the external communication with other machines. The

Parallel Virtual Machine (PVM) communication library is
used for remote communication. We implemented our
process migration algorithm in a separate thread called
MonitorOPT on top of distributed GTW.

The software architecture of distributed GTW, in-
cluding our thread, is shown in Fig.1. GTW provides the
APIs for the simulation application to exchange informa-
tion with GTW regarding the number of LPs, number of
processors, event handlers for each LP and other informa-
tion. Once GTW has the application-specific information it
sets up various data structures to carry out the execution of
the simulation. Distributed GTW consist of two libraries:
the kernel library and the kernel communication library.
The kernel library consists of the core functionalities of
GTW, including the state saving mechanism, scheduler of
events, mechanism for computing GVT and communica-
tion thread. The kernel communication library consists of
various methods that invoke PVM calls. The kernel library
calls the method in the communication library in order to
execute PVM functionality.

We implemented an optimism controlling module
consisting of a central monitoring process called “Moni-
torOPT” that is heart of our algorithm. The process runs on
a dedicated machine. MonitorOPT executes periodically to
collect statistics from other processing elements (PEs). The
specific period is an experimental parameter and could be
varied. MonitorOPT computes the moves of the LPs based
on the collected statistics of the whole system and uses this
for controlling over-optimism of the LPs. The MonitorOPT
process responsible for migration decisions communicates
with the kernel communication library in order to exchange
messages with the communication thread of the kernel li-
brary.

Once the new mapping information of where each LP
will be moved is computed a move-list is created having
information about what LPs will be needed to move, the
source PE from which it will be moved and to what desti-
nation PE will it be moved to. If MonitorOPT determines
some moves to be made, a HALT message is sent to each
processor. This is done to stop each PE’s computation and
roll back all LPs to GVT. This helps to synchronize all PEs
and to perform load redistribution effectively,  reducing the
cost of LP migration as the history information of the LPs
will not be moved from source processor to the destination.

After all the processors roll back their computations to
GVT, they send an acknowledgment message, HALT-ACK,
to the MonitorOPT process. The MonitorOPT process then
sends a MOVE message for each move in the move-list to
the source processor from which a particular LP will be
moved.  The source PE transfers all the information re-
garding the LP to the destination PE, and then sends a
MOVE-LP message to the destination PE.  The destination
PE updates all the necessary information and then sends a
MOVE-LP-ACK message to the source PE, after which the
source PE sends a MOVE-ACK to the MonitorOPT.
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 Fig 1. A  Software architecture for Distributed GTW

Once the MOVE messages have been sent for each
move in the move-list, the MonitorOPT process computes
the new mapping information which is the updated map-
ping of all LPs to PEs to update the mapping structures
used for migration of LPs in the future. It then sends a
MAPPING message to all the processors to reflect this new
mapping. Once all PEs update their local mapping struc-
tures for the mapping message they send a MAPPING-
ACK message to MonitorOPTLB. Next, a RESUME mes-
sage is sent so that the normal computation can resume on
all processors. The load balancing interval starts with this
message and at the interval expiry new computations and
data collection can begin. This process continues until the
end of the simulation.                 

4 EXPERIMENTS AND DISCUSSION

Experiments were performed to compare the performance
of our approach with that of the standard Time Warp
simulation without process migration. The experiments
presented in this study were performed in a heterogeneous
environment consisting of 8 machines: one SGI Origin
2000 with sixteen 195 MHZ MIPS R 10,000 processors
running IRIX version 6.5 and seven 167-MHZ Sun Sparc
Ultra -1 workstations running version 2.5 of the Solaris op-
erating system. In all experiments the GTW kernel was
executed on a  total of 8 processors with one processor

from each of the machines involved in the experiment.
MonitorOPT was executed on the SGI machine. The
benchmark application used to perform these experiments
is P-Hold.

4.1 The Benchmark application: P-Hold

P-Hold is a benchmark application using a synthetic
workload model(Fujimoto, 1990).  The benchmark uses a
fixed message population. Processing of each message
takes a finite amount of time, after which a new message is
sent to another LP with a specified time stamp increment.
The initial messages have a timestamp that is exponentially
distributed between 0 and 1. As the messages are for-
warded their new timestamp increments are fixed at 1. The
total number of LPs for these experiments was fixed at
256. These LPs were initially evenly distributed on 8 proc-
essors, with 32 LPs per processor. The experiments used a
fixed message population of 6,400.

