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Purpose

» System-call sequences for each program.

 Compare the ability of different statistically-
based learning techniques to recognize
intrusion.



Choosing Applicable Methods

Enumerating Sequences
Frequency-based methods
Data mining approaches
Finite State Machines



Enumerating Sequences

 Enumerating sequences that occur empirically
in traces of normal behavior.

* Monitor for unknown patterns.

* lookahead pairs: A list for each system call of
the system calls that follow it at a separation of
0, 1, 2, up to k system calls.

* sequence time-delay embedding(stide):
contiguous sequences of fixed length



Frequency-based methods

* Frequency distributions of system calls in a
sequence

* n-gram vector

* Not suitable for on-line testing(program needs to
terminate to calculate trace vectors)

 Difficult to determine the vector size
» Course clustering is not precise enough



Frequency-based methods(cont.)

 Helman and Bhangoo method

« Expected frequency of sequence in normal vs
Intrusion

* Frequency of sequence on all intrusions is
unknown.(we must guess)

 Invalid assumptions: data are independent and
stationary

- Sequences of system-calls are not stationary within
traces

- Sequences of system-calls are not independent



Frequency-based methods(cont.)

 SRI(Emerald system)

 Compares short-term frequency distributions from
new, unknown traces with the longer-term historical
distribution.

* Prior knowledge of abnormal frequencies not
required.

* The long-term distribution can be continually
updated.

e Intruder could shift the definition of normal towards
Intrusive behavior.



Frequency-based methods(cont.)

* Which one did they implement/test?
* None of the above

e “Central to both methods is the idea that rare
sequences are suspicious.”

* “We chose to implement a minimal version of a
frequency-based method that would allow us to
evaluate this central idea.”



Data mining approaches

 From a large data set, determine what features
are most important.

 Compact definition of normal
 RIPPER

 Small set of rules that captures common elements
* Anything that violates the rules is anomalous.



Finite State Machines

 FSM to recognize the “language” of trace

* Determine the frequencies with which system
calls occur conditioned on some number of
previous system calls.

* Hidden Markov model

 Computationally expensive
* Very powerful



Data Sets

* Traces were collected from programs running
on live production environments

 Different very different programs selected

 |pr (data in MIT and UNM), named, xlock, ps, inetd,
stide, and sendmail



Data Sets

Normal data Normal data Normal data
Program Intrusions available used for training used for testing

Number of | Number of | Number of | Number of | Number of | Number of | Number of

traces traces system calls traces system calls traces system calls

MIT 1lpr 1001 2,703 2,926,304 415 568,733 1,645 1,553,768
UNM lpr 1001 4,298 2,027,468 390 329,154 2,823 1,325,670
named 2 27 9,230,572 8 677,340 12 7,690,572
xlock 2 72 16,937,816 72 778,661 1 16,000,000
login 9 12 8,894 12 8,894 — -
ps 26 24 6,144 24 6,144 -
inetd 31 3 541 3 541 — -
stide 105 13,726 | 15,618,237 150 246,750 13,526 | 15,185,927
sendmail - 71,760 | 44,500,219 4,190 2,309,419 57,775 | 35,578,249

Table 1. Amount of data available for each program. “Normal data used for training” refers to models
built with sequence length six; sequence length ten models used more training data. The same test
data were used for both sequence lengths; this includes all normal data not used for training either
set of models.



Experimental Design

» Accurately detect normal and intrusion data.

 Combine results across all available programs
to get a better picture of tradeoff between false
positives and negatives on multiple intrusions.

* Threshold for how much training data to use.

 |Intrusions are detected when the anomaly
signal exceeds a certain threshold.

* The false positive rate is the percentage of
decisions in which normal data was flags as
anomalous.




Experimental Design
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Figure 1. Typical database growth curve. The
graph shows how the size of the normal
database grows as traces are added chrono-
logically.



Experimental Design

1)

&

S 1000 -

: -

T 800 —

N

2 600 -

g ]

S 400 -

o |

()

w200 —

(<D

3 _

g O""l""l""l"
Z 0 500000 1000000 1500000

Total number of sequences

Figure 2. Alternate database growth curves
for the same data used in Figure 1. Light
lines show standard growth curves for differ-
ent starting points in the training data; the
dark line shows the mean.



Building models of normal behavior

» sequence time-delay embedding (stide)
 stide with frequency threshold (t-stide)
 RIPPER

 Hidden Markov Model




sequence time-delay embedding
(stide)
» Sequence lengths of six and ten were used

* Sequence length six used a sliding window
across each trace

* During testing, sequences in the trace are
compared with the sequences on the database

 Mismatch sequences are considered
anomalous

 Checked how many mismatches occurred
within a locality frame(20 system calls).



stide with frequency threshold
(t-stide)
 Rare sequences are suspicions

* |n addition to mismatches, “rare”
sequences(occurring less that 0.001% of the
normal training data) are also counted as
anomalous

» Uses Locality Frame Count as regular stile



RIPPER

* Training data: a list of all unique sequences

 RIPPER generates a list of rules that describe
normal sequences

 Violation scores represents how often the rule
was correctly applied on the training data.

» High-confidence rules are those that have a
violation score greater than 80

 Violations of high-confidence rules count as
mismatches

 Uses a Locality Frame Count as stide



Hidden Markov Model

 Numbers of states: number of unique system
calls

* Training was expensive: multiple passes over
training data, took approximately 2 months

 Read one system call, record transitions and
outputs

 Normal traces should only require likely
transitions and outputs.

e LFC was not used. Individual mismatches were
used.



Results

False-positive rates should be well below 0.001

Results across modeling methods on a
particular data set are closer than results for the
same method across different data sets.

t-stide consistently performs worse than the
other methods

No best choice for all data sets.
Results dependent on training set



Results
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Figure 3. Composite results for each method on all data sets, sequence length 6. Each point rep-
resents performance at a particular threshold. True-positive values are the fraction of intrusions
identified. For the sequence-based methods, false positives are the fraction of sequences giving
mismatches at or above the specified locality frame count threshold. For HMMs, false positives
are the fraction of system calls corresponding to state transitions or outputs below the specified
probability threshold. Points labeled “HMM” are for only randomly-initialized HMMs, while those for
“HMM+” use the specially-initialized HMMs designed to handle Ipr data. No t-stide points appear in
the median plot because the false positives are off the scale. Results for four HMM thresholds all
map to the single median point shown.
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Figure 4. Average true and false positives versus threshold for each method, sequence length 6.
HMM results are for randomly-initialized HMMs only.



Results
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Figure 5. False-positive rates for each of six data sets, sequence length six. stide threshold: 6, t-stide
threshold: 4, RIPPER threshold 2, HMM threshold = 0.001. Note that the RIPPER true-positive rate
at this threshold is is slightly lower than those of the other methods. False-positive rates are shown
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Conclusions

Three of the four methods performed
adequately.

HMM gave the best accuracy on average, but at
a high computational cost.

Results between programs varied more than
results between methods.

More time should have be spent deciding which
IS the most effective stream to monitor.



Question?
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