

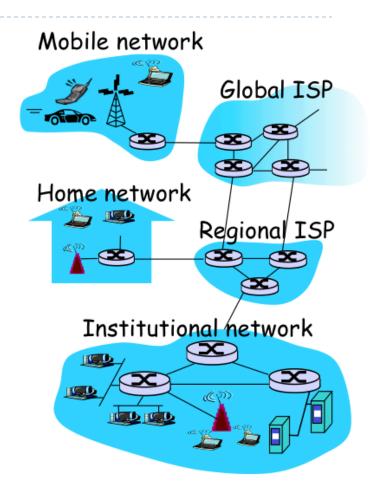
CSCI 6760 - Computer Networks Spring 2017

Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu

These slides are adapted from the textbook slides by J.F. Kurose and K.W. Ross

Introduction

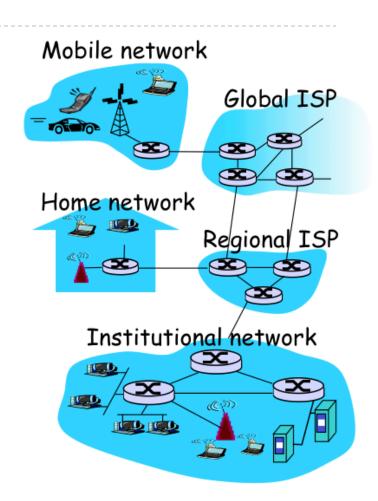
What is the Internet?


- World-scale "network of networks"
 - ▶ Each network is essentially independent
 - No central authority (Registrars have some saying...)
- Hundreds of millions of devices
 - Likely billions, considering mobile devs
- Infrastructure that provides communication services to apps

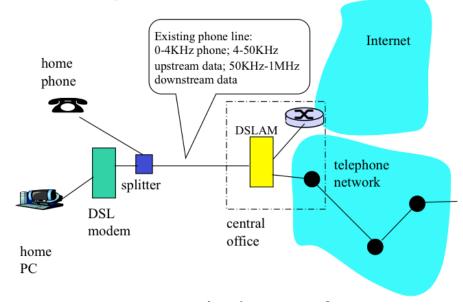
Host nodes (hosts for short)

- Called end systems
- run apps
- Used to be computers, now include TVs, smart-phones, washing machines...

Routers

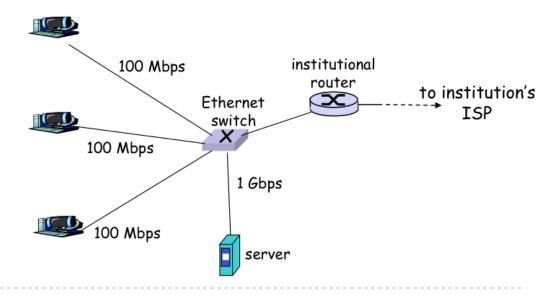

- Forward network packets
- Make it possible to connect one network to another

Introduction


- How do hosts connect to the net?
 - ▶ ISP = Internet Service Provider
 - ▶ Global vs. Regional ISPs
 - (e.g., AT&T, Comcast, Verizon, etc...)
- Types of connections
 - Dial-up (not common anymore)
 - **DSL**
 - Cable
 - Fiber
 - Wireless (3G, IMAX, WiFi)
 - Direct Ethernet access

Digital Subscriber Line (DSL)

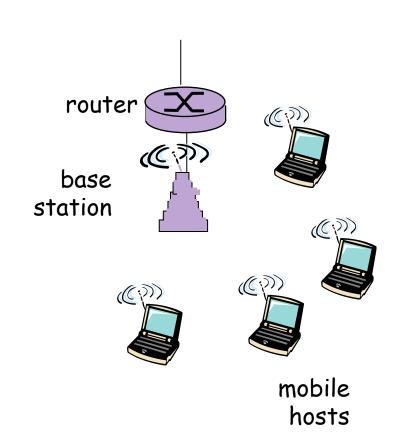
- Uses existing PSTN infrastructure
- Dedicated physical line to telephone central office
- Asymmetric upstream/downstream speeds
 - ▶ 125kbps / 1.5Mbps
 - 256kbps / 3Mbps
 - ...
- Speed in bits per second (bps)
 - Typically limited by physical constraints
 - Rate-limited on purpose based on costs
 - Depending on contract

