
Exact Solutions of Interactive POMDPs Using Behavioral
Equivalence

Bharanee
Rathnasabapathy

Dept. of Computer Science
University of Illinois at Chicago

brathnas@cs.uic.edu

Prashant Doshi
Dept. of Computer Science

University of Georgia

pdoshi@cs.uga.edu

Piotr Gmytrasiewicz
Dept. of Computer Science

University of Illinois at Chicago

piotr@cs.uic.edu

ABSTRACT
We present a method for transforming the infinite interactive state
space of interactive POMDPs (I-POMDPs) into a finite one, thereby
enabling the computation of exact solutions. I-POMDPs allow se-
quential decision making in multi-agent environments by modeling
other agents’ beliefs, capabilities, and preferences as part of the
interactive state space. Since beliefs are allowed to be arbitrarily
nested and are continuous, it is not possible to compute optimal so-
lutions using value iteration as in POMDPs. We present a method
that transforms the original state space into a finite one by grouping
the other agents’ behaviorally equivalent models into equivalence
classes. This enables us to compute thecompleteoptimal solution
for the I-POMDP, which may be represented as a policy graph. We
illustrate our method using the multi-agent Tiger problem and dis-
cuss features of the solution.

1. INTRODUCTION
Interactive partially observable Markov decision processes (I-

POMDPs) [8] provide a framework for sequential decision mak-
ing in partially observable multi-agent environments. Along with
the physical states of the environment they include other agents’
computable models in the state space. The models encompass all
information influencing the corresponding agent’s behavior, which
includes its preferences, capabilities, and beliefs. They are analo-
gous totypesin Bayesian games[10]. This augmented state space
is called aninteractive state space. Because beliefs in I-POMDPs
are arbitrarily nested, the interactive state space is not the tradi-
tional one – it is a complex infinite space that contains beliefs over
others’ beliefs.

Traditional methods for solving POMDPs [4, 11, 16] focus on
finite state spaces and exploit the piecewise linearity and convexity
(PWLC) property of the value function. For POMDPs with infi-
nite state spaces exact closed form solutions exist only in linear
Gaussian systems [13, 17]. I-POMDPs, which generalize POMDPs
to multi-agent domains, have a infinite state space as well, making
it impossible to compute the exact solution by applying value iter-
ation based methods in a straightforward manner.

In this paper, we present a method for computing the exact solu-
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tions to finitely nested I-POMDPs introduced in [8]. Our method
transforms the infinite interactive state space into a finite space
by grouping models of other agents into a finite set of behavioral
equivalence classes. They are defined so that the optimal action(s)
of the modeled agents are the same for all models inside a class.
Given such behavioral equivalence classes, and the agents’ opti-
mal actions in these classes, we show that it is sufficient to reason
about the other agents’ equivalence classes, rather than the infinity
of individual models, to compute a solution. When the set of ac-
tions and observations of each agent is finite, the set of behavioral
equivalence classes for a finite horizon is also finite, and at most
countably infinite for an infinite horizon. In practice though the
number of behavioral equivalence classes will be finite for the infi-
nite horizon because we usually settle forǫ-optimal policies. Once
we have transformed the interactive state space using the equiva-
lence classes, we modify the I-POMDP belief update and value it-
eration to operate over the transformed interactive state space. Con-
sequently, we can extend the exact POMDP solution methods in a
straightforward manner to solve I-POMDPs exactly.

Related work in the area of multi-agent and multi-body plan-
ning like DEC-POMDPs [1, 2] and MTDP [12] only allow us to
compute equilibrium based solutions under the assumption of com-
mon knowledge of the agents’ prior beliefs. Further, dynamic pro-
gramming approaches to find optimal solutions to DEC-POMDPs
[9] are only possible in special co-operative cases where all agents
share the same payoff function. In the context of state equivalence
and aggregation, Given et al. [7] provide a nice discussion of using
stochastic bisimilarity for model minimization in Markov decision
processes and Poupart and Boutilier [14] propose an approach to
get linear lossy compression of value function in POMDPs. Our
method, in contrast, exploits the piecewise linearity and convexity
of the value function of agent models to find the behavioral equiv-
alence classes. Additionally, unlike [7, 14] our approach yields an
optimal solution. Methods to solve I-POMDPs and DEC-POMDPs
approximately have also appeared. In [5, 6], a sampling based ap-
proximation technique is presented, while in [3], bounded finite
state controllers are used to derive the joint policy.

