
CSCI 4760 - Computer Networks
Fall 2016

Instructor: Prof. Roberto Perdisci
perdisci@cs.uga.edu

source: computer-networks-webdesign.com

These slides are adapted from the textbook slides by J.F. Kurose and K.W. Ross

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-2

Chapter 2: Application Layer

Our goals:
}  conceptual,

implementation aspects
of network application
protocols
}  transport-layer service

models
}  client-server paradigm
}  peer-to-peer paradigm

}  learn about protocols by
examining popular
application-level
protocols
}  HTTP
}  FTP
}  SMTP / POP3 / IMAP
}  DNS

}  programming network
applications
}  socket API

Application 2-3

Some network apps
}  e-mail
}  web
}  instant messaging
}  remote login
}  P2P file sharing
}  multi-user network games
}  streaming stored video

(YouTube)

}  voice over IP
}  real-time video conferencing
}  cloud computing
}  …
}  …
} 

Application 2-4

Creating a network app

write programs that
}  run on (different) end systems
}  communicate over network
}  e.g., web server software

communicates with browser
software

No need to write software for
network-core devices
}  network-core devices do not run

user applications
}  applications on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application 2-5

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-6

Application architectures
}  client-server
}  peer-to-peer (P2P)
}  hybrid of client-server and P2P

Application 2-7

Client-server architecture

server:
}  always-on host
}  permanent IP address
}  server farms for scaling

clients:
}  communicate with server
}  may be intermittently connected
}  may have dynamic IP addresses
}  do not communicate directly

with each other

client/server

Application 2-8

Pure P2P architecture

}  no always-on server
}  arbitrary end systems

directly communicate
}  peers are intermittently

connected and change IP
addresses

highly scalable but difficult to
manage

peer-peer

Application 2-9

Hybrid of client-server and P2P

Skype
}  voice-over-IP P2P application
}  centralized server: finding address of remote party:
}  client-client connection: direct (not through server)

Instant messaging
}  chatting between two users is P2P
}  centralized service: client presence detection/location

}  user registers its IP address with central server when
it comes online

}  user contacts central server to find IP addresses of
buddies

Application 2-10

Processes communicating

process: program running
within a host.

}  within same host, two
processes communicate
using inter-process
communication (defined by
OS).

}  processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v  aside: applications with
P2P architectures have
client processes &
server processes

Application 2-11

Sockets
}  process sends/receives

messages to/from its socket
}  socket analogous to door

}  sending process shoves message
out door

}  sending process relies on
transport infrastructure on other
side of door which brings
message to socket at receiving
process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

v  API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

Application 2-12

Addressing processes
}  to receive messages, process

must have identifier
}  host device has unique 32-bit

IP address
}  Q: does IP address of host on

which process runs suffice for
identifying the process?

Application 2-13

Addressing processes
}  identifier includes both IP

address and port numbers
associated with process on
host.

}  example port numbers:
}  HTTP server: 80
}  Mail server: 25

}  to send HTTP message to
gaia.cs.umass.edu web server:
}  IP address: 128.119.245.12
}  Port number: 80

}  more shortly…

}  to receive messages, process
must have identifier

}  host device has unique 32-
bit IP address

}  Q: does IP address of host
on which process runs
suffice for identifying the
process?
}  A: No, many processes can

be running on same host

Application 2-14

App-layer protocol defines

}  types of messages
exchanged,
}  e.g., request, response

}  message syntax:
}  what fields in messages & how

fields are delineated

}  message semantics
}  meaning of information in fields

}  rules for when and how
processes send & respond
to messages

public-domain protocols:
}  defined in RFCs
}  allows for interoperability
}  e.g., HTTP, SMTP
proprietary protocols:
}  e.g., Skype

Application 2-15

What transport service does an app
need?