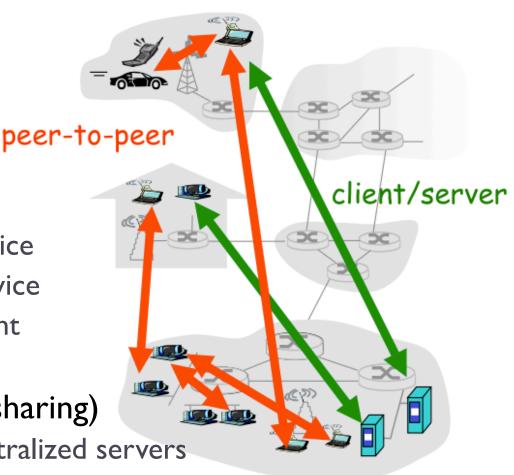


Cable

- Leverages cable TV infrastructure
- Asymmetric upstream/downstream speeds
 - ▶ IMbps-I00Mbps
- Upstream/Downstream speeds often differ (asymmetric) Home Environment **Set-Top Box** Cable PC Modem Coax 10 Mbps Ethernet Cable Provider home cable distribution

Direct Ethernet-based Access

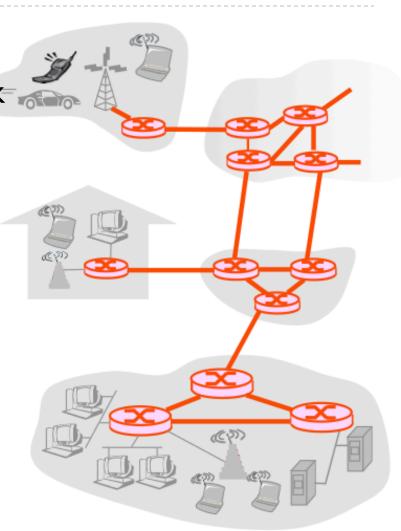

- Typical of companies, universities, etc.
- ▶ 10Mbps to 10Gbps
- End systems typically connect to a switch
- Access to Internet provided through institutional router
 - ▶ EITS provides access to UGA hosts


Wireless Access

- Mobile devices connect to an access point
- Access point connects to router
- Wireless LAN
 - ▶ 802.11b/g (up to 54Mbps)
- Wide-are Access
 - Cellular system
 - ▶ GPRS, 3G, 4G
 - Satellite

The Network Edge

- Communication models
 - Client / Server
 - Peer-to-Peer (P2P)
- Client / Server
 - Client host requests service
 - Server host provides service
 - ► E.g., Browser = Web Client
- P2P (often used for file sharing)
 - Minimal or no use of centralized servers
 - ▶ E.g., Skype, BitTorrent, Emule, ...



The Network Core

Set of interconnected routers

Forward data from one network to another

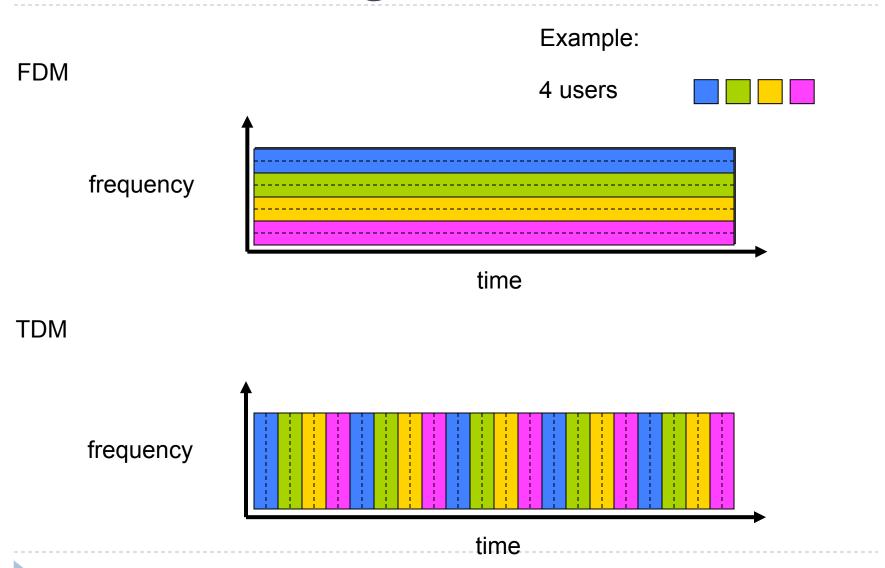
- Data transfer approaches:
- Circuit Switching
 - Communication resources
 between end hosts are reserved
- Packet Switching
 - Shared resources
 - Best effort delivery

Circuit Switching

Dedicated communication resources

- Resources are reserved for the entire duration of the communication
- ▶ E.g., phone call through PSTN uses circuit switching

Network resources (bandwidth) are "sliced"

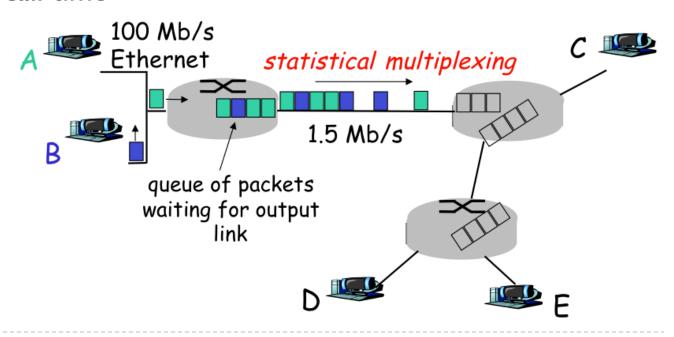

- Circuit uses one or more slices
- Access to resources using FDM or TDM

Performance

- Circuit setup time required
- Guaranteed performance
- No sharing
- Resource idle if not used: potential waste!