The rest of the paper is structured in the following manner. In
Section 2 we give a brief overview of the I-POMDP framework.
Section 3 introduces the idea of behavioral equivalence and its use
in solving I-POMDPs exactly. In Section 4, we illustrate our method,
using an example problem and discuss several solutions. We con-
clude in Section 5 and outline some avenues of future work.

2. OVERVIEW OF I-POMDP
Interactive POMDPs extend POMDPs to multi-agent settings by

including other agents’ models as part of the state space [8]. Since
other agents might also be reasoning about others, the interactive



state space can be arbitrarily nested (belief about other agents’ be-
liefs about other agents’ beliefs and so on). For simplicity of pre-
sentation we will consider an agent,i, that is interacting with only
one other agent,j.

DEFINITION 1 (I-POMDPi,l). Afinitely nested interactive POMDP
of agenti with a belief nesting levell referred to as I-POMDPi,l is
defined as the tuple

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri〉

where,
• ISi,l denotes a set of interactive states defined as,ISi,l = S ×
{Θj,l−1 ∪ SMj}, for l ≥ 1, andISi,0 = S, whereS is the set of
states of the physical environment,Θj,l−1 is the set of computable
intentional modelsof agentj at belief nesting levell− 1: θj,l−1 =

〈bj,l−1, θ̂j,l−1〉where theframe, θ̂j,l−1 = 〈A, Ωj , Tj , Oj , Rj , OCj〉.
Here,j is Bayes rational andOCj is j’s optimality criterion that
influences its decision making process.SMj is the set of sub-
intentional models ofj. We give a recursive bottom-up construc-
tion of the interactive state space below,
ISi,0 = S,

Θj,0 = {〈bj,0, θ̂j,0〉 | bj,0 ∈ ∆(ISj,0)}

ISi,1 = S × {Θj,0 ∪ SMj},

Θj,1 = {〈bj,1, θ̂j,1〉 | bj,1 ∈ ∆(ISj,1)}
...

...
ISi,l = S × {Θj,l−1 ∪ SMj},

Θj,l = {〈bj,l, θ̂j,l〉 | bj,l ∈ ∆(ISj,l)}
• A is the set of joint actions of all agents in the environment,A =
Ai × Aj

• Ti describes the effect of the joint actions on the physical states
of the environment,Ti : S × A × S → [0, 1]
• Ωi is the set of observations of agenti

• Oi : S×A×Ωi → [0, 1] gives the likelihood of the observations
given the physical state and joint action
• Ri : ISi × A → R describes agent i’s preferences over it’s
interactive states. Usually only the physical states will matter

Agent i’s policy is the mappingΩ∗

i → ∆(Ai) whereΩ∗

i is the
set of all observation histories of agenti. Since belief over the
interactive states forms a sufficient statistic [8], the policy can also
be represented as a mapping from the set of all belief’s of agenti

to a distribution over it’s actions,∆(ISi) → ∆(Ai).

2.1 Belief Update
Analogous to POMDPs, an agent within the I-POMDP frame-

work also updates its belief as it acts and observes. However, there
are two differences that complicate a belief update in multi-agent
settings when compared to single-agent ones. First, since the state
of the physical environment depends on the actions performed by
both agents, – in our example agentsi andj – i’s prediction of how
the physical state changes has to be made based on it’s prediction of
j’s actions. Second, changes inj’s model have to be included ini’s
belief update. Specifically, ifj is intentional then an update ofj’s
beliefs due to its action and a new observation has to be included.
In other words,i has to update its belief based on it’s prediction
of what j would observe and howj would update its belief. If
j’s model is sub-intentional, thenj’s probable observations are ap-
pended to the observation history contained in the model. Formally,

following [8], we have:
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whereβ is the normalizing constant,δD is the Dirac-delta function,
SE(·) is an abbreviation for the belief update, andPr(at−1

j |θt−1
j,l−1)

is the probability thatat−1
j is Bayes rational for the agent described

by modelθt−1
j,l−1. Whenj’s model is sub-intentional, the integration

is overISt−1 : bmt−1
j = bmt

j , Pr(at−1
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j,l−1) is replaced with
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placed withδK(APPEND(ht−1
j , ot

j)−ht
j). δK is the Kronecker

delta, andAPPEND returns a string with the second argument
appended to the first. Ifj is also modeled as an I-POMDP, theni’s
belief update invokesj’s belief update (via the termSEbθt

j
( bt−1

j,l−1

, at−1
j , ot

j)), which in turn could invokei’s belief update and so
on. This recursion in belief nesting bottoms out at the0th level. At
this level, belief update of the agent reduces to a POMDP belief up-
date.1 For an illustration of the belief update, additional details on
I-POMDPs, and how they compare with other multi-agent planning
frameworks, see [8].