Reliability
}  some apps (e.g., audio) can

tolerate some loss
}  other apps (e.g., file transfer,

telnet) require 100% reliable
data transfer

Timing
}  some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

Throughput
v  some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

v  other apps (“elastic apps”)
make use of whatever
throughput they get

Security
v  encryption, data integrity, …

Application 2-16

Transport service requirements
of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Application 2-17

Internet transport protocols services

TCP service:
}  connection-oriented: setup required

between client and server
processes

}  reliable transport between sending
and receiving process

}  flow control: sender won’t
overwhelm receiver

}  congestion control: throttle sender
when network overloaded

}  does not provide: timing, minimum
throughput guarantees, security

UDP service:
}  unreliable data transfer

between sending and receiving
process

}  does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there a
UDP?

Application 2-18

Internet apps: application, transport
protocols***

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (eg Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

Application 2-19

Chapter 2: Application layer
2.1 Principles of network

applications
}  app architectures
}  app requirements

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-20

Web and HTTP
First, a review…
}  web page consists of objects
}  object can be HTML file, JPEG image, Java applet, audio file,…
}  web page consists of base HTML-file which includes several

referenced objects
}  each object is addressable by a URL
}  example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Application 2-21

HTTP overview
HTTP: hypertext transfer

protocol
}  Web’s application layer protocol
}  client/server model

}  client: browser that requests,
receives, “displays” Web objects

}  server: Web server sends
objects in response to requests

PC running
Firefox

Server
running

Apache Web
server

Mac running
Chrome

Application 2-22

HTTP overview (continued)

Uses TCP:
}  client initiates TCP connection

(creates socket) to server, port
80

}  server accepts TCP connection
from client

}  HTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client)
and Web server (HTTP server)

}  TCP connection closed

HTTP is “stateless”
}  server maintains no

information about past
client requests

protocols that maintain
“state” are complex!

v  past history (state) must
be maintained

v  if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

Application 2-23

HTTP connections
non-persistent HTTP
}  at most one object sent over

TCP connection.

persistent HTTP
}  multiple objects can be sent

over single TCP connection
between client, server.

Application 2-24

Nonpersistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu
on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

Application 2-25

www.someSchool.edu/someDepartment/home.index

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application 2-26

Non-Persistent HTTP: Response time

definition of RTT: time for a
small packet to travel from
client to server and back.

response time:
}  one RTT to initiate TCP

connection
}  one RTT for HTTP request

and first few bytes of HTTP
response to return

}  file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application 2-27

Persistent HTTP

non-persistent HTTP issues:
}  requires 2 RTTs per object
}  OS overhead for each TCP

connection

persistent HTTP
}  server leaves connection open

after sending response
}  subsequent HTTP messages

between same client/server sent
over open connection

}  client sends requests as soon as
it encounters a referenced
object

}  as little as one RTT for all the
referenced objects

Application 2-28

Advantage of non-persistent HTTP

non-persistent HTTP:
}  browsers can open parallel TCP

connections to fetch referenced
objects “at the same time”
}  Has advantages and disadvantages

Application 2-29

HTTP request message

}  two types of HTTP messages: request, response
}  HTTP request message:

}  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

Application 2-30

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

http://www-net.cs.umass.edu:8080/index.html

HTTP request message: general format

Application 2-31

request
line

header
lines

body

A simple test… ****

2: Application Layer 32

}  $ nc –l 12345
}  Point your browser to http://127.0.0.1:12345/testme

}  If your user-agent looks strange and you curious to know
why, read this:
}  http://webaim.org/blog/user-agent-string-history/

Uploading form input

POST method:
}  web page often includes form

input

}  input is uploaded to server
in entity body

URL method:
}  uses GET method
}  input is uploaded in URL

field of request line:
 www.somesite.com/animalsearch?monkeys&banana

www.example.com/animalsearch.php?name=monkeys&age=10

Application 2-33

Method types
HTTP/1.0
}  GET
}  POST
}  HEAD

}  asks server to leave requested
object out of response

HTTP/1.1
}  GET, POST, HEAD
}  PUT

}  uploads file in entity body to
path specified in URL field

}  DELETE
}  deletes file specified in the URL

field

Application 2-34

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

Application 2-35

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT

\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html;

charset=ISO-8859-1\r\n
\r\n
data data data data data ...