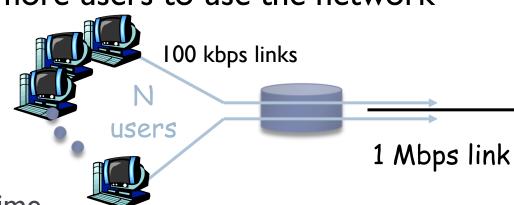
Circuit Switching

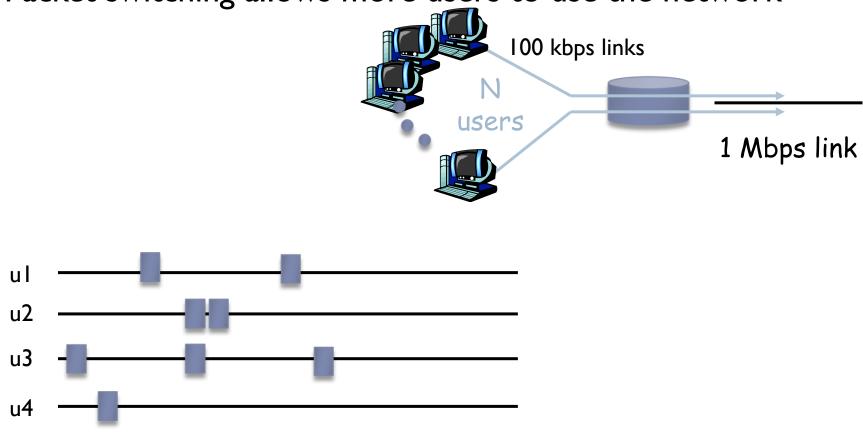
Packet Switching


- End-to-end (or host-to-host) communications split into data chunks or packets
- Each packet uses full link bandwidth
- Network users share resources
 - Resources used as needed (no reservation)
 - Aggregate demand may exceed available resources
 - Congestion may occur
 - wait for resources to become available
 - if too much congestion, packets may be lost
- Packets move one hop at a time
 - Store and forward
 - Nodes wait to receive entire packet before forwarding it

Packet Switching

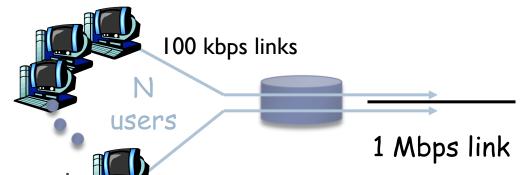
Statistical Multiplexing


- Packets arrive with no fixed timing pattern
- Bandwidth shared on demand
- Different from FDM/TDM, for which resource are guaranteed for entire "call time"


Packet switching allows more users to use the network

- Example
 - ► IMbps shared link
 - N users
 - ▶ Each user active 10% of time
 - Users send 100kbps each when active
- Circuit switching
 - Allows only N = 10 users
- Packet switching
 - ▶ How many users can share the same IMbps link?

Packet switching allows more users to use the network

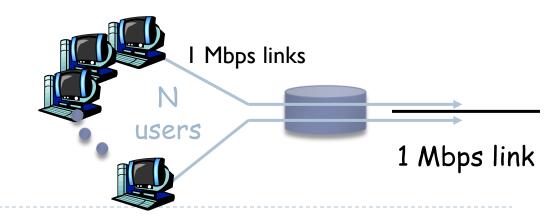


Packet switching allows more users to use the network

Example

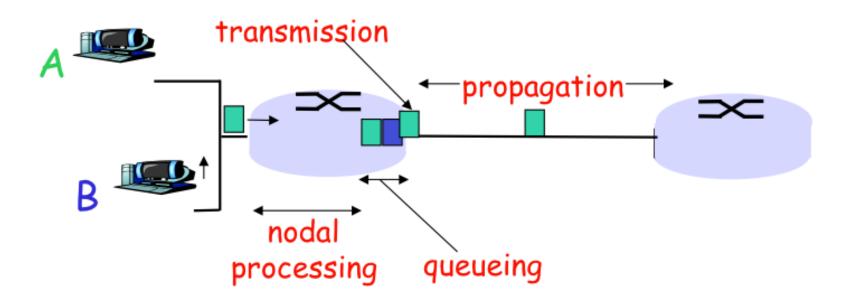
- IMbps shared link
- N users
- ▶ Each user active 10% of time
- Users send 100kbps each when active