2.2 Value Iteration
Each belief state in a finitely nested I-POMDP has an associated

value reflecting the maximum payoff the agent can expect in this
belief state:

Un(〈bi,l, bθi〉) = max
ai∈Ai

� R
is∈ISi,l

ERi(is, ai)bi,l(is)d(is)+

γ
P

oi∈Ωi

Pr(oi|ai, bi,l)U
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(bi,l, ai, oi), bθi〉)

�
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where,ERi(is, ai) =
P

aj
Ri(is, ai, aj)Pr(aj |mj,l−1) (since

is = (s, mj,l−1)). Eq. 2 is a basis for value iteration in I-POMDPs.
Agent i’s optimal action,a∗

i , for the case of finite horizon with
discounting, is an element of the set of optimal actions for the belief
state,OPT (θi), defined as:

OPT (〈bi,l, bθi〉) = argmax
ai∈Ai

� R
is∈ISi,l

ERi(is, ai)bi,l(is)d(is)

+γ
P

oi∈Ωi

Pr(oi|ai, bi,l)U
n(〈SEbθi

(bi,l, ai, oi), bθi〉)

�
(3)

3. BEHAVIORAL EQUIVALENCE
The main idea in this paper is to aggregate interactive states into a

finite number of equivalence classes using behavioral equivalence.
Instead of reasoning over the infinite set of interactive states, we op-
erate over the finite set of equivalence classes of interactive states
(ECIS). In the next subsection, we introduce the concept of be-
havioral equivalence and show that reasoning over the equivalence
classes preserves the optimal policy.

3.1 Defining the Equivalence Classes
In order to illustrate the construction of the behavioral equiv-

alence classes we look at a simple example – the classicaltiger
1The 0th level model is a POMDP: Other agent’s actions are treated
as exogenous events and folded into the T, O, and R functions.



problemintroduced in [11]. The problem is that of an agent hav-
ing to open either of two doors. Behind one of the doors is a tiger
waiting to eat the agent and behind the other is a pot of gold. There
is a reward of +10 to get the gold and -100 when the agent is eaten
by the tiger. There are two states signifying the tiger’s location be-
hind the left (TL) door and the right (TR) door. The agent has three
actions: open left door (OL), open right door (OR) and listen (L).
Listening always incurs a cost of 1. When the agent listens, it can
hear a growl on the left (GL) or right (GR) with 85% certainty. The
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Figure 1: Horizon-1 value function in the tiger game and the belief ranges

corresponding to different optimal actions.

value function gives the value of performing the optimal plan at any
given belief. In Fig. 1, the value function is the envelope that pro-
vides the maximum value of any plan over all beliefs. We note that
the agent opens the right door if it believes the probability that the
tiger is behind the right door,P(TR), is less than 0.1. It will listen
if 0.1 < P(TR)< 0.9 and open left door ifP(TR)> 0.9.

In Fig. 1 we observe that each of the optimal plans spans over
multiple belief points. For example, opening the right door is the
optimal action for all beliefs in the set [0–0.1), i.e. OPT(P(TR)= [0–
0.1)) = OR. Thus, beliefs in the set [0–0.1) are equivalent to each
other in that they induce the same optimal behavior. We call such
beliefsbehaviorally equivalent. 2 The collection of the equivalence
classes (five of them in the example in Fig. 1) forms a partition of
the belief space. For finite horizons, and a finite number of actions
and observations, the number of distinct plans and therefore the
equivalence classes is also finite. Note that each equivalence class
is a node in the policy graph in a POMDP.