HTTP response status codes

200 OK
}  request succeeded, requested object later in this msg

301 Moved Permanently
}  requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
}  request msg not understood by server

404 Not Found
}  requested document not found on this server

505 HTTP Version Not Supported

v  status code appears in 1st line in server->client
response message.

v  some sample codes:

Application 2-36

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
 opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet www.uga.edu 80

2. type in a GET HTTP request:

GET /profile/mission HTTP/1.1
Host: www.uga.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

Application 2-37

(or use wireshark!)

User-server state: cookies
many Web sites use cookies
four components:

1) cookie header line of HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

example:
}  Susan always access Internet

from PC
}  visits specific e-commerce

site for first time
}  when initial HTTP requests

arrives at site, site creates:
}  unique ID
}  entry in backend database

for ID

Application 2-38

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application 2-39

Cookies (continued)

what cookies can bring:
}  authorization
}  shopping carts
}  recommendations
}  user session state (Web e-

mail)

cookies and privacy:
v  cookies permit sites to

learn a lot about you
v  you may supply name

and e-mail to sites

aside

how to keep “state”:
v  protocol endpoints: maintain state

at sender/receiver over multiple
transactions

v  cookies: http messages carry state

Application 2-40

Cookies and Privacy

2: Application Layer 41

}  Two types of cookies
}  Session cookies
}  Permanent cookies (tracking cookies)

}  Third-party cookies (see http://tools.ietf.org/html/rfc2965)
}  You visit www.example.com, which contains a banner from ads.clicks-

for-me.net
}  in simple terms ads.clicks-for-me.net is third-party because it does not

match the domain showed on the URL bar
}  third-party sites should be denied setting or reading cookies

}  The browser allows ads.clicks-for-me.net to drop a third-party
cookie

}  Then you visit www.another-example.com , which also loads ads from
ads.clicks-for-me.net

}  ads.clicks-for-me.net can track the fact that you visited both
www.example.com and www.another-example.com !!!

Cookies and Security

2: Application Layer 42

}  Authentication Cookies can be stolen
}  An attacker may be able to “sniff” your authentication cookies
}  The attacker will be able to login as you on a website (e.g.,

Facebook, Twitter, etc…)

}  See FireSheep for a concrete example!
}  http://codebutler.com/firesheep

Session IDs

2: Application Layer 43

}  Cookies are not the only way you can keep state
}  Session IDs are commonly used by web applications

}  http://example.com/index.php?user_id=0F4C26A1&topic=networking

}  What are the main difference between cookies and
Session IDs?
}  Session IDs are typically passed in the URL (added to web app

links)
}  Cookies are passed through HTTP req/resp headers
}  Cookies are stored in the browser’s cache and have an

expiration date
}  Session IDs are volatile: never stored, only used until end of

session

Web caches (proxy server)

}  user sets browser: Web
accesses via cache

}  browser sends all HTTP
requests to cache
}  object in cache: cache

returns object
}  else cache requests object

from origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Application 2-44

More about Web caching
}  cache acts as both client and

server
}  Splits the TCP connection!