Circuit switching


- Allows only N = 10 users
- Packet switching
 - Assuming N = 35, probability that more than 10 users are active at any given time is ~ 0.0004
 - ▶ Why?
 - Therefore, more than 10 users are allowed to use the network

Packet switching does not waste bandwidth

Example

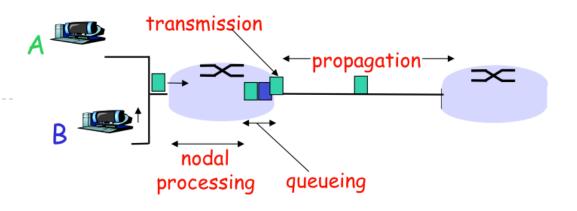

- Only I active user
- User needs to send IMB of data
 - With TDM can only send 100kbps = 80 sec
 - With packet switching can use entire bandwidth = 8 sec

Packet delays

Store-and-Forward: the entire packet must arrive and stored, before a router can forward it to the next node

$$d_{\text{node}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

Packet delays


- d_{proc}: processing time
 - check for bit errors
 - lookup next hop link

- time waiting at the output link packet queue
- depends on link congestion

d_{trans}: transmission delay

- How long to copy packet on the link?
- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$

d_{prop}: link propagation

- How long for each bit to arrive to destination?
- d: physical length of link
- s: propagation speed (depends on type of link material)
- $d_{prop} = d/s$

 \rightarrow $d_{trans} != d_{prop}$

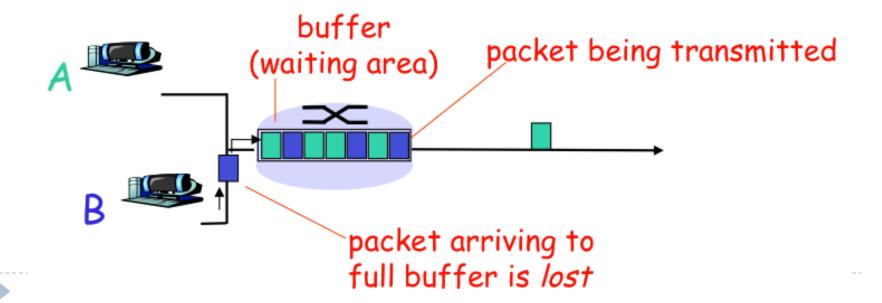
Bandwidth-Delay Product = $R * d_{prop}$

Packet delays: Example

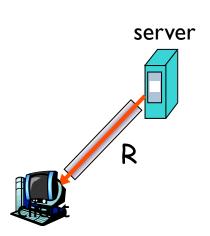
- NYC to London (5,500km) on Optical Fiber
- propagation speed ~200,000km/s
 - $d_{prop} = 5,500/200,000 = 27.5 ms$
- Assume I5Mbps link bandwidth
- ▶ 1,500-byte packet
 - $d_{trans} = 8*1500/15E6 = 0.8ms$

Assume also d_{queue} and d_{proc} are negligible $d_{node} = d_{trans} + d_{prop} = 28.3 ms$

Queuing delay


- R: link bandwidth (bps)
- L: packet length (bits)
- a : avg packet arrival rate
- ► La/R : Traffic Intensity
- ▶ La/R << I causes small avg delay</p>
- As La/R increases towards I delay goes up
- Ls/R > I means more traffic arrives than can be handled by the link
 - Infinite delay == packet loss!

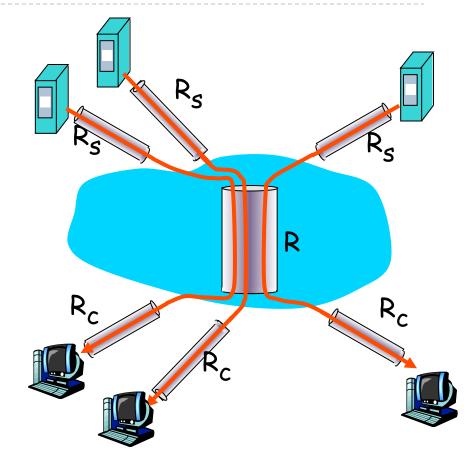
La/R -> 1


Packet Loss

- A and B are sharing the Internet connection
- Traffic Intensity La/R > I
- Router's buffer gets full
- B send packet, but router's buffer is full
- The packet will be discarded

End-to-End Throughput

- Effective rate (bps) at which data is transferred between client and server
 - Instantaneous throughput
 - bps that client receives at any given instant of time
 - Average throughput
 - overall throughput for a data transfer process
- Example: file transfer
 - ightharpoonup F = file size, t = time taken to receive the entire file
 - Avg throughput = F/t
 - Inst. throughput may vary significantly from a given time instant to another
 - The higher the avg throughput, the better
- Example2:VoIP
 - High quality calls requires a constant minimum instant throughput and low delays between packets



