Secure web browsing with the OP
web browser

Paper by Chris Grier, Shuo Tang, Samuel T. King

Presented by Farhan Jiva



Overview

1. Motivation

2. The OP browser design and implementation
3. Security policy and enforcement

4. Formal verification

5. Analyzing browser-based attacks

6. Evaluation



1. Motivation

* Current web browsers are fairly vulnerable
- All major browsers affected (IE, FF, Safari, Opera)

* Authors claim the reason is because of a flawed
design and architecture

* Proposing a new design for a browser

- Relies on operating system principles



2. The OP browser desigh and implementation

Threat model and assumptions

» Attacks from a web page can target any part of
the browser

* An attack can be any sort of form

- Namely, code injection/execution

* Assumed that the OS and JVM will isolate the
browser's subsystems

e Assumed that DNS names are correct



2. The OP browser desigh and implementation
Design principles

o Simple and explicit communication between the
parts of the browser

e Strong Isolation between these components
* Design the components properly
* Maintain compatibility with current technologies



2. The OP browser desigh and implementation

OP browser architecture

Web Page Instance

Web Page Instance

Web Page Instance

Storage
User Interface
Network
Access control
and audit log Browser Kernel
display | — network
Operating System file system

(a) Overall architecture of our OP web browser

* 5 main subsystems
 Web page
* Network
e Storage
» User Interface
 Kernel

e Each run within

separate OS-level
processes

 Each part

communicates through
kernel

« Each part sandboxed

using SELInux



2. The OP browser desigh and implementation

The browser kernel

e 3 main roles

 Manage subsystems
- Creating/destroying processes
 Manage messages between subsystems
- OS-level pipes
 Maintain detailed audit log
— Assists with forensic analysis in case of compromise

» Single-threaded, event-driven



2. The OP browser desigh and implementation
The web page subsystem

Plugin
Plugin
Plugin JavaScript Y Y
HTML script 1
parsing and S Xvne
rendering script 2
A A A A

To Ul

Browser Kernel

(b) Overall architecture of a web page instance

« Each web page instance is an individual web page

« Each web page instance contains a set of OS-level processes

« HTML engine

— KHTML (written in C++)
« JavaScript engine

— Rhino (written in Java)

« Plugin instances
o X-server



2. The OP browser desigh and implementation

User interface, network, storage subsystem

e Ul subsystem

 Written in Java
* Full access to the file system

* Includes address bar, navigation buttons, menus,
etc.

e Storage subsystem

» Stores cookies and such in an Sqlite database
* Network subsystem

* Implements HTTP



3. Security policy and enforcement
Browser plugins

* Plugins let you view additional content in your
web browser

* Flash player, PDF viewer
* Plugin determined by MIME-type
* Plugins complicate browser security
 Run in the same address space as the browser

» Currently, plugin writers implement their own
ad-hoc security features



3. Security policy and enforcement
Plugin security in OP

e Each plugin must pass its messages through the
browser kernel

e Each plugin is run in a separate process

» Each process is labeled with a security context
(domain name)

* This label is used to make decisions for plugin
and browser actions

» A plugin can be denied access to a browser resource

e The rest of the browser can be denied access to a
plugin resource



3. Security policy and enforcement
Plugin security policies

1. Provider domain policy

- Sets the origin of the plugin to the site hosting the
plugin content

- The plug can then access cookies, make network
connections to its corresponding host

2. Plugin freedom policy
- Some plugins need more flexibility
- Example: a peer-to-peer video chat plugin

- Solution: allow the plugin to access storage and
network subsystem



4. Formal verification

* The authors decided to formally verify the
correctness of OP

 They use a modeling interpreter/language
called Maude

* Using Maude, they find invariants

- Program invariants

e Can be easily gathered from the source code
- Visual invariants

« E.g. preventing address bar spoofing



4. Formal verification

Modeling using Maude

1 mod SIMPLE-CLOCK 1is

2 protecting INT .

3 sort Clock .

