, < \\
Y "
A
-"'
1

\

¥ ulnerablllty of the Decade

Eﬁ_ -d

wan Perry Wagle, Calton Pu, Steve Beattie,
Jonathan Walpole

Presented By: Chris Neasbitt

Outline

Introduction

coﬁ'nnon form of security vulnerability over
st %n years

¥

st.common vulnerability used for remote
nork penetration

; bast half of 1999 CERT advisories involve

- Motivation

F”'\x

""".

’_'l_ aq‘&ttacker to do two necessary things

b ject ﬁtack code
,-= ack code at elevated privilege levels

lloy S the attacker to attack the system
motely

1Sy to exploit

Attack Anatomy

—
1 h-I. h LY
“,
~ N,

der tmexplon a buffer overflow the attacker
do‘*ﬁNo things

ge-for suitable code to be available in the
rém's address space.

et the program to jump to that code, with suitable
arameters loaded into registers & memory

Attack Anatomy

1 - ".\\“

ng %e.de In the vulnerable program's
jdress space
I ' e

ﬁt

pply a String containing native CPU instructions to the
program

ake use of code available on the system

. ctlvatlons Records

'\..

_‘
verwrlte a functions activation record in such a manner
that cause the return pointer to point to the attack code

l} very prevalent

unction Pointers

- overwrite a buffer close to a function pointer to cause the
ction pointer to point at the attack code

orrupt the state of the checkpoint buffer so longjmp calls the

attack code

Eed an overflowable automatic variable with a
- Ny

g that overwrites the return pointer and
ontains the executable code

i
- simplest and most common attack

Iso write the attack code to one buffer and
overflow another to overwrite the return pointer

ﬂﬁused when bounds checking exists but is incorrect

Attack
code

return
address

Figure 1: Buffer Overflow Attack Against
Activation Record

thg Systems Oriented

e buffers non-executable

— eliminates most buffer overflows at much lower cost

ce them with safer alternatives like strncpy and

lhprlntf
I ode auditing teams

injection tools
'search for vulnerable code

-~ Attack Defenses

‘A%Exebutable Buffers

. ake ’fhé data section of the code non-executable

can be accomplished with the highest
plpatlblllty by making only the stack segment

on-executable

— virtually no legitimate programs need an executable stack
- 2 exceptions
Signal Delivery

- work around available in kernel patches
C Trampolines

~ — not really used

Attack Defenses

mehitatlons Cont.

Jc nes ‘&Kelly Array Bounds Checking for C
{__patch

erive a “base” pointer for each pointer expression and
r check pointer attributes to determine bounds

- huge slowdown
e ijk matrix multiplication, 30x slowdown

» parts of SSH, 12x slowdown
programs won't execute at all with this patch

objeCt code insertion” to instrument all memory
ces

- uses a custom linker and library
- not intended for production
) to 5 tlmes slowdown

Languages

is written is C so it could be vulnerable itself

'etter performance and compatibility than Array
ounds Checking

Kii's custom libc for FreeBSD
uard

"'Iemented as a patch to gcc
laces a “canary” value next to the return address in

‘overflowed

}SEMk
Growth

0000

Figure 2: StackGuard Defense Against Stack
Smashing Attack

Attack Defenses

J
|
by ==
i
o L
¥ _n‘

l_ i the canary with terminator symbols
"« ex. (null), CR, LF, EOF

- Attacker cannot embed these symbols into the overflow
string because C lib string functions will terminate on
encountering them

n Canary
arate a 32-bit random number

.. Attack Defenses

tbf"@kGu‘ard Security

2 8

_eriyed from the notion of quasi-invariants to assure
he correctness of incremental specializations

- _quasi-invariants

'r « something that changes but only occasionally
— specialization

» deliberate change to a program that is correct only under certain
conditions

ackGuard's quasi-invariant is the fact that an active

g

[lon's return pointer should not change

acker's attempt to overwrite the return pointer
would be considered invalid as it violates the quasi-
- Invariant

[

Table 1: StackGuard Penetration Resistance

Vulnerable Program Result Without StackGuard | Result with StackGuard
dip 3.3.7n root shell program halts

elm 2.4 PL25 root shell program halts

Perl 5.003 root shell program halts irregularly
Samba root shell program halts
SuperProbe root shell program halts irregularly
umount 2.5K/libc 5.3.12 | root shell program halts
wwwcount v2.3 httpd shell program halts

zgv 2.7 root shell program halts

Table 2: Apache Web Server Performance With and Without StackGuard Protection

StackGuard # of Connections Average Latency Average Throughput
Pmtectlun Cllents |_per Second Second in Secunﬂs in MBltsfSecund

e | e wms|emel ew

Attack Defenses

| rforr?is code pointer integrity checking
Fallzatlon of StackGuard
ces canaries next to all code pointers

till in development at time of writing

' main development issues involved

Attack Defenses

B 'i, | 'A“‘.‘.t:: it 1..
' P-@ Compatibility and Performance
wd_e pbinters are deferenced far less frequently in
1e vast majority of programs than arrays accessed

__,réys have no innate bounds attributes so they
ust be inferred

maintaining “sizeof(int) == sizeof(void *)" allows no
xtra information to be stored with the array itself

ating “sizeof(int) == sizeof(void *)” destroys code

Table 3: Buffer Overflow Attacks and Defenses

Attack Code Location
Stack Buffer Heap Buffer | Static Buffer

Code Activation | StackGuard | StackGuard, Non- | StackGuard StackGuard
Pointer | Record executable stack

es
p Function PointGuard | PointGuard, Non- | PointGuard PointGuard
Pointer executable stack
Longjmp | PointGuard | PointGuard, Non- | PointGuard PointGuard
Buffer executable stack

Other Manual Manual Point- Manual Point- | Manual Point-
Variables | PointGuard | Guard, Non-exe- Guard Guard
cutable stack

~ Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