End-to-End Throughput

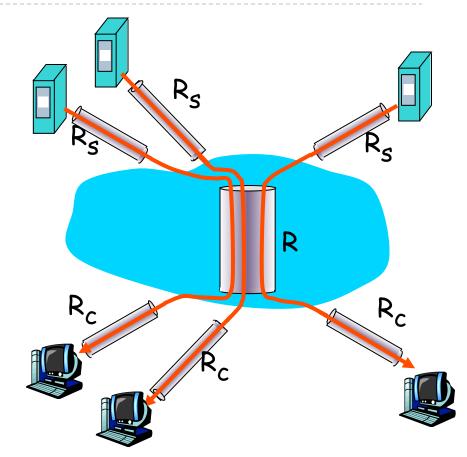
 Effective rate (bps) at which data is transferred between client and server

Assume that

- ▶ Rs = 2Mbps, Rc = 1Mbps
- R = 5Mbps (equally shared)
- N = # of clients and servers
- ► T = ???
 - What is the effective throughput?

Example: N=10 connections share same link

10 simultaneous file downloads!

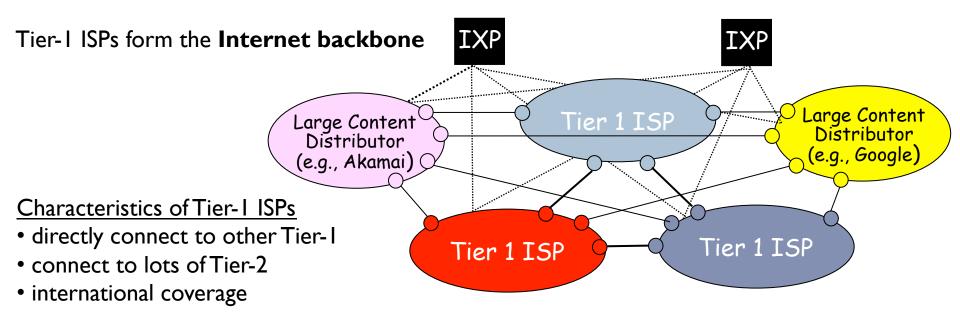


End-to-End Throughput

 Effective rate (bps) at which data is transferred between client and server

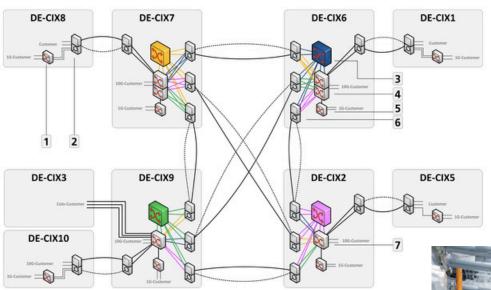
Assume that

- Rs = 2Mbps, Rc = 1Mbps
- R = 5Mbps (equally shared)
- N = # of clients and servers
- T = min(Rc, Rs, R/N)



Example: N=10 connections share same link

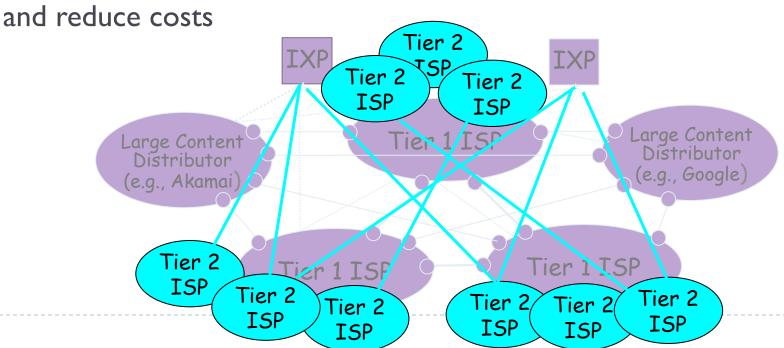
10 simultaneous file downloads!