4 op clock : Int -> Clock [ctor]

5 var T : Int

8] rl clock(T) => clock((T+1l) rem 24)
7 endm

Fig. 3. A simple Maude example from the Maude Manual (Version 2.3).
This example describes a model for a 24 hour clock in Maude.

search in SIMPLE-CLOCK :
clock(0) =>* clock(T)
such that T < 0 or T >= 24

Fig. 4. The search statement from the Maude Manual (Version 2.3) showing
how to model check the SIMPLE-CLOCK model invariant using Maude’s
search functionality.

sort is similar to the
class keyword In
C++, defines a
category

Fig. 4 shows how to
use Maude to find
Internal states which
violate an invariant
(.e. iIf the 24 hour
clock holds an illegal
value)



4. Formal verification
Formal models and system implementations

» Often, there Is a gap between a formal model
and its corresponding implementation

* The authors believe their implementation is very
similar to the formal model

* The formal model they created Is focused on
message passing between the components



4. Formal verification
Modeling the OP browser

<UI-ID : Frame | addrBar: URL, ... >
imsg (count, src, dst, IDENTIFIER, content)
< ... >

Fig. 5. The message specification in Maude. The first section of the
specification is a class-like structure, starting with < and ending in >. UI-ID
15 the instance identifier of the type, Frame is the type, and after the pipe are
the members of the type. The next line begins with imsg and 1s the constructor
for the message type. The constructor takes the elements in parenthesis and
creates an object of a specific type. The imsg constructor creates an object of
type Message.

 Messages are tagged with a count to ensure In-
order processing

 Message ordering is preserved by the browser
kernel



4. Formal verification
Modeling the OP browser

* Modeling user actions

- Maude rule below describes the message generation as
a result of a user clicking the “GO” button

< UI-ID : Frame | addrBar: URL, ... > GO

< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >
=>

< UI-ID : Frame | addrBar : URL, ... >

imsg (M, UI-ID, KERNEL-ID, MSG-NEW-URL, URL)
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : s (M) >

Fig. 7. Maude expression for the “GO” Ul button causing a message to be sent. The first line represents the portion of the browser state for the Frame and
the user action being performed, which in turn causes produces a new Frame state and the message with type set to MSG-NEW-URL.




4. Formal verification
Modeling the OP browser

 Model checking address bar invariants

— Start with defining the “good” browser states
- Then use Maude to search for “bad” ones

< UI-ID : Frame | AddrBar : Sl:String, NavWebApp : WebAppl:Int , ... >
< WebApp2:Int : WebApp | Content : SZ:String, ... >
such that (WebAppl:Int == WebApp2:Int) /\ (Sl:String =/= S2:String)

Fig. 8. A Maude expression describing the condition checked for address bar spoofing. This condition is used as a test for bad browser states. The first line
1s the current state of the browser, specifying the UI and ID for an instance of the web page subsystem. The last line i1s the comparison, which checks that
the URLs associated with the address bar and web page subsystem are different, indicating a state where the address bar is spoofed.




5. Analyzing browser-based attacks
Intrusion analysis design

« Even though they secured

T their browser, some attacks
l can still occur
http://www.clipsforadults.com/. ../movie2. php?id=4080 - Namely, social engineering
attacks
l « Solution, track web pages
http://zsvcompany.com/download. php?id=4080 and files and the events

which connect these

- Also, make a pretty graph out

of this information

(a) Forward dependency graph for videozfree attack



5. Analyzing browser-based attacks
Example: cross-site request forgery

SRt ancene s So « Uses the BackTracker
J, graph generation algorithm
http://messages. financenews.com/message. html to generate dependency
i graphs
:}Ep}f;i;y:lr;cn;w;;{}{h}{}{}{:3 « CSRF steps

I 1. Authenticate yourself with
http://maliciousnews.com/news.html your bank website

l 2. Visit a malicious website
 Bttps/oanking. comranster.php_ 3. The malicious website uses

—_— o
T = = = m— =

your authenticated browser

to transfer funds out of your
(b) Backward dependency graph for xsrf attack bank account



750

Load time latency in miliseconds
&
=

o

live.com google.com craigslistorg cs.uiuc.edu wikipedia.org

B Firefox Average

Fig. 11.

6. Evaluation

Performance evaluation

B OP Average

Loading latencies for OP and Firefox.

e Used a 2.66GHz Intel Core
2 Duo machine with 2GB of
RAM and 250GB SATA

e Running 64-bit Fedora 7

« Compared OP against
Firefox 2.0.0.12

e Loaded each web page 5
times and took average

- No caching

e Authors claim the latency
times are due to the
JavasScript engine



6. Evaluation
Security analysis

o Authors understand that their browser could still be
compromised
 Web page compromised?
- Hijack message sending to other subsystems
« Ul, storage, network compromised?

- Tweak the Ul (address bar spoofed)
- File system access, access to persistent storage
- Arbitrary network connections

e Browser kernel?

— Full browser compromise
- But don't worry, it's only written in 1221 lines of C++



Questions?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