}  typically cache is installed by
ISP (university, company,
residential ISP)

why Web caching?
}  reduce response time for

client request
}  reduce traffic on an

institution’s access link.
}  Internet dense with caches:

enables “poor” content
providers to effectively
deliver content (but so does
P2P file sharing)

Application 2-45

Caching in HTTP
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Caching example
assumptions
}  average object size = 1M bits
}  avg. request rate from institution’s

browsers to origin servers = 15/sec
}  delay from “Internet router” to any

origin server and back to router =
2 sec

consequences
}  utilization on LAN = 15%

}  utilization on access link = 100%
}  total delay = Internet delay + access

delay + LAN delay

 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

15 Mbps
access link

institutional
cache

Application 2-46

Due to traffic intensity = 1
on the access link

Caching example (cont)

possible solution
}  increase bandwidth of access link

to, say, 100 Mbps
consequence
}  utilization on LAN = 15%
}  utilization on access link = 15%
}  Total delay = Internet delay +

access delay + LAN delay
 = 2 sec + msecs + msecs
}  often a costly upgrade

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

100 Mbps
access link

institutional
cache

Application 2-47

Caching example (cont)

possible solution:
}  install cache

consequence
}  suppose hit rate is 0.4

}  40% requests will be satisfied
almost immediately

}  60% requests satisfied by origin
server

}  utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)

}  total avg delay = Internet delay
+ access delay + LAN delay =
0.6*(2.01) secs +
0.4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

15 Mbps
access link

institutional
cache

Application 2-48

Conditional GET

}  Goal: don’t send object if cache
has up-to-date cached version

}  cache: specify date of cached
copy in HTTP request
If-modified-since:

<date>

}  server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

cache server
HTTP request msg

If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

Application 2-49

In reality, cache entry validation
and eviction policies are quite complex
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13

HTTP Pipelining and Range

2: Application Layer 50

}  Pipelining
}  The client sends multiple HTTP request without waiting for

server response
}  The server sends the response one after the other

}  Range
}  HTTP allows downloading pieces of objects
}  Example:

}  10MB image to be downloaded
}  We can open 10 different TCP connection and send 10 HTTP requests

in parallel
}  Download 1MB of data from each connection and stitch them back

together

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-51

FTP: the file transfer protocol

}  transfer file to/from remote host
}  client/server model

}  client: side that initiates transfer (either to/from remote)
}  server: remote host

}  ftp: RFC 959
}  ftp server: port 21

file transfer FTP
server

FTP
user

interface
FTP

client

local file
system

remote file
system

user
at host

Application 2-52

FTP: separate control, data connections

}  FTP client contacts FTP server at
port 21, TCP is transport protocol

}  client authorized over control
connection

}  client browses remote directory by
sending commands over control
connection.

}  when server receives file transfer
command, server opens 2nd TCP
connection (for file) to client

}  after transferring one file, server
closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

v  server opens another TCP
data connection to transfer
another file.

v  control connection: “out of
band”

v  FTP server maintains “state”:
current directory, earlier
authentication

Application 2-53

FTP: separate control, data connections

}  Active FTP
 FTP server contacts client from TCP
src-port 20 to negotiated dst-port

}  Passive FTP

 client contacts FTP server at
negotiated TCP dst-port

When is Passive FTP useful?

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
to negotiated serv port

Application 2-54

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
from serv port 20

FTP commands, responses
sample commands:
}  sent as ASCII text over control

channel
}  USER username
}  PASS password
}  LIST return list of file in current

directory
}  RETR filename retrieves

(gets) file
}  STOR filename stores (puts)

file onto remote host

sample return codes
}  status code and phrase (as in

HTTP)
}  331 Username OK,
password required

}  125 data connection
already open; transfer
starting

}  425 Can’t open data
connection

}  452 Error writing file

Application 2-55

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-56

Electronic Mail

Three major components:
}  user agents
}  mail servers
}  simple mail transfer protocol:

SMTP

User Agent
}  a.k.a. “mail reader”
}  composing, editing, reading mail

messages
}  e.g., Eudora, Outlook, elm, Mozilla

Thunderbird
}  outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent mail

server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-57

Electronic Mail: mail servers

Mail Servers
}  mailbox contains incoming

messages for user
}  message queue of outgoing (to be

sent) mail messages
}  SMTP protocol between mail

servers to send email messages
}  client: sending mail server
}  “server”: receiving mail server

mail
server

user
agent

user
agent

user
agent mail

server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-58

Electronic Mail: SMTP [RFC 2821]