We use the above insight to discretize the infinite interactive state
space of I-POMDPs into a finite one. The optimal value function
in I-POMDPs, like POMDPs, is also piecewise linear and con-
vex (PWLC) [8]. Recall that the interactive state space,ISi,l =
S×{Θj,l−1∪SMj}, whereΘj,l−1 is the set of intentional models
of agentj that includes its beliefs, and all other parameters suffi-
cient to determine its behavior.SMj is the set ofj’s sub-intentional
models. We transform the infinite space into a finite one by group-
ing together the behaviorally equivalent models into the equiva-
lence classes. As we mentioned before, for a finite horizon and
finite number of actions and observations, there exist a finite num-
ber of equivalence classes, thereby facilitating the application of
standard POMDP solution methods for solving I-POMDPs.

We point out that the method scales well to higher levels of nest-
ing. Since at each level of nesting we operate over the equivalence
classes only, we need not concern ourselves with the complex space
of beliefs over beliefs of other agents and so on. Of course, in de-
riving the equivalence classes we must solve all lower level models
in a recursive manner. We formally define the equivalence classes
below:

2It is possible that some plans may be optimal for only a single
belief. In this case, the equivalence class would be a singleton set
containing the single belief.

DEFINITION 2 (ECIS). Equivalence classes of interactive states
(ECISi,l) of an agenti is apartitionof ISi,l such that the behavior
of agentj is the same for all interactive states in a given subset.

ECISi,l = { (s, M l−1
j,k ) | M l−1

j,k ⊆ {Θj,l−1 ∪ SMj}and

∀
mj,l−1,m′

j,l−1
∈M

l−1

j,k

OPT (mj,l−1) = OPT (m′

j,l−1)

}

Here,M l−1
j,k , is the kth equivalence class in the partition. Note that

OPT(.) takes a model of the other agent as a parameter and gives
the optimal action of the agent (see Eq. 3).

3.2 Belief Update and Value Iteration over ECIS
The main difference between the belief update as defined in Eq. 1

over the original interactive state space and the belief update over
the transformed one is in the manner in which agenti updates
j’s models. Sincej’s model space is partitioned into equivalence
classes,i must updatej’s equivalence class based onj’s action and
observation. To understand how this is done, let us consider the
simple case wherei is uncertain only aboutj’s beliefs. In this case,
each equivalence class is a disjoint subset ofj’s beliefs that induces
identical optimal behavior.

As we mentioned before, the optimal solution to an I-POMDP
(and a POMDP) provides a conditional plan or a policy graph that
dictates the action(s) that agentj must perform given the equiv-
alence class of its beliefs. Agenti updatesj’s equivalence class
by locating the node for the current equivalence class inj’s pol-
icy graph, and usingj’s predicted action and possible observation
to trace to the next one. Before presenting the belief update equa-
tions, we note thati’s belief over the transformed interactive state
space forms a sufficient statistic.

PROPOSITION 1. (Sufficiency) In a finitely nested I-POMDP, a
probability distribution overECISi,l , b̃i,l ∈ ∆(ECISi,l), pro-
vides a sufficient statistic for the past history ofi’s observations.

We outline the proof of this proposition in the Appendix. We give
the belief update over ECIS for an arbitrary belief nesting levell

below:
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whereβ is the normalizing constant. Agenti’s update ofj’s equiv-
alence classes is captured using theτ̃ operator which returns 1 if
Pr(M t

j,k|M
t−1
j,k , aj , oj) = 1, and 0 otherwise. Thẽτ operator

usesj’s policy graph to determine the updated equivalence class.
Note thatM t−1

j,k containsj’s equivalent models beforej performs
it’s belief update andM t

j,k contains models that are equivalent after
j’s belief update.

Sincei’s beliefs are now distributions over the transformed inter-
active state space, the value iteration, as shown in Eq. 2 is revised
to include the value function defined over the transformed belief
space:

Ũn(〈b̃i,l, bθi〉) = max
ai∈Ai
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In the next proposition, we show that the discretization of the in-
teractive state space is alosslessone. In other words, for a given be-
lief over the original interactive state space, the value of the optimal
plan (and the optimal plan itself) remains unchanged for the corre-
sponding belief over the discretized interactive state space. We de-
fine the concept of a value preserving transformation and formalize
our result in Proposition 2.

DEFINITION 3 (VALUE PRESERVINGTRANSFORMATION).
Define a transformationF : B1 → B2, whereB1 is the space of
original beliefs, andB2 is the space of corresponding transformed
beliefs. LetQ : N × B1 × A → R andQ̃ : N × B2 × A → R

be the N horizon action-value functions.F is said to be value pre-
serving iff∀n∈[1,N ],b∈B1,a∈AQn(b, a) = Q̃n(F (b), a). In other
words, the value of the transformed belief and action pair is same
as the value of the original belief and action, for all horizons.