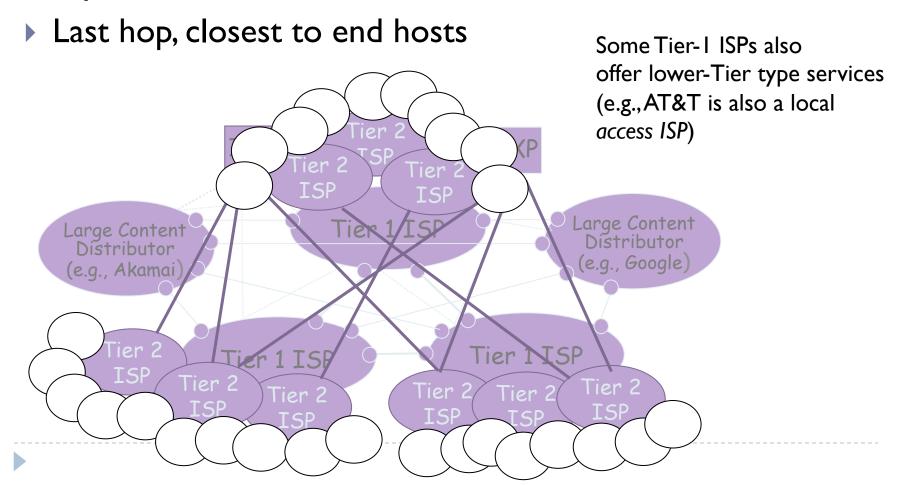
- Organized in a hierarchy
 - Tier-I ISPs (Level3, AT&T, etc...) and large content providers (Akamai, Google, etc.) are on top
 - They peer (i.e., exchange traffic) directly or at IXPs
 - ► IXP = Internet eXchange Point (check IXPs list on Wikipedia)

Internet Exchange Points

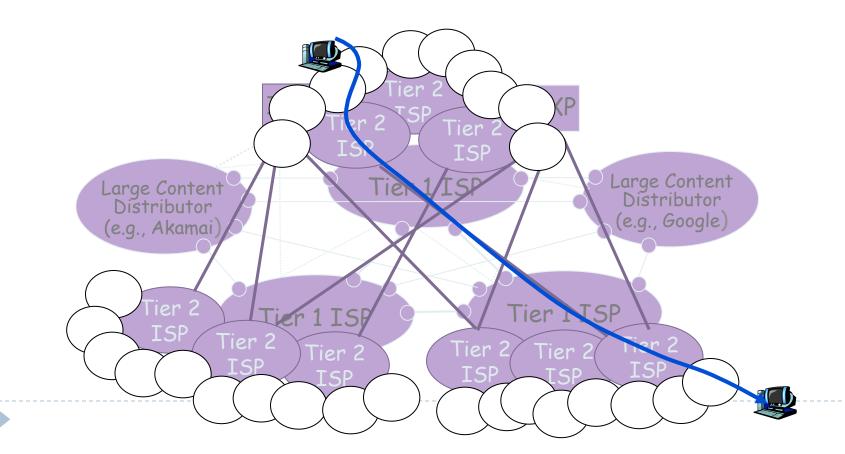
Provide a facility where ISPs can "peer"



- 1 Alcatel-Lucent 7210 SAS-M
- 2 ADVA FSP3000R7 for Remote-Locations
- 3 Alcatel-Lucent 7950XRS20 Core-Node
- 4 Alcatel-Lucent 7950XRS40 Edge-Node
- 5 Alcatel-Lucent 7210 SAS-M
- 6 ADVA FSP3000R7 for Interconnect-Connections
- 7 Alcatel-Lucent 7950XRS20 Edge-Node



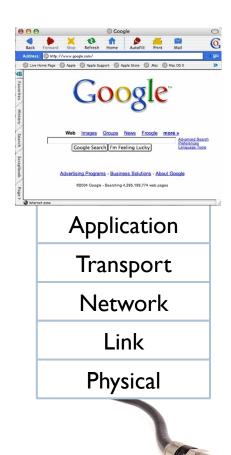
Tier-2 ISPs


- Smaller, often regional/national ISPs
- Pay to connect to one or a few Tier-1 ISPs
- ▶ Tier-I ISPs have many Tier-2 ISP customers
- Tier-2 ISPs sometimes peer directly or at IXPs to bypass Tier-1

- ▶ Tier-3 ISPs are local ISPs
- Pay Tier-I or Tier-2 ISPs to send/receive data

Packets from one end host to another usually traverse several networks at different levels