}  uses TCP to reliably transfer email message from client to server,
port 25

}  direct transfer: sending server to receiving server
}  three phases of transfer

}  handshaking (greeting)
}  transfer of messages
}  closure

}  command/response interaction
}  commands: ASCII text
}  response: status code and phrase

}  messages must be in 7-bit ASCII

Application 2-59

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message to her
mail server; message placed in
message queue

3) Client side of SMTP opens TCP
connection with Bob’s mail
server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent to
read message

user
agent

mail
server

mail
server user

agent
1

2 3 4 5 6

Application 2-60

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: From: Alice
 C: To: Bob
 C: Subject: Quick question
 C: Do you like ketchup?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Application 2-61

Try SMTP interaction for yourself:

}  telnet servername 25
}  see 220 reply from server

}  enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands
above lets you send email without using email client (reader)

Application 2-62

Concrete example***

2: Application Layer 63

$ dig +short -t MX uga.edu
10 1282373658.mail.outlook.com.
$ dig +short -x 198.137.20.113
h198-137-20-113.paws.uga.edu.

$ telnet 1282373658.mail.outlook.com. 25
Trying 216.32.181.178...
Connected to 1282373658.mail.outlook.com.

Escape character is '^]'.
220 CH1EHSMHS014.bigfish.com Microsoft ESMTP MAIL Service ready at Tue, 29 Jan 2013 15:20:08
HELO h198-137-20-113.paws.uga.edu

250 CH1EHSMHS014.bigfish.com Hello [128.192.4.39]
MAIL FROM: <perdisci@cs.uga.edu>
250 2.1.0 Sender OK
RCPT TO: <perdisci@uga.edu>

250 2.1.5 Recipient OK
DATA
354 Start mail input; end with <CRLF>.<CRLF>
From: Roberto <perdisci@cs.uga.edu>

To: Rob <perdisci@uga.edu>
Subject: Quick question

Do you like ketchup?

.
250 2.6.0 <….ehs.local> [InternalId=21919093] Queued mail for delivery

QUIT
221 2.0.0 Service closing transmission channel
Connection closed by foreign host.

Mail message format
SMTP: protocol for exchanging email

msgs
RFC 822: standard for text message

format:
}  header lines, e.g.,

}  To:
}  From:
}  Subject:
different from SMTP commands!

}  body
}  the “message”, ASCII characters

only

header

body

blank
line

Application 2-64

SMTP: final words
}  SMTP uses persistent connections
}  SMTP requires message (header &

body) to be in 7-bit ASCII
}  SMTP server uses CRLF.CRLF to

determine end of message

comparison with HTTP:
}  HTTP: pull
}  SMTP: push

}  both have ASCII command/
response interaction, status codes

}  HTTP: each object encapsulated in
its own response msg

}  SMTP: multiple objects sent in
multipart msg

Application 2-65

Mail access protocols

}  SMTP: delivery/storage to receiver’s server
}  mail access protocol: retrieval from server

}  POP: Post Office Protocol [RFC 1939]
}  authorization (agent <-->server) and download

}  IMAP: Internet Mail Access Protocol [RFC 1730]
}  more features (more complex)
}  manipulation of stored msgs on server

}  HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

Application 2-66

POP3 protocol

authorization phase
}  client commands:

}  user: declare username
}  pass: password

}  server responses
}  +OK
}  -ERR

transaction phase, client:
}  list: list message numbers
}  retr: retrieve message by

number
}  dele: delete
}  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application 2-67

POP3 (more) and IMAP

more about POP3
}  previous example uses

“download and delete”
mode.