PROPOSITION 2. Define a mappingCP : ∆(ISi,l) → ∆(ECISi,l)
in a finitely nested I-POMDP such that,

b̃i(s, M
l−1
j,k ) =

Z
mj∈M

l−1

j,k

bi(s, mj)dmj (6)

wherebi ∈ ∆(ISi,l), b̃i ∈ ∆(ECISi,l), andM l−1
j,k is some equiv-

alence class. The mappingCP is value preserving.

The proof of proposition 2 is given in the Appendix.

COROLLARY 1. The optimal policy of the transformed finitely
nested I-POMDP remains unchanged.

PROOF. Proof of this corollary is inductive, and involves a straight-
forward application of Proposition 2. From Proposition 2,CP is
a value-preserving transformation. For the basis step – horizon
is 1 – ∀bi,ai

Q1(bi, ai) = Q̃1(CP (bi), ai). Therefore, the op-
timal single step action remains unchanged. The inductive proof
then follows for any arbitrary horizon n. Since∀bi,ai

Qn(bi, ai) =

Q̃n(CP (bi), ai), therefore∀bi∈∆(ISi)OPT (bi) = ˜OPT (CP (bi)),
the optimal policy remains the same.

4. MULTI-AGENT TIGER PROBLEM
To illustrate our method we use a slightly modified version of

the multi-agent tiger problem discussed in [8] (based on [15].) The
problem has two agents, each of which can open the right door
(OR), the left door (OL) or listen (L). In addition to observing
growls when they listen, the agents can also hear creaks (creak on
the left (CL), creak on the right (CR) or silence (S), i.e no creaks)
indicating the other agent’s opening one of the doors. When any
door is opened, the tiger’s location is switched with a probability
of 5%. The agent’s preferences are as in the single agent game dis-
cussed in Section 3. The transition, reward and observation func-
tions are shown in Table 1. From the observation functions we see
that, in this case, agenti hears growls with a reliability of 65%
and creaks with a reliability of 95%. Agentj, on the other hand,
hears growls with a reliability of 95%. Thus, the setting is such that
agenti can hear agentj opening doors more reliably than the tiger’s
growls. This suggests thati could usej’s actions as an indication
of the location of the tiger, as we discuss below.

For the sake of simplicity we assume agenti’s I-POMDP to be
singly nested and that agenti ascribes only intentional models to
j. Additionally, we assume thati is uncertain only aboutj’s be-
liefs and notj’s frame. Note that in a general I-POMDP,i can
be uncertain about all parameters ofj’s model. In Fig. 2(a) we
give the optimal solution of the level 0 I-POMDP of agentj. Since

P1 : 0.0 − 0.0337 P2 : 0.0337−0.3087 P3 : 0.3087−0.6913 P5 : 0.9663 − 1.0
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Figure 2: (a) Agent j’s horizon 2 policy showing optimal plans given

different prior beliefs. Since j’s belief is not nested, its prior belief is given

as the probability that the tiger is behind the right door. (b) An example

of agent i’s level-1 belief. Note that we have 2 distributions, one when the

tiger is on the left and other when tiger is on the right. In the belief shown,

i thinks that j is likely to be somewhat informed about the tiger’s true

location. (c) Shows how agenti’s belief bi,1 ∈ ∆(ISi,1) (at 2 steps to go) is

transformed into a belief b̃i,1 ∈ ∆(ECISi,1). For example, the probability

that the tiger is behind the left door and j’s belief is in region P2 is given

as b̃i,1(TL, P2) =
R

0.3087

0.0337
bi,1(TL, Prj(TR))dPrj(TR) = 0.3038,

where bi,1(TL, Prj(TR)) is the Gaussian pdf describingi’s belief about j’s

belief when the tiger is on the left.
R

1

0
bi,1(TL, Prj(TR))dPrj(TR)

gives i’s belief that the tiger is behind the left door. Similarly,

b̃i,1(TR, P1), b̃i,1(TR, P2)...b̃i,1(TR, P5) are computed from the

Gaussian describingi’s belief about j’s belief when the tiger is behind the right

door.

agentj’s belief is not nested,j reasons about the tiger’s location
only and not about agenti’s beliefs. Therefore, agentj’s actions
depend on hearing growls alone. The transformed horizon-2 in-
teractive state space is:ECISi,1 = S × {P1, P2, P3, P4, P5},
where the classesP1 – P5 are shown in Fig. 2(a). SinceECISi,1

is finite, we can obtain thecompleteoptimal value function using
the modified value iteration shown in Eq. 5.

