The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the
Xx86)

Enrico Galli

Introduction

Background
The Attack
Return-Oriented Programming

Avoding spurious rets
Conclusion

Background

Buffer-overflows
Defenses against buffer-overflows (\WeX)
Traditional return-to-libc attack

Buffer-overfilow

Abuse unsafe versions of string functions
Override return pointer and inject code

Defenses against buffer-

overflows

Non-executable stack
WeX

Supported by Linux(PaX patches),
Windows(since XP SP2)

Traditional return-to-libc attack

Use existing function
Chain multiple function calls

Why implement WeX?

Limited execution to straight-line code
Only use existing functions

The Attack

Purpose/Thesis

How does it work

What are gadgets and why use them
Previous use of short code sequences
Finding gadgets

Purpose/Thesis

In any sufficiently large body of x86 executable
code there will exist sufficiently many useful code
sequences that an attacker who controls the stack

will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited
program to undertake arbitrary computation.

How does 1t work

Traditional return-to-libc
Gadgets rather than functions

What are gadgets and why use

them

Collection of short sequences of instructions
ending in ret (ex. pop %eakx; ret;)

x86 ISA is very dense
Explicit(ret[c3] added by the compiler)
Implicit

Part of other op codes(add imm32, %ebx, 81 c3)
Part of displacement

Previous use of short code

sequences

Use short sequences as glue

Set function arguments in traditional return-to-
libc(args on reg calling conventions)

Finding gadgets

Galileo Algorithm

Scan libc for c3(ret)
Build trie(prefix tree) from c3 in reverse
Remove "boring” sequences

Standard exits(leave; ret;)
Return or unconditional jmp

Return-Oriented Programming

Load/Store
Arithmetic and Logic
Control Flow
System Calls
Function Calls

Load/Store

Loading a constant
pop %reg; ret;
Loading from memory
movl 64(%eax), %eax; ret
Storing to memory
movl %eax, 24(%edx); ret

Arithmetic and Logic

Add

addl (%edx), %eax; push %edi; ret
Push causes problem

No multiplication
Xor, And, Or, Not

Libc doesn't contain clean version.

xorb %al, 0x48908c0(%ebx); and $0xff, %al;push
%ebp; or $0xc9, %al; ret.

Control Flow

Unconditional Jump
pop %esp; ret
Conditional Jumps

Use memory location to change esp
Change memory location based on condition

System Calls

Use any of the simple wrappers in libc
Jump directly to _ kernel vsyscall

Traditional return-to-libc
Frame pointer to part not used

Avoding spurious rets

Single exit point
Use other reg instead of ebx
Avoid add imm32, %ebx
Unable to remove unintentional sequences

Conclusion and Future work

Able to run arbitrary code using gadgets
Backend for GCC
Other platforms

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