}  Bob cannot re-read e-mail
if he changes client

}  “download-and-keep”:
copies of messages on
different clients

}  POP3 is stateless across
sessions

IMAP
}  keeps all messages in one

place: at server
}  allows user to organize

messages in folders
}  keeps user state across

sessions:
}  names of folders and

mappings between message
IDs and folder name

Application 2-68

Chapter 2: Application layer
}  2.1 Principles of network

applications
}  2.2 Web and HTTP
}  2.3 FTP
}  2.4 Electronic Mail

}  SMTP, POP3, IMAP

}  2.5 DNS

}  2.6 P2P applications
}  2.7 Socket programming

with TCP
}  2.8 Socket programming

with UDP

Application 2-69

DNS: Domain Name System
people: many identifiers:

}  SSN, name, passport #

Internet hosts, routers:
}  IP address (32 bit) - used for

addressing datagrams
}  “name”, e.g., ww.yahoo.com -

used by humans

Q: map between IP address
and name, and vice versa ?

Domain Name System:
}  distributed database implemented in

hierarchy of many name servers
}  application-layer protocol host,

routers, name servers to
communicate to resolve names
(address/name translation)
}  note: core Internet function,

implemented as application-layer
protocol

}  complexity at network’s “edge”

Application 2-70

DNS
DNS services
}  hostname to IP address

translation
}  host aliasing

}  Canonical, alias names

}  mail server aliasing
}  load distribution

}  replicated Web servers: set of
IP addresses for one
canonical name

Why not centralize DNS?
}  single point of failure
}  traffic volume
}  distant centralized database
}  maintenance

doesn’t scale!

Application 2-71

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:
}  client queries a root server to find com DNS server
}  client queries com DNS server to get amazon.com DNS server
}  client queries amazon.com DNS server to get IP address for

www.amazon.com

Application 2-72

DNS: Root name servers

}  contacted by local name server that can not resolve name
}  root name server:

}  contacts authoritative name server if name mapping not known
}  gets mapping
}  returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Application 2-73

TLD and Authoritative Servers

Top-level domain (TLD) servers:
}  responsible for com, org, net, edu, aero, jobs, museums, and all

top-level country domains, e.g.: uk, fr, ca, jp.
}  Network Solutions maintains servers for com TLD
}  Educause for edu TLD

Authoritative DNS servers:
}  organization’s DNS servers, providing authoritative hostname

to IP mappings for organization’s servers (e.g., Web, mail).
}  can be maintained by organization or service provider

Application 2-74

Local Name Server
}  does not strictly belong to hierarchy
}  each ISP (residential ISP, company, university) has one.

}  also called “default name server”

}  when host makes DNS query, query is sent to its local
DNS server
}  acts as proxy, forwards query into hierarchy

Application 2-75

gaia.cs.umass.edu

root DNS server

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

DNS name ***
resolution example

}  host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v  contacted server

replies with name of
server to contact

v  “I don’t know this
name, but ask this
server”

Application 2-76

Query for
gaia.cs.umass.edu

Local
DNS

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

4 5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3 recursive query:
v  puts burden of name

resolution on
contacted name
server

v  heavy load?

DNS name ***
resolution example

Application 2-77

DNS: caching and updating records

}  once (any) name server learns mapping, it caches mapping
}  cache entries timeout (disappear) after some time
}  TLD servers typically cached in local name servers

}  Thus root name servers not often visited

Application 2-78

DNS records

DNS: distributed db storing resource records (RR)

Type=NS
}  name is domain (e.g. foo.com)
}  value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

Type=A
§  name is hostname
§  value is IP address

Type=CNAME
§  name is alias name for some

“canonical” (the real) name
§  www.ibm.com is really
 servereast.backup2.ibm.com

§  value is canonical name

Type=MX
§  value is name of mailserver

associated with name

Application 2-79

DNS protocol, messages

DNS protocol : query and reply messages, both with same message format

msg header
v  identification: 16 bit #

for query, reply to query
uses same #

v  flags:
§  query or reply
§  recursion desired
§  recursion available
§  reply is authoritative

Application 2-80

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Application 2-81

Inserting records into DNS

}  example: new startup “Network Utopia”
}  register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
}  provide names, IP addresses of authoritative name server (primary and

secondary)
}  registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

}  create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

}  How do people get IP address of your Web site?