In the remainder of this section we visualizei’s value function



(a) Transition function fori andj

Action <i,j> State TL TR
<OL,*> , <*,OL> TL 0.95 0.05
<OL,*> , <*,OL> TR 0.05 0.95
<OR,*> , <*,OR> TL 0.95 0.05
<OR,*> , <*,OR> TR 0.05 0.95

<L,*> , <*,L> TL 1.0 0.0
<L,*> , <*,L> TR 0.0 1.0

(b) Reward function fori andj

Action <i,j> TL TR
<OL,OL> -100,-100 10,10
<OL,OR> -100,10 10,-100
<OL,L> -100,-1 10,-1

<OR,OL> 10,-100 -100,10
<OR,OR> 10,10 -100,-100
<OR,L> 10,-1 -100,-1
<L,OL> -1,-100 -1,10
<L,OR> -1,10 -1,-100
<L,L> -1,-1 -1,-1

(c) Observation function fori with a growl reliability of 65% and creak reliability of 95%

Action <i,j> State <GL,CL> <GL,CR> <GL,S> <GR,CL> <GR,CR> <GR,S>

<OL,*> * 1/6 1/6 1/6 1/6 1/6 1/6
<OR,*> * 1/6 1/6 1/6 1/6 1/6 1/6
<L,OL> TL 0.65*0.95 0.65*0.025 0.65*0.025 0.35*0.95 0.35*0.025 0.35*0.025
<L,OL> TR 0.35*0.95 0.35*0.025 0.35*0.025 0.65*0.95 0.65*0.025 0.65*0.025
<L,OR> TL 0.65*0.025 0.65*0.95 0.65*0.025 0.35*0.025 0.35*0.95 0.35*0.025
<L,OR> TR 0.35*0.025 0.35*0.95 0.35*0.025 0.65*0.025 0.65*0.95 0.65*0.025
<L,L> TL 0.65*0.025 0.65*0.025 0.65*0.95 0.35*0.025 0.35*0.025 0.35*0.95
<L,L> TR 0.35*0.025 0.35*0.025 0.35*0.95 0.65*0.025 0.65*0.025 0.65*0.95

(d) Observation function forj
Action <i,j> State GL GR
<*, OL> * 0.5 0.5
<*, OR> * 0.5 0.5
<OL, *> * 0.5 0.5
<OR, *> * 0.5 0.5
<L, L> TL 0.95 0.05
<L, L> TR 0.05 0.95

Table 1: The transition, reward and observation functions of agentsi and j

and discussi’s behavior in the presence ofj. The value function is
defined over a ten dimensional space since agentj has five behav-
ioral equivalence classes and there are two physical states. While
we can compute the complete value function and policy, it is not
possible to visualize it. Hence, here we plot agenti’s value func-
tion for a subset of beliefs it has about agentj.

An example of agenti’s belief about the location of the tiger and
aboutj’s belief is shown in Fig. 2(b). We represent agenti’s be-
lief about its interactive state as a pair of Gaussian densities with a
variance of 0.01. One Gaussian capturesi’s belief aboutj’s belief
when the tiger is on the left, and the other capturesi’s belief about
j’s belief when the tiger is on the right (see [8] for a more detailed
exposition on representing nested beliefs in I-POMDPs). To enable
visualization, we capturei’s belief aboutj’s using a single para-
meter. To do this, we only look at those beliefs ofi in which the
mean of the two probability densities sum to 1, as do the densities
shown in Fig. 2(b). The value function is plotted against agent
i’s belief about the tiger’s location (Pri(TR)) and the mean of the
probability density function (describingPri(Prj(TR)) given the
tiger is on the left. Note that in considering the particular form of
i’s beliefs, we have reduced the dimensions over which the value
function spans in a non-linear fashion, and hence the value function
plot is not linear.