How do packets get to destination?*


traceroute to www.italia.gov.it (94.86.40.47), 30 hops max, 40 byte packets 1 128.192.76.129 (128.192.76.129) 0.525 ms 0.638 ms 0.747 ms 4 eboydf.net.uga.edu (128.192.166.69) 1.637 ms 2.250 ms 2.376 ms 5 h70-33-127-97.paws.uga.edu (70.33.127.97) 1.860 ms 1.494 ms 2.556 ms 6 spnetx.net.uga.edu (128.192.166.1) 3.473 ms 2.992 ms 3.204 ms 7 131.144.206.45 (131.144.206.45) 120.032 ms 119.842 ms 3.581 ms 8 xe-3-1-921.r00.atlnga05.us.bb.gin.ntt.net (204.2.241.33) 3.573 ms 4.159 ms 4.117 ms 9 ae-0.r20.atlnga05.us.bb.gin.ntt.net (129.250.3.176) 4.683 ms 4.104 ms 4.078 ms 10 p64-0-1-0.r21.dllstx09.us.bb.gin.ntt.net (129.250.5.26) 31.783 ms 31.931 ms 31.931 ms II ae-2.r08.dllstx09.us.bb.gin.ntt.net (129.250.3.81) 31.277 ms 31.917 ms 30.932 ms 14 te8-1.ashburn1.ash.seabone.net (89.221.40.3) 147.764 ms 147.870 ms 149.757 ms 15 te0-1-0-7.newyork50.new.seabone.net (195.22.206.3) 153.118 ms 156.356 ms 156.260 ms 16 pos0-10-0-0.milano50.mil.seabone.net (195.22.216.215) 214.033 ms 214.035 ms 214.105 ms 17 ibs-resid.milano50.mil.seabone.net (93.186.128.162) 145.318 ms 145.968 ms 142.934 ms 18 *** 21 80.21.5.86 (80.21.5.86) 162.830 ms 162.743 ms 165.573 ms 22 host 106-35-static.58-88-b.business.telecomitalia.it (88.58.35.106) 151.528 ms 154.627 ms 154.625 ms 23 *** 24 host47-40-static.86-94-b.business.telecomitalia.it (94.86.40.47) 166.256 ms 161.895 ms 162.122 ms

More on Traceroute....

- Demo Time!
 - ping
 - traceroute
 - throughput test

Internet Protocol Stack

- Application: supports network applications
 - Example: HTTP, FTP, SMTP, ...
- Transport: process-to-process data transfer
 - Example: TCP, UDP
- Network: routing of datagrams from source host to destination host
 - ▶ IP
- Link: data transfer between neighbor nodes
 - ▶ Ethernet, 802. IIx (WiFi), PPP
- Physical: bits on the wire

ISO/OSI reference model

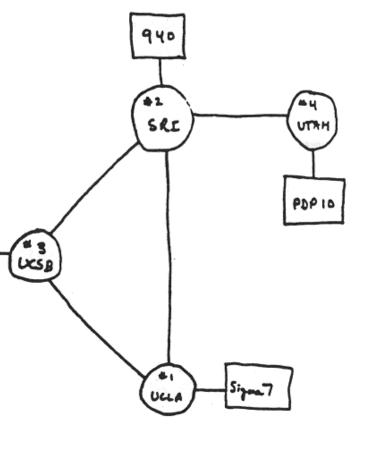
- Presentation: allows application level protocol to correctly interpret/send data
 - Convert data format according to a specific encryption/compression algorithm
 - Machine-specific encoding
- Session:
 - synchronization, checkpoint, recovery of data exchange
- These tow layers are missing from the Internet Stack
 - When needed, must be implemented at the application level

Application
Presentation
Session
Transport
Network
Link
Physical

Encapsulation

Internet History

▶ 1960s – early 1970s


Development of early packet-switching principles

▶ 1961 : queuing theory

1964 : packet switching in military nets

1967 : ARPAnet conceived by Advanced Research Project Agency

- ▶ 1969 : first ARPAnet node is operational
- ▶ 1972 :ARPAnet public demonstration
 - NCP (Network Control Protocol) is the first host-to-host protocol
 - First e-mail application
 - ARPAnet has 15 nodes
- ▶ 1976: Ethernet developed at Xerox (competing with Token Ring at IBM)
- ▶ 1979: 200 ARPAnet nodes

THE ARPA NETWORK

Internet History

- ▶ 1980s : new protocols developed, new networks
 - ▶ 1982: SMTP protocol defined
 - ▶ 1983: deployment of TCP/IP
 - ▶ 1983: DNS defined for name-to-IP mapping
 - ▶ 1985: FTP protocol
 - ▶ 1988:TCP congestion
- Several new national networks
 - Csnet, BlTnet, NSFnet, Minitel
 - ▶ 100,000 nodes interconnected

Internet History

- ▶ 1990s 2000's: the Web, new apps, commercialization
- Early 1990s
 - Hypertext
 - ▶ HTML, HTTP
 - Mosaic (Netscape)
- ▶ Late 1990s 2000's
 - Commercialization of the Web
 - ▶ P2P applications
 - Instant messaging
 - Internet backbone at Gbps
 - Network Security becomes super important
 - Evolved from few trusted nodes to millions of untrusted ones

Internet History

- ▶ ~750 Million hosts
- Real-time apps: VoIP (Skype), Video Streaming (PPLive)
- Web 2.0
 - Youtube, Online games, ...
 - Social Networks: Facebook, Twitter, MySpace, Linked-in,...
- The Cloud: Gmail, Amazon
- Wireless Internet is becoming pervasive
 - ▶ 3G, 4G, WiMAX, ...