Application 2-82

DNS Poisoning

2: Application Layer 83

}  DNS uses UDP
}  Source IP address can be spoofed
}  Responses are accepted with a “First Comes First Wins”

policy, subsequent
}  Only check is on TXID

}  What consequences?

requesting host
cis.poly.edu

gaia.cs.umass.edu

local DNS server
dns.poly.edu

authoritative DNS server
dns.cs.umass.edu

DNSSEC

2: Application Layer 84

}  DNS “patches”
}  Port randomization
}  0x20-Bit encoding

}  Better solution: DNSSEC
}  Responses are digitally signed
}  They can be verified by following a chain of trust anchored at

the roots
}  Not yet fully deployed

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-85

Pure P2P architecture
}  no always-on server
}  arbitrary end systems

directly communicate
}  peers are intermittently

connected and change IP
addresses

Applications:
}  file distribution
}  searching for information
}  case Study: Skype

peer-peer

Application 2-86

Distributed Hash Table (DHT)

}  Problem:
}  Build a simple DB that can store (key, value) pairs

}  key: ss number; value: human name
}  key: file name; value: IP address of peers that have file

}  Clients can provide a key, and get the value from DB
}  Centralized solution is trivial (e.g., Napster)

}  DHT: distributed P2P database
}  No central authority
}  Data distributed across very large number of (unreliable) nodes

}  database has (key, value) pairs;
}  peers query DB with key

}  DB returns values that match the key
}  peers can also insert (key, value) pairs

Application 2-87

DHT Identifiers

}  assign integer identifier to each peer in range [0,2n-1].
}  Each identifier can be represented by n bits.

}  require each key to be an integer in same range.
}  to get integer keys, hash original key.

}  e.g., key = h(“Led Zeppelin IV”)
}  this is why they call it a distributed “hash” table

Application 2-88

How to assign keys to peers?
}  central issue:

}  assigning (key, value) pairs to peers.

}  rule: assign key to the peer that has the closest ID.
}  convention in lecture: closest is the immediate

successor of the key.
}  e.g.,: n=4; peers: 1,3,4,5,8,10,12,15;

}  key = 13, then successor peer = 15
}  key = 15, then successor peer = 15

Application 2-89

1

3

4

5

8
10

12

15

Circular DHT (1)

}  each peer only aware of immediate successor and
predecessor.

}  “overlay network”

Application 2-90

Circular DHT (2) ***

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-91

Circular DHT with Shortcuts

}  each peer keeps track of IP addresses of predecessor, successor,
short cuts.

}  reduced from 6 to 2 messages.
}  possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s resp
for key 1110?

Application 2-92

Peer Churn

}  peer 5 abruptly leaves
}  Peer 4 detects; makes 8 its immediate successor; asks 8

who its immediate successor is; makes 8’s immediate
successor its second successor.

}  What if peer 13 wants to join?

1

3

4

5

8
10

12

15

v  To handle peer churn, require
each peer to know the IP
address of its two successors.

v  Each peer periodically pings its
two successors to see if they
are still alive.

Application 2-93

P2P Case study: Skype

}  inherently P2P: pairs of
users communicate.

}  proprietary application-
layer protocol (inferred via
reverse engineering)

}  hierarchical overlay with
SNs

}  Index maps usernames to
IP addresses; distributed
over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

Application 2-94

Peers as relays

}  problem when both Alice
and Bob are behind
“NATs”.
}  NAT prevents an outside peer

from initiating a call to insider
peer

}  solution:
}  using Alice’s and Bob’s SNs,

relay is chosen
}  each peer initiates session with

relay.
}  peers can now communicate

through NATs via relay

Application 2-95

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-96

Socket programming

Socket API
}  introduced in BSD4.1 UNIX, 1981
}  explicitly created, used, released

by apps
}  client/server paradigm
}  two types of transport service via

socket API:
}  unreliable datagram
}  reliable, byte stream-oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

