~ . Ol
N, | \
=t als b
"‘" ¢ l.' Y
e b \
1 -

"'} or@lntrusmn Detection: Evasion Traffic
\ . .Normalization, and End-to-End Protocol

.’F{ Semantics

y rMark Handley, Vern Paxson, Christian Kreibich

Presented By: Chris Neasbitt

Outline

‘Normalization Approach

'NIDS may lack complete analysis of the full range
pehavior for a particular protocol

IIDS may lack information of the victim's end-

Normalization

; g'cl" \ ‘-‘-""'-_ \ : \
e _ﬁnpt&tﬂ solve the evasion by ambiguity by

alizing all network traffic
malizer

Bifurcating analysis

Tradeoffs

“""""‘. .

f"*all?.al;lon vs. Protection

X ; i-to- End Semantics
_d Performance

ount of State Held

we normalizer's position in the network makes it
deal to prevent some known attacks

_éél place for an Intranet firewall
(:
-to-End Semantics

preserve the semantic meaning of the traffic in the
ace of normalization

-End Performance

traffic normalization could have an adverse affect
on performance of network applications

Tradeoffs

ﬂ-'

| unt M State Held

I. constructlon of a flow for analysis requires some
e of state to be held

| g traffic, two can be used to normalize both
ctions

« Attacks and Defenses
N attacker may attempt to subvert the
malizer

tateholding Attacks

YN Flood

Fragmentation

'
— Can monitor memory usage and scale back stateholding
~ on some flows

Overload Attacks
bined with stateholding attacks

— Dec ease system performance by analyzing a flood of
Ifficult to normalize flows

flows

:.'x-'l |

hi ';Efate can not acquired when the normalizer first
tarts
)

- flows already in progress

an attacker can attempt to evade the normalizer by
(ee E@ long term connection open

) the normalizer is restarted, initiate the malicious

|
._‘
| o |

a

he analysis
i‘b S|ble
| oou..].fn,l. caused
ee eader
- element

range of values
o
approach of

sema

.ormalization Approach

Type Of Service/Diffserv/ECN. | These bits have re-

cently been reassigned to differentiated services [11] and
explicit congestion notification [13].

Issue: The Diffserv bits might potentially be used to
deterministically drop a subset of packets at an internal
Diffserv-enabled router, for example by sending bursts of
packets that violate the conditioning required by their Diff-
serv class.

Solution: If the site does not actually use Diffserv mecha-
nisms for incoming traffic, clear the bits.

Effect on semantics: If Diffserv is not being used inter-
nally, the bits should be zero anyway, so zeroing them 1s
safe. Otherwise, clearing them breaks use of Diffserv.

‘ ;hble RST

sends a keep-alive ACK to the receiver of a RST

ecelver should resend a response back

ﬁ'tﬁhe connection closed, or ACK if the connection is not

f the alternatives leaves the normalizer in an
pDiguous state

G
~» Cold Start of TCP
| 'the traffic is outbound then initialize state

i ”bund incoming packet transformed into a
p- allve and then send to its destination

If @ connection exists, the receiver should send back a
response ACK

S not_,_ _wiII respond with a RST or not at all
indow scaling is still an issue
' window scaling factor

cannot remove all ambiguities
e . :

3times the application semantics are necessary
moving ambiguities
its unrealistic for a normalizer to know all of the
application semantics for the applications running in the
~ Intranet

e ailn D

urgent pointer

E Evaluation
.
men-tbd a fairly complete normalizer prototype called
q.,f'

P, TCP, UDP and ICMP

‘,8 'Eiﬁines of C code

tilizes libpcap

L}ms as a user mode application

lized 3 trace files in testing

race from LBNL containing mostly TCP

from T1 replacing every TCP header with a UDP

2 100K trace of entirely 92-byte UDP packets

Results

.
e NN
—-
:
'

.l ' ? % 1.1GHz AMD Thunderbird
b|

'v-

rjj_‘ I\/Iemory Copy

Memory-to-memory copy only
| Trace pkts/sec bit rate
T1,U1 727,270 | 2856 Mb/s
U2 1,015,600 747 Mb/s

All checks enabled
phissee
T1 101,000 | 397 Mb/s
Ul 378,000 | 1484 Mb/s
U2 626,400 | 461 Mb/s

Number of Normalizations

Results

Vs RN
' tfr‘agmentatlon test

rnd
intv’l

input
frags/s

frag’ed
bit rate

output
pkts/sec

output
bit rate

pkts in
cache

500
000
000

299.670
245,640
202,200
144 870

86Mb/s
70Mb/s
58Mb/s
41 Mb/s

9,989
8,188
6,740
4,829

39Mb/s
32Mb/s
26Mb/s
19Mb/s

70
133
211
335

| 100
-
21

Results

b= SM}I‘Q—CP retransmissions
V pIIC Qvery packetin T1

All checks enabled

Trace pkts/sec bit rate

Tl 101,000 | 397 Mb/s
T1-dup | 60,220 | 236 Mb/s

C\-
p)
-
O

=
N
QO
=

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