In order to effect an imbalance, P-Hold was instru-
mented with two distinct synthetic workloads: null and one
millisecond. In the null case, event processing is made as
small as possible; in the one millisecond case event proc-
essing includes a 1 msec delay loop.

To make the application more imbalanced,  P-Hold
was also configured as self-instantiated, and the degree of
self-instantiation of an event was varied. The experiments
used two degrees of self-instantiation: 50 and 200. When
an event is processed in which the source LP differs from
the destination LP, the destination LP schedules the next d
generations of the event to it. After d generations of the
event have been produced, a new destination LP is ran-
domly selected.

For the first set of experiments, two classes of
LP/event restrictions are generated:

Class [200: 1 msec]: This includes events with degree
of self-instantiation 200 and LPs that take a 1 millisecond
delay (event granularity of 1 msec) to execute every event.

Class [50: null]:  This include events with degree of
self-instantiation 50 and LPs that execute events without
any delay (null event granularity).

The percentage of LPs in Class [200:1msec] was var-
ied from 0 to 100 percent in increments of 20 percent. The
remaining LPs in the simulation operated under Class[50 :
null]. By varying the percentage of LPs executing in either
of the two classes, we created different levels of optimism
and imbalance. LPs under Class [200: 1msec] progress
slowly as their event granularity is larger than event
granularity of Class [50: null]. Additionally, whenever the
LPs in Class [200:1msec] send remote messages to LPs in
Class [50:null], it may roll back the computation of the
Class [50:null] LPs.

A second set of experiments was performed for com-
parison. While keeping all other operating parameters the
same, we swapped the delay of event execution on the two

GTW    Kernel    Library

PVM

GTW Communication Li-
brary (PVM Wrapper)

Simulation Application

Hardware

MonitorOPT
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classes of LPs. LPs under these experiments were made to
execute under the two classes of operating restrictions,

Class [50: 1msec]: Events with degree of self-
instantiation 50 and LPs execute event with 1 millisecond
delay (1 msec event granularity).

Class [200: null]: Events with degree of self-
instantiation 200 and LPs execute events without any delay
(null event granularity).

An empirically determined sample period of 50 sec-
onds was used.  Results represent an average of four trials.

4.2 Experiments under Set 1

In figure 2 below, we show the performance of three
variations of our migration algorithm: (1) with fast reposi-
tory and slow LP spreading, (2) without fast repository but
with slow LP spreading, (3) with fast repository but with-
out slow LP spreading. We measure performance as the
ratio of the useful work with process migration to the use-
ful work without process migration. Useful work is the ra-
tio of events that were committed (not rolled back) to all
events processed.  The three variations are described be-
low:

Both Fast Repository and Slow LP spreading:  The num-
ber of FAST LPs is N * k, where k = 5 and N = 8. The
numbers of LPs classified as SLOW is fixed to 7 (N-1,
where N is the number of processors in the system).
Slow LP spreading only: The number of FAST LPs is 0;
accomplished by setting k =0.  We classify 8 (N=8) LPs as
SLOW and the remaining LPs as MEDIUM.
Fast Repository only:  40 LPs (k=5) are classified as
FAST.  The remaining LPs are classified as MEDIUM.

Fig. 2 Ratio of percentage improvement in useful work
as compared to without process migration, (Set 1)

From figure 2 we see that in cases where over-
optimism exists the simulation performs better with proc-
ess migration (“Both”) than without process migration in
terms of percentage of useful work, by a factor of 1.25 to
2.75 over useful work without process migration. The best

performance is at data point 20%, where “Both” (Fast re-
pository and slow spreading) performs approximately 2.75
times better than the simulation without process migration.
None of the variations of process migration perform better
than the simulation without process migration at data
points 0 and 100. At these points the simulation is bal-
anced; all LPs execute under one class of event granularity,
so it is likely that it is not over-optimistic. At data point 0,
all the LPs execute under Class [50 : null], whereas at data
point 100 all LPs operate under Class [200:1 msec]. The
LPs all have the same event granularity and progress at the
same pace, causing less rollback. The ratio of useful work
of less than one in these cases in which over-optimism is
absent is a result of the overhead of process migration.