Application 2-97

Socket-programming using TCP
Socket: a door between application process and end-end-

transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one process to

another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer
controlled by
operating
system

host or
server

internet

Application 2-98

Socket programming with TCP

Client must contact server
}  server process must first be

running
}  server must have created socket

(door) that welcomes client’s
contact

Client contacts server by:
}  creating client-local TCP socket
}  specifying IP address, port

number of server process
}  when client creates socket:

client TCP establishes
connection to server TCP

}  when contacted by client, server
TCP creates new socket for
server process to communicate
with client
}  allows server to talk with

multiple clients
}  source port numbers used to

distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

Application 2-99

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Server (running on hostid) Client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

Application 2-100

ou
tT

oS
er

ve
r

to network from network

in
F

ro
m

S
er

ve
r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

}  stream is a sequence of characters
that flow into or out of a process.

}  input stream is attached to some
input source for the process, e.g.,
keyboard or socket.

}  output stream is attached to an
output source, e.g., monitor or
socket.

Application 2-101

Streams

Socket programming with TCP
Example client-server app:
1) client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

2) server reads line from socket
3) server converts line to uppercase,

sends back to client
4) client reads, prints modified line

from socket (inFromServer
stream)

Application 2-102

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
client socket,

connect to server
create

output stream
attached to socket

Application 2-103

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

create
input stream

attached to socket

send line
to server

read line
from server

Application 2-104

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

create
welcoming socket

at port 6789

wait, on welcoming
socket for contact

by client

create input
stream, attached

to socket

Application 2-105

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Application 2-106

Chapter 2: Application layer
2.1 Principles of network

applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

}  SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications
2.7 Socket programming with

TCP
2.8 Socket programming with

UDP

Application 2-107

Socket programming with UDP

UDP: no “connection” between
client and server

}  no handshaking
}  sender explicitly attaches IP

address and port of destination
to each packet

}  server must extract IP address,
port of sender from received
packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint:

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

Application 2-108

Client/server socket interaction: UDP

Server (running on hostid)

close
clientSocket

read datagram from
clientSocket

create socket,

 clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-109

Example: Java client (UDP)

se
nd

Pa
ck

et

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (recall
that TCP sent “byte
stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

Application 2-110

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

create
input stream

create
client socket

translate
 hostname to IP

address using DNS

Application 2-111

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

create datagram
with data-to-send,

length, IP addr, port

send datagram
to server

read datagram
from server

Application 2-112

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Application 2-113

Example: Java server (UDP), cont

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }

}

get IP addr
port #, of

sender

write out
datagram
to socket

end of while loop,
loop back and wait for
another datagram

create datagram
to send to client

Application 2-114

Useful Debugging Tools

2: Application Layer 115

}  telnet
}  nc (netcat)
}  wireshark / tshark
}  tcpdump

Chapter 2: Summary

}  application architectures
}  client-server
}  P2P
}  hybrid

}  application service
requirements:
}  reliability, bandwidth, delay

}  Internet transport service
model
}  connection-oriented, reliable: TCP
}  unreliable, datagrams: UDP

our study of network apps now complete!

v  specific protocols:
§  HTTP
§  FTP
§  SMTP, POP, IMAP
§  DNS
§  P2P: BitTorrent, Skype

v  socket programming

Application 2-116

Chapter 2: Summary

}  typical request/reply
message exchange:
}  client requests info or service
}  server responds with data,

status code

}  message formats:
}  headers: fields giving info

about data
}  data: info being

communicated

most importantly: learned about protocols

Important themes:
v  control vs. data msgs

v  in-band, out-of-band
v  centralized vs.

decentralized
v  stateless vs. stateful
v  reliable vs. unreliable

msg transfer
v  “complexity at network

edge”

Application 2-117