Internetworking design principles

- Minimalism and autonomy
 - No internal changes needed to interconnect networks
- Simplicity
 - Best effort model
- Stateless routers
- Decentralized control
- Principles set by Vint Cerf and Bob Kahn (TCP/IP)
 - Define today's Internet architecture
- Simplicity vs. Security ?



Who "controls" the Internet?

- Internet = large set of interconnected networks
- No central management
 - ▶ Each network is operated and managed independently
- ▶ However, a number of things need to be coordinated
 - Assignment of IP addresses, AS numbers
 - Registration of domain names

Internet Assigned Numbers Authority

- IANA is responsible for coordinating some of the key elements that keep the Internet running smoothly
 - IP addresses, AS numbers
 - Domain Names
 - □ Roots, .int, .arpa, IDNs
 - Protocol Assignments in collaboration with IETF
 - IANA is supervised by Internet Corporation for Assigned Names and Numbers (ICANN)
 - Internet Engineering Task Force: The mission of the IETF is to make the Internet work better by producing documents that influence the way people design, use, and manage the Internet

Network Security

field of network security:

- how bad guys can attack computer networks
- how we can defend networks against attacks
- how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ☺
 - Internet protocol designers playing "catch-up"
 - security considerations in all layers!

Fundamental Security Components

Confidentiality

Secrecy of information (usually achieved using crypto)

Integrity

- Trustworthiness of data
 - Prevention: deny unauthorized changes
 - Detection: identify if unauthorized changes happened

Availability

Ability to access data/resources

Authentication

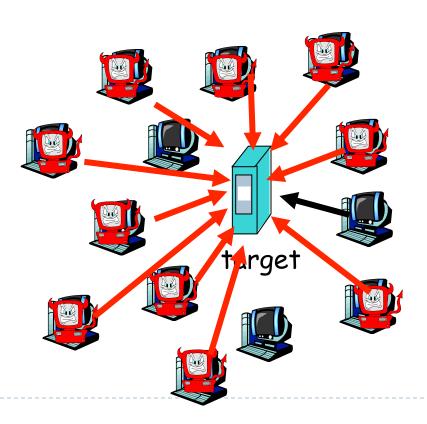
Verification of someone's identity

Authorization

Check if user has permission to perform a certain action

Bad guys: compromise hosts via Internet

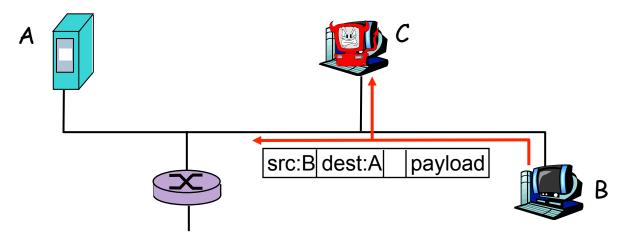
- malware can get in host from a virus, worm, or trojan horse.
- spyware malware can record keystrokes, web sites visited, upload info to collection site.
- infected host can be enrolled in botnet, used for spam and DDoS attacks.
- malware often self-replicating: from one infected host, seeks entry into other hosts


Bad guys: compromise hosts via Internet

Denial of Dervice (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

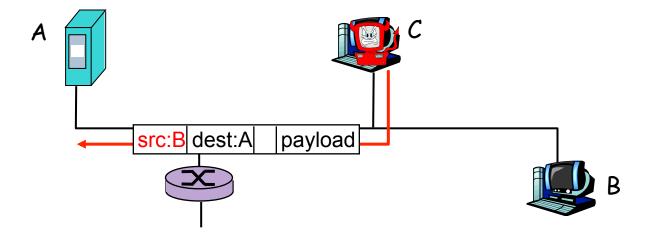
- 1. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

Example:


Recent Events connected to Wikileaks

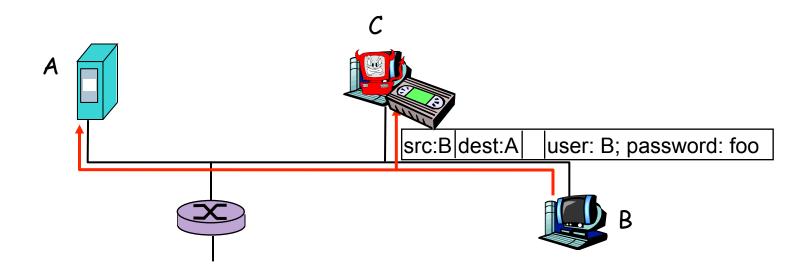
The bad guys can sniff packets

Packet sniffing:


- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

 Wireshark software used for end-of-chapter labs is a (free) packet-sniffer

The bad guys can use false source addresses


IP spoofing: send packet with false source address

The bad guys can record and playback

record-and-playback: sniff sensitive info (e.g., password), and use later

password holder is that user from system point of view

... lots more on security (throughout, Chapter 8)