When the application is unbalanced, process migra-
tion(Both) demonstrates maximum benefits performing by
a factor of 1.25 to 2.75 times better than the results without
process migration. When the application is overly optimis-
tic, with no migration, the simulation spends much of its
time rolling back its computation rather than progressing
forward and hence results in less useful work. On the other
hand, due to process migration, the over-optimistic LPs are
isolated on a separate processor slowing their progress
down and less optimistic LPs are allowed to make progress
by redistributing them on different processors. This helps
in reducing the differences among the progress of the LPs
and the number of rollbacks.

The two variations of process migration also perform
better than no process migration when the application is
unbalanced (data points 20% – 80%). In some cases the
fast repository (which limits fast LPs) produces the benefit,
while in other cases the spreading of slow LPs (which
promotes progress by the slow LPs) produces the benefit. It
depends upon the application state which type of LPs
dominates the simulation. To complement each of these
two approaches, we combined the two variations in our
implementation of the process migration algorithm. In this
combined approach, we control both the less optimistic and
over-optimistic LPs, consistently providing better perform-
ance in cases where over-optimism exists.
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Execution time performance
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Fig. 3  Execution time performance (Set 1)

Figure 3 shows the execution time performance for the
above experiment, comparing the simulation run with
process migration and its various variations against the
simulation without process migration. It was observed that
process migration did not provide any benefit in terms of
execution time when the optimism is balanced(data point 0
and 100 when all LPs have same event granularity).The
most benefit in terms of execution time is obtained at 20%
and 40% of Class [200:1msec]. At these two points there is
also better percentage of useful work as shown in fig. 2.
For data points 60 and 80 it is observed that process mi-
gration takes almost equal execution time compared to
without process migration. The percentage of useful work
performed by the process migration run for data point 60 is
approximately 2 times better than without process migra-
tion and for data point 80 is 1.15 times better than without
process migration.  That is, although we do not benefit in
terms of execution time at these two data points,  we do
benefit in terms of useful work.  This is the result of mi-
gration overhead.  If this overhead consists largely of
communication costs, then it may be possible for  external
workloads to benefit from this reduced work, as the CPU
cycles not used in performing wasted work would be avail-
able.  However, we have yet to characterize the computa-
tion/communication trade-offs of process migration, and
plan to do so in future work.  For point 100, without proc-

ess migration(None) performs better for both the percent-
age of useful work in figure 2 and the execution time in
figure 3.   This is due to the application being balanced at
this instant as all LPs belong to one class of self- instantia-
tion and event granularity and thus progress at the same
pace. The overheads of process migration exceed the bene-
fits obtained when the application is the balanced and least
optimistic.
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Fig. 4 FAST LPs scaling performance

Fig. 4 shows the results of varying the value of k, used
to determine the number of LPs to be classified as FAST.
This experiment is performed for the data point 40 of the
previous experiment (60% [200:1], 40% [50:0])  It is ob-
served that as the number of fast LPs is increased, the per-
centage of useful  work also improves. However, if k is
large migration cost will dominate.

5.2.2     Experiment under Set 2

Another set of experiments was performed, in which the
self-instantiation degree of messages and the delays of LP
execution were swapped in the two classes of operating re-
strictions to create imbalance in the application. With all
the other experimental parameters being the same as set 1,
but instead of varying the messages with self-instantiation
of 200 with LPs having event granularity one millisecond
as in previous experiments, we combined messages with
self-instantiation 50 with LPs having event granularity of
1millsecond. Again in this set of experiments we vary the
percentage Class [50: 1msec] from 0 to 100 in increments
of 20 percent. The remaining LPs in the system execute
with null event granularity (Class [200: null]).

Fig. 5 shows the performance in terms of percentage
of useful computation for simulation runs with and without
process migration. Each of the two scenarios were plotted
to show the performance of the simulations with various
levels of optimism created by varying LPs with different
event granularity. As shown in Fig 5, it was observed that
process migration performs better than without it at all the
levels except at data point 100. This is because the simula-
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tion application is balanced at data point 100. At data point
100, all the LPs had one millisecond event granularity.
This caused all LPs to progress at the same rate. In this
scenario the overhead of process migration exceeded the
benefits obtained by it and hence, the simulation without
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process migration performed better. In all the other in-
stances, when the simulation is unbalanced, simulation
with process migration performs 1.2 to 1.79 times better
than without process migration.

