Polygraph: Automatically Generating
Signatures for Polymorphic Worms

The work of:
James Newsome, Brad Karp, and Dawn Song

Carnegie Mellon University

Proceedings of the 2005 IEEE Symposium on Security and Privacy

Origins

e The actual term "worm'" was first used in John
Brunner's 1975 novel, The Shockwave Rider.

Lk

* Robert Morris, a Cornell U grad student, created a
worm that disrupted 10% of the internet machines.
(Nov 1988)

— Estimated to have cost more than $100K to remove
the worm.

- He went to jail for it.

-wikipedia

What 1s a worm?

Worm: self replicates, it 1s passed from one machine to
another, doesn't need to attach itself to an existing

program.

Typical behavior:
the machine, senc

Typical unwanted

ed

self replication, add a back door to
| SPAM

| effect: absorb bandwidth, not

necessarily mtenc
machine.

-wikipedia

ed to corrupt or modify the target

Polymorphic Code

Poly = many

Morph = change in shape

Polymorphic - able to have several shapes or forms.

Problem: How do you detect something that 1s always
changing?

Worm detection

Worm detection with Intrusion Detection Systems
(ID S) Worm Alert!

e Signature generated manually

e Typical automated approach was to find a single
substring match to identify the worm.

e Automatic signature generation systems:
Honeycomb, Autograph, EarlyBird

e A signature from a polymorphic worm 1s too short
to be on any use

Worm Properties

Behavior we can count on

What 1s 1ts purpose?

e Self replication

What stays the same?

* Fixed structure of the exploit
— Attack method remains unchanged
e Imperfect obfuscation techniques

— Polymorphic engines that do a poor job

Dissecting the worm

e Invariant bytes

— Can't change or the exploit doesn't work

e Wildcard bytes

— Any value

— Has no effect on the worm's behavior

e Morphed bytes
— Always changing

— The code section

Tokens

e Forensics on worm exploits
- Many worms contain may invariant bytes

— Not all worms have invariant bytes (Limitation)

e Polymorphic worms have very small invariant
strings

— Too small to be of any use as a signature tool
— Many 1nvariant strings

e Tokens

— A 1nvariant string in the worm

Signatures

* Tokens are building blocks for the signatures

— Signature = set of tokens

e Conjunction Signatures
— Fixed set of tokens found 1n any order (t3, t8, t2,..)

e Sequence Signatures

— Fixed set of tokens 1n a set sequence (t1->t2 ->t3->...)

— Regular expression (.t1.%t2.%T3.%*,....)

— Catches framing exploits

Signature

e Bayes Signatures 1. &5

— Match based on probabilities o o
e Weights are assigned to each token

e Match occurs when total weighting exceeds a
threshold

— Learned from a pool of unrelated worms as well as
innocuous network activity

— Higher computational cost

— Reduces false negatives

Polygraph Architecture

Full .
Packet) Suzpicious
Flows j,.-' Flow Pool ‘L
Network . Flow Fqlg.rgraph | E—
Tap Classifier | Signature
— '\ /| Generator |
l * Innocuous — ’
Flow Poaol
Labeled -
Flows + —----——-

| Evaluator | - -lFﬂlyng’h
L---- - Monitor

* Flow classifier 1sn't perfect

— Identifies suspicious traffic
— This worm or that worm, 1t doesn't matter

— Partitioned worms according to the destination port

— Noise = misclassified innocuous traffic

Full ici
B , Suspicious
Flows J Flow Pool
LY
Network Flow Polygraph || _ .
Tap "| Classifier Signature -
- " Vi Generator |
‘ ', MInnocuous 7 J
Flow Pool -)
Labeled *, - .
Flows \: ——————— * L
Signature ', -~
| Evaluator r Polygraph
Lo------ Monitor

e Signature generator is the main focus

— Innocuous pool 1s used to reduce false positives

— Signature evaluator 1s future work

Design goals

e Low false positive / negative detections

e Minimize computational cost
— Efficient algorithms
 Minimize the number of signature generated

— One per morphed worm 1s unacceptable

— Still maintain signature quality

e Unaffected by noise or mixed set or worms

— A different worm family will generate a different
signature

Conjunction Algorithm

e (Generate the token list

— Find the invariant strings

» Use the list to create the conjunction signature list

— Which tokens are 1n “this” worm

e Search the worm for tokens

Sequence Algorithm

e Sequence signature

— Reduce the worm to token series
 [gnore non-token strings

— Need a string alignment algorithm that prefers
subsequences with contiguous (large) substrings

e Smith-Waterman alogrithm

— Points are added for no-gaps (contiguous)
— Points are subtracted for gaps (non contiguous)

— The higher the sum, the more contiguous the match

Bayes Algorithm

e Bayes signature

— Calculates the probability the at token 1s contained in
the sample

— Filters out the noise in the suspicious pool

— Probability that a token 1s 1n a string 1s independent
of other tokens in the string

- Works best with a large number of tokens and
moderate sized suspicion pool

— Using the innocuous pool as input reduces the false
positive detections

— Calculation biased to reduce false positives

Clustering

e Noise 1s still a problem for the conjunction and
sequence signatures

* Hierarchical Clustering 1s used to group common
worm signatures

— Set of suspicious flows and the signature that
1dentifies the set

— Merging the 2 clusters produces a more sensitive
signature

— Use the new signatures against the innocuous pool

— Select the signature that produces the fewest false
positives

Evaluation

Data set was created with known worms and
scanned network traffic

— Suspicious tool size > 2
— HTTP: incoming and out going
— DNS traffic

Tested with only one worm 1n the suspicious pool

Add noise and retest

Test with multiple worms and noise

Results

Class False + | False — Signature
Longest Substring 92.5% 0% HTTP/1.1\r\n
Best Substring .008% 0% \xFF\xBF
‘GET . “HTTP/1.1\r\n". *: . “\r\nHost: ".
4 : : 400 0. VO AR
Conjunction 0024% 0% “\r\n’, ;L f\r\nHost: *, ‘\XFF\xBF". “\r\n’
Token GET .* HTTP/1.1\\r'\n.*: .* \r\nHost: .*
. .0008% 0% N e . ok L \ T)
Subsequence \r\n.*: F\r\nHost: .*\xFF\xBF.*\r\n
“\r\n’: 0.0000. *: *: 0.0000, *\r\nHost: ": 0.0022,
Bayves .008% 0% ‘GET ": 0.0035, * HTTP/1.1\r\n": 0.1108,
‘\XFF\xBF": 3.1517. Threshold: 1.9934
HTTP worm
Class False 4+ | False — Signature
Longest Substring || .3279% 0% \x00\x00\xFA
Best Substring 0023% | 0% \XFF\xBF
Conjunction 0% 0% “\XFF\xBF’, <\x00\x00\xFA’
Token Subsequence 0% 0% \xFF\xBF.*\x00x00\xFA
“\x00\x00\xFA’: 1.7574, *\xFF\xBF': 4.3295
Bayes 0023% 0% " o e
Threshold: 4.2232

DNS worm

Cost of Computation

e Hardware

— Single desktop Linux machine
e Pent III running at 1.4GHz
e Conjunction, Sequence, Bayes signatures generation
1s quick
— 10 sec each for a 100 sample set

e Cluster refinement is time consuming

— Depends on sample size
e O(#samples”™2)
— Signatures generated in <10 min for a 25 sample set

Conclusion

e The IDS approach toward polymorphic worm
detection 1s feasible

* High quality worm signatures can be generated
automatically

e Reliable even if the sample pool contains noise and
multiple worm families

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