Figures 3(a), 3(b), 3(c) and 3(d) show the projections ofi’s hori-
zon 2 value functions on the belief space of agenti. We varied the
reliability of the creaks, in order to explore its effect oni’s policy.
Figure 3(e) describes the optimal policies for the corresponding be-
lief regions.

When creaks are not very reliablei’s behavior is analogous to
that of a single agent POMDP as seen in Fig. 3(a), as should be
expected. Here, the agent uses only growls to reason about the
location of the tiger.

When creaks become more reliable, it is possible fori to use
them to reinforce the estimates made using the growls. For ex-
ample, in the belief region 9 [Policy: L(); OL(GR,CL|GR,S) L(?)]
shown in Fig. 3(b), agenti supplementsthe information from growl
(GR) with either a creak from the left (CL) or silence (S). This is
because a creak from the left or silence indicates thatj likely did
not open the right door. The fact that CL or S are not likely to be

the outcome of noise is due toi’s belief thatj believes with a fairly
large probability that the tiger is behind the right door. When agent
i is less certain about the location of the tiger (in region 23 [Policy:
L(); OL(GR,CL) L(?)]), it has to observe a creak from the left, in
addition to the growl from the right, to open the left door.

In regions of the policy (Fig. 3(b)) where the Gaussian mean is
closer to 1, it is possible to get misleading information and still
make a decision of opening doors. For example, in the region 25
[Policy: L(); OL(GR,CR) L(?)], the agent opens the left door even
though it hears a growl from the right and a creak from the right.
Because in this region the mean is closer to 1,i thinks thatj is
misinformed. In other words, for the physical state that the tiger is
on the right,i likely believes thatj believes the tiger to be on the
left. Hence, the creak from the right is interpreted to be a result of
this misinformation, thereby reinforcingi’s belief that the tiger is
on the right.

As the reliability of the creaks increases to 99.90%, we see that
agenti starts exhibiting a more complex behavior. Sometimes it
is guided only by creaks (regions 29 and 30), when it knows that
j’s opening the doors is a good predictor of the tiger’s location.
Sometimes, however, wheni is quite sure about the tiger’s location
and it thinks thatj is misinformed,i can ignore the creaks and base
its decisions only on growls (regions 1, 2, 11, and 12).

Let us now turn our attention to regions 5 and 17 and their sym-
metric counterparts – regions 6 and 18 in Fig. 3(c). We focus on
only the region 5, but the arguments for the other regions are anal-
ogous. For region 5,i believesj is informed and it believes that the
tiger is likely on the right. For this region, the agent opens the left
door if it hears a creak from the left (since it was fairly certain that
the tiger was behind right door and the tiger persists after opening
doors) or on hearing a growl from the right and no creaks. It opens
the right door only if it hears a growl from the left along with creak
from the right. Sincei believesj is informed, a creak from the right
indicates thatj likely opened the right door which means thatj be-
lieved that the tiger was on the left. An observation of GL further
reinforcesi’s belief that the tiger is indeed on the left, causingi to
open the right door.

When the reliability of the creaks increases to 99.97%, the size of
the regions that utilize only the creaks to guide the actions, increase
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(c) Creak accuracy: 99.9%
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(d) Creak accuracy: 99.97%

1  OL(); OL(*,*)                            2  OR(); OR(*,*)                        
3   L(); OL(*,CL | GR,S) OR(*,CR) L(?)      4   L(); OL(*,CL) OR(*,CR | GL,S) L(?)
5   L(); OL(*,CL | GR,S) OR(GL,CR) L(?)     6   L(); OL(GR,CL) OR(*,CR | GL,S) L(?) 
7   L(); OL(*,CL | GR,S) L(?)               8   L(); OR(*,CR | GL,S) L(?)      
9   L(); OL(GR,CL | GR,S) L(?)             10   L(); OR(GL,CR | GL,S) L(?)
11  L(); OL(GR,*) L(?)                     12   L(); OR(GL,*) L(?)
13  L(); OL(GR,CR | GR,S) L(?)             14   L(); OR(GL,CL | GL,S) L(?)
15  L(); OL(*,CR | GR,S) L(?)              16   L(); OR(*,CL | GL,S) L(?)
17  L(); OL(*,CR | GR,S) OR(GL,CL) L(?)    18   L(); OL(GR,CR) OR(*,CL | GL,S) L(?)
19  L(); OL(*,CR | GR,S) OR(*,CL) L(?)     20   L(); OL(*,CR) OR(*,CL | GL,S) L(?)
21  L(); OL(*,CL) OR(GL,CR) L(?)           22   L(); OL(GR,CL) OR(*,CR) L(?)
23  L(); OL(GR,CL) L(?)                    24   L(); OR(GL,CR) L(?)
25  L(); OL(GR,CR) L(?)                    26   L(); OR(GL,CL) L(?)
27  L(); OL(*,CR) OR(GL,CL) L(?)           28   L(); OL(GR,CR) OR(*,CL) L(?)        
29  L(); OL(*,CL) OR(*,CR) L(?)            30   L(); OL(*,CR) OR(*,CL) L(?)         
31  L(); OL(GR,CL) OR(GL,CR) L(?)          32   L(); OL(GR,CR) OR(GL,CL) L(?)       
33  L();  L(*,*)            
           