In fig. 6, we compare the execution time performance
for the above experiment with simulation runs with and
without process migration. As mentioned above, due to the
simulation application being balanced at data point 0 and
100 as all the messages and LPs belong to either of the two
classes of self-instantiation and event granularity respec-
tively, we do not observe any benefits in execution time.
At data point 0, the simulation without process migration
performs better that one with process migration both in
terms of execution time and percentage of useful work.
Whereas at data point 100, we obtain benefits in terms of
percentage of useful work but not in terms of execution
time.  A similar scenario exists at point 80, where we ob-
tain the benefits in terms of useful work but not in execu-
tion time. For the remaining proportions of Class
[50:1msec], benefits in both execution time and computa-
tion performance were obtained when the simulation was
run with process migration as compared to without process
migration. When the application is unbalanced, the im-

provements in execution time by doing process migration
were approximately 10 to 20 percent.

We observed that our algorithm performs better in
terms of useful work in all the experiments except when
the application is balanced. We observed that the migration
cost of LPs do incur a penalty in terms of execution time is
some cases. One of the reasons for this penalty is due to
the PVM communication which is expensive. Due to re-
source limitations, the experiments were performed on
older hardware.  By updating the hardware we might re-
duce this migration cost to some extent. Also it was ob-
served that a higher value of k  improves the performance
in terms of useful work, but  may incur higher migration
cost in terms of execution time. Hence, an appropriate
value of k should be selected as a tradeoff between useful
work and migration cost.
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5 CONCLUSION AND FUTURE WORK

In a standard optimistic parallel event simulation, there are
no restrictions on how far an LP can proceed ahead of
other LPs. This imbalance may degrade performance as
LPs may spend more time rolling back than progressing
forward. In order to control such over-optimistic behavior,
we implemented a process migration system on distributed
Georgia Tech Time Warp (GTW). The process migration
system classifies LPs with respect to optimism as FAST,
MEDIUM and SLOW depending on how far each LP is
making progress in simulation time compared to other LPs.
The statistics collected to classify an LP is called GVTLag,
which is the difference of an LPs current simulation time
and the systems GVT. We aggregate the FAST LPs on one
processor called the FAST-REPOSITORY to make them
compete with each other for available CPU cycles to slow
their progress and consequently isolate their impact on
other logical processes. At the same time we spread the
SLOW LPs, by redistributing each SLOW LP to a different
processor. This provides SLOW LPs with sufficient CPU
cycles to make progress and help them to catch up with the
FAST LPs.
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We performed various experiments with a synthetic
benchmark application called P-Hold. We implemented P-
Hold using two computation event granularities: null and
1msec. Additionally, P-Hold was configured to be self-
instantiating. In order to create imbalance in the applica-
tion LPs and events were classified in two classes having
either self-instantiation degree of 50 or 200 and with and
without 1 msec delay in event processing.

It was observed that whenever the application is un-
balanced simulation with process migration performs 1.25
to 2.75 times better in terms of useful computation than
without process migration. Also, the execution time under
unbalanced application conditions is either better or
equivalent to the time taken without process migration.

 On the other hand, when the application is balanced
and over-optimism is minimal, simulations without process
migration perform better in terms of useful work and exe-
cution time. This is due to the overheads of process migra-
tion exceeding the benefits obtained when the application
is balanced.

Due to high memory requirements and resource limi-
tations, we could not experiment with more than 256 LPs
in the simulation. We propose to experiment with more
than 256 LPs in the future and observe how the process
migration performs when the number of logical process in-
creases in the simulation. Also, we propose to modify the
process migration algorithm to make the process of select-
ing the number of fast LPs dynamic and dependent on how
the simulation is performing. This could help in improving
the amount of useful work done and execution time com-
pared to the simulation without process migration.

A problem our approach may encounter in extreme
cases is that logical processes might aggregate on the same
processors leaving other processors sparsely populated. For
example, we may encounter a situation in which a million
LPs are on one processor and one logical process is on
each of the remaining processors. Another problem could
be the movement of logical processes that are already bal-
anced. One of the possible solutions to alleviate such sce-
narios is to use a threshold to determine the number of
processes classified as fast.

We also propose to cluster LPs similar to (Carothers
and Fujimoto, 2000), in order to reduce the process migra-
tion cost. This would need a different metric for evaluating
process migration. We propose to evaluate such a possibil-
ity and observe its performance compared to without proc-
ess migration.
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