       

(e) Policy of agenti. ? indicates all other observations and * indicates all possible values

Figure 3: Figures (a-d) show the projections of the value functions of agenti, with varying creak reliabilities. The belief regions are marked with
numbers that index into the list of policy trees in table (e)

(see regions 29 and 30), as should be expected. Additionally, new
regions (3, 4, 19, and 20) appear as part of the policy.

5. CONCLUSION
We presented a method that exploits behavioral equivalence among

other agents’ possible models to exactly solve finitely nested inter-
active POMDPs. By aggregating the behaviorally equivalent mod-
els into equivalence classes, we transformed the infinite interactive
state space of I-POMDPs into a finite one, thereby allowing the
application of standard POMDP solution techniques for solving I-
POMDPs. Our method works because the discretization of the state
space preserves the value of the plans. We applied our method to
the multi-agent tiger problem, and presented a series of policies for
various values of the parameters of the problem. Our aim is to un-
derstand the interplay between an agent’s belief about other agents’
beliefs and its observations, in arriving at its optimal plan of action.
As we demonstrated, an agent’s optimal policy changes drastically
as its capability about observing others’ behaviors improves. We
believe it may be possible to combine different behavioral equiv-
alence regions together to approximately represent an agent’s be-
havior and reason about them. This is one possible avenue of future

work.
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APPENDIX

PROOF OFPROPOSITION1.
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Thus belief at timet can always be expressed in terms of belief
and actions at timet − 1 and the observations at timet.

PROOF OFPROPOSITION2 BY INDUCTION . To keep the proof
short, we will assume that only the belief of the other agent is un-
known, i.e. all other parameters of the model are known. Thus Eq.
6 can be written as̃bi(s, Bj,k) =

R
bj∈Bj,k

bi(s, bj)dbj

Let bi be an arbitrary belief of agenti. Let {Bj,1, Bj,2, ..., Bj,n}
be the collection of equivalence classes of agentj’s belief. Each
classBj,k is a set of beliefs ofj such that the actionak

j is optimal
for each belief. Thus∀bj∈Bj,k

ER(s, bj , ai) = R(s, ai, a
k
j ), be-

causeak
j is optimal for allbj ∈ Bj,k.

Basis Step: We show that the horizon 1 value remains unchanged
wheni’s original belief is replaced by its belief over the equivalence
classes.
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Using Eq. 6,

Q
1(bi, ai) =

X
s
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R(s, ai, aj,1)b̃i(s, Bj,1) + ...
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Because theQ values remain unchanged, maximizing over them
will also yield identical values.
Inductive Hypothesis: Let us assume that∀ai, bi Qn(bi, ai) =

Q̃n(b̃i, ai) where b̃i is related tobi using Eq. 6. Because theQ
values are identical, theN horizon value function also remains un-
changed.
Inductive Proof:
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Using the BNM and BNO assumptions of the I-POMDP frame-
work [8],
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UsingPr(oi|s, ai, Bj,k) =
P

aj
Pr(oi|s, ai, aj , Bj,k)Pr(aj |Bj,k) =

Pr(oi|s, ai, aj,k) and the inductive hypothesis,
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Because theQ values are identical under the mapping, the values of
the beliefs over the equivalence classes of interactive states remain
unchanged. We have assumed in the proof that agentj’s policies
are deterministic, i.e., for every classBj,k there is one optimal ac-
tion aj,k. The proof extends in a straightforward manner when
there is more than one optimal action for a class.